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STUDY OF THE INITIAL BOUNDARY VALUE PROBLEM FOR A
TWO-DIMENSIONAL CONVECTION-DIFFUSION EQUATION WITH A
FRACTIONAL TIME DERIVATIVE IN THE SENSE OF
CAPUTO-FABRIZIO

In this paper, we study an initial boundary value problem for a differential equation with a
fractional order derivative in time in the Caputo-Fabrizio sense. This equation is of great practical
importance in modeling the processes of fluid motion in porous media and anomalous dispersion.
The uniqueness and continuous dependence of the solution of the problem on the input data in
differential form is proved. A computationally efficient implicit difference scheme with weights is
proposed. A priori estimates are obtained for the solution of the problem under the assumption
that the solution exists in the class of sufficiently smooth functions. The uniqueness of the solution
and the stability of the difference scheme with respect to the initial data and the right-hand side
of the equation follows from the obtained estimates. The convergence of the difference problem
solution to the differential problem solution with the second order in time and space variables
is proved. The results of computational experiments confirming the reliability of the theoretical
analysis are presented.

Key words: Fractional differential equation, fractional derivative in the sense of Caputo-Fabrizio,
finite difference method, energy inequality method, stability, convergence, a priori estimate.
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VYaxkspiT Ootibiaima KamyTo-®@abpuiino MarbIHACBIHAAFBI O6JIIIIEK TYBIHABICHI Oap eKi eJjrmeMai
KoHBeKIus-auddy3nsa TeHaeyi yiiiH KOMbIIFaH O0acTanKbl ITeKapaJbIK €CEeNTi 3epTTey

By xympicta KamyTo-@adbpuiiino MarbIHACKIHIATBI YAKBIT OOMBIHIIA OOJIITIEK PETTi TYBIHIBICHI 6ap
nuddepeHnnaaIbK TeHIey YIMH KONbIIFaH 6acTalKbl MeKapaJIbK, ecell 3epTTes . by Temmey
dubTpanys YpIiCTepiH KoHe aHOMAJIIBI JTUCIIEPCUSIHBI MOJIEJIbJEYIe YIKEH KOJIIAHOABI MOHTe
ne. Ecen memiMinis KaJarbI3abpIFbl MEH OacTanKbl OeplireH MoHIEpAeH Toyesaurri auddepen-
MAIIBIK hopMaga majesaeHai. Kcenreyre Tuimai caaMarsl 6ap afiKbIH eMec afbIPBIMIBIK, CyIha
YCHIHBLTABL. 2KeTKITKTI Teric pyHKIMIap KIACHIHIA MeIriMi bap JereH 60 KaMMeH eCeITiH e~
miMi YIIiH anpuopJibik, 6arastayiaap ajbiHabl. Ocbl Garajayapiad MIENIMHIH KaJIFbI3IbIFbl KoHe
GacTallKpl OepijireH MoHIEp MEH TEHJIEY/IiH, OH YKarbl OOMBIHINA aflbIPBIMIBIK, CYJI0AHBIH, OPHBIKTHI-
JIBIFBI TIBIFAJBI. ARBIPHIMIBIK €CenTiH ImermMinin muddepeHualiIbK, eCcenTiH MeniMine yaKbIT
2KOHE KEHICTIKTIK aifHbIMAaJIbLIapbl OOMBIHINA EKIHIN PeTHeH KUHAKTAJIYBI mojesnner . Teopusi-
JIBIK, TAJITAY/IBIH JTYPBICTBIFBIH PACTANTHIH €CenTey ToXKipubeaepiHia HOTHXKeIepi YChIHBLIIbI.
Tyitin ce3mep: Bemmek perti auddepermuanasik Tenaey, Kamyto-Oadpuiimo MarbIHACHIHIATBI
OeJIIIeK TYBIH/IBI, AaKBIPJIbI aWBIPBIMIAD 9JTiCi, SHEPTUAIBIK, TEHCI3AIKTED 9/1iCi, OPHBIKTHIILIK, KU~
HaKTBIJIBIK, aHpI/IOpJ'H)I 6a.f‘a.ﬂay.
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B macrosmieit pabore wmccienyercss HadaIbHO-KpaeBas 3ajada i JudepeHIiuaILHOr0 ypaB-
HEHUsI C IIPOU3BOJHON JIPOOHOrO Mopsiika 10 BpemeHu B cMbicjie Kamyro-@abpunmo. Jlannoe
ypaBHeHUe nMeeT OOJIBIILYIO NMPUKJIAIHYI0 3HAYMMOCTh IIPU MOJEIUPOBAHUN IIPOIECCOB (DUIBTPA-
MY ¥ AaHOMAJIBHOM nuctepenu. Jloka3aHbl € IMHCTBEHHOCTD U HEIIPEPBIBHAS 3aBUCUMOCTD PEIEHUS
3a71a91 OT BXOJIHBIX JAHHBIX B auddeperimaabaoit popme. [Ipeamorkena BEIMUCIUTETHHO 3P DeK-
TUBHAS HesIBHAST PA3HOCTHASI CXeMa ¢ BecaMu. [1oIydeHbl allpruopHbIe OIEHKH JIJIsT PEITeHUsT 33,/ 1a91
B IIPEJIIIOJIOXKEHUN CYIIECTBOBAHUSI PEIIEHUs] B KJACCe JIOCTATOYHO IIaJkuxX (yHKIwmi. 13 srwmx
OIIEHOK CJIEJIYIOT €JMHCTBEHHOCTH PEIIEeHUs] U YCTONINBOCTH Pa3HOCTHOI CXEMbI 10 HAYAJIBHBIM
JIAHHBIM W TpaBoil dactu ypasHenus. JloKazaHa CXOAMMOCTDH PEINEHUsI PA3HOCTHON 3ajadu K
perernio auddepeHITnaTbHON 33/1a91 CO BTOPBIM HOPSIKOM 110 BPEMEHHOH U IIPOCTPAHCTBEHHOM
nepeMeHHBbIM. [IpecTaBieHbl pe3yIbTaThl BHIYUCIUTEIbHBIX IKCIIEPUMEHTOB, ITO/ITBEPKIAIOIIE
JIOCTOBEPHOCTH TEOPETUIECKOTO aHAJIN3A.

Kutouessie ciioBa: /luddepennmaibaoe ypaBHeHue JIPOOHOTO TOPsIKA, JIPOOHAsT TPOU3BOHAS
B cmbiciie Kamyro-@abpuiino, MeTol KOHEIHBIX PA3HOCTEH, METOJ[ SHEPreTUIeCKUX HEPABEHCTB,
YCTOMYNBOCTD, CXOAUMOCTD, allPUOPHAas OIIeHKA.

1 Introduction

Differential equations containing fractional derivatives have become popular because they are
more suitable for modeling specific real-world problems than ordinary differential equations.
Therefore, the development of analytical and numerical methods for the theory of fractional
differential equations is an urgent and important problem. One of the important examples
of applying this type of equations is the equations describing flows of a multiphase fluid in
highly porous fractured formations with fractal well geometry.

In this paper, we obtain a priori estimates in differential form for this problem, which
implies the uniqueness of the solution and its continuity from the input data. An implicit
finite difference scheme of the second order of approximation in time and in a spatial variable
is proposed. The stability of the proposed scheme as well as convergence with a speed equal
to the approximation order is proved. The results obtained are confirmed by numerical
calculations performed for two test problems.

2 Literature review

In recent years, the use of fractional order derivatives to construct mathematical models of
various physical processes involving electrical circuits [1], thermal and diffusion processes [2,3],
medicine [4,5], and other processes [6,7], as well as the development of numerical or analytical
solutions for these fractional mathematical models are very relevant. Among them, the
problems of fluid flows in porous media are of great interest, where their dynamics are
significantly affected by memory effects, which are described by the theory of fractional-order
integro-differentiation [8,9]. In the fluid flow problems, whose state and observation processes
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are controlled by the time-varying Brownian motion or the Levy process, the Riemann-
Liouville fractional derivative was used for the Zakai equation [10]. In [9], several models
were proposed to describe fluid flow processes in complex fractured porous media containing
fractional Riemann—Liouville derivatives in time and space. For single-phase fluid flow, a
nonlinear pressure equation containing fractional Riemann-Liouville derivatives with respect
to time is obtained, a fractional differential modification of Darcy’s law is proposed, and a
fractional differential equation for anisotropic fluid flow is obtained. A fractional differential
modification of the Barenblatt-Gilman model for nonequilibrium two-phase countercurrent
capillary impregnation is also proposed, taking into account the effects of power memory when
the system relaxes to a local equilibrium state. For the two-phase flow of an incompressible
and immiscible fluid in porous media, a memory formalism using the fractional Caputo
derivative was introduced and a two-level discrete time method was developed that uses a
large time step for pressure and a small time step for saturation [11]. In [12], a nonlinear two-
dimensional orthotropic fluid flow equation with a fractional Riemann—Liouville derivative in
time is considered. In [13], a fractional model was presented for two immissible fluids flowing
through a porous medium with an average capillary pressure, and the solution was obtained
using the Mittag-Leffler function, the Sumudu transform, the sinusoidal Fourier transform
and their inversions after obtaining the corresponding formulas for fractional integrals and
derivatives. In [14], the laminar flow of a fluid in an axisymmetric porous cylindrical channel
exposed to a magnetic field was investigated. The governing equations consisted of fractional
partial differential equations based on Caputo-Fabrizio fractional derivatives in time.

As we can see, many papers have been devoted to the theoretical development and
application of fractional derivatives in various branches of science, but in this paper we want
to use the recently introduced fractional derivative in the sense of Caputo-Fabrizio without
a singular core [15]. The properties of the Caputo-Fabrizio fractional derivative are studied
in [16], and various boundary value problems for the fractional heat equation involving this
fractional derivative are studied in [17].

The use of the Caputo-Fabrizio fractional derivative has been studied in many papers. For
example, in [18], the equation of groundwater flow within an unlimited aquifer is modified
using the concept of the Caputo-Fabrizio fractional derivative without the singular core.
In [19], the model of groundwater motion through a geological formation was extended using
the Caputo-Fabrizio fractional order derivative and the equation was solved analytically using
some integral transformations.

The main contribution of [20] is the construction and analysis of stable schemes based on
the third-order finite difference method in time and spectral methods in space for the effective
solution of the two-dimensional diffusion equation containing a fractional Caputo-Fabrizio
time derivative. In [21], the Caputo-Fabrizio fractional derivative is used to introduce two
new types of high-order derivatives and the existence of solutions for two such fractional high-
order integro-differential equations is studied. The article [22] presents a parallel algorithm for
solving a two-dimensional fractional differential equation. For this algorithm, a distribution
model and a data layout with a virtual boundary are developed. In addition, in [23] application
to a nonlinear Fischer-type reaction-diffusion equation was investigated, in [24] application
to a stationary heat flow, in [25] application to a groundwater flow, and in [26] application to
the study of chaos on the Wallis model for El Nino, in [27] the fractional Nagumo equation
with nonlinear diffusion and convection was studied using the Caputo-Fabrizio fractional
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derivative.

3 Material and methods

3.1 Formulation of the problem

Let @ = (0,1) x (0,1) and Q7 = Q x (0,7T) for T > 0. We consider the following initial
boundary value problem: find u € ()7 such that

ogu=Ku+ Du+ f(x,t), (z,t) € Qr, (1)
u(z,0)=p(x), x€Q, (2)
u(x,t)=0, xe€ddx(0,T), (3)

where 0 < a < 1, 1'2(1'1,172); K:Kl‘l—Kz, D:D1+D2,

Kot =t 00) e D= 50 (00 25 ) = 1.2

T ox,, 0Ty,

The fractional derivative is defined in the sense of the Caputo-Fabrizio definition:

ou «

t
1
P (2,1) = m/exp(—'y (t=7) 5 (w,7)dr, 7=
0

(4)

1—a
Assume that the following conditions hold for the coefficients and the right-hand side of
(1):

ki (2,1) € CY(Qr) s g (2,1), f(2,1) € C(Qr), (5)

0<ci <km(z,t)<co |gm(z,t)] <c2, 2¢1 >0 (6)

Assume that there exists a solution to the problem (1)-(3) in a class of sufficiently smooth
functions.

3.2 Uniqueness of the solution and its continuous dependence on input data

Introduce the following scalar products and norms:

T
Hqu,QT:/O /Qquazdt, ||u||§,Q:/u2dx,

Q
ou 2
— , (u,v) :/uvda:,
01QT Q

ou
Vulie, = |5

e

| ‘
07QT

T
2 _ 2
a2 = / / Dy lull2 g da dt,
0 Q
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where u and v are functions defined in Q7 ; Dy;“u is the Caputo-Fabrizio fractional integration
operator [28]:

e 2(1-0) 2 [!
DOt u:ﬁu(t)—i—2_a/0 U(T)d'r, tZO

The following two lemmas are proved similarly to [29].

Lemma 1 For any absolutely continuous function on [0,T], y(t), the following inequality
holds:

1
yogy > 58323;2, 0<a<l.

Lemma 2 Lety (t) be a non-negative absolutely continuous function satisfying the inequality
Oy <my(t)+72(t), 0<a<l1

for almost every t € [0,T], where v, > 0, v (t) are nonnegative summable functions on [0, T].
Then

y(t) <y(0) Bo (mt”) + T (a) Eaq (111%) Dy v2 (1)

where E, (2), Eq, (2) are Mittag-Leffler functions:

ZF (an+1)’ 2 RZF (an+p)

n=0

Boundedness of the functions E, (t*) and E,, (t*) for 0 < t < T yields the following
inequality for a non-negative absolutely continuous function y (x,t) under the conditions
of Lemma 2:

2 2 2
1llo.q, < Milly (2,0)llo.q, + Mzl - (7)

Theorem 1 If u(z,t) € C**(Qr) N C*°(Qr), du(z,t) € C(Qr), then under the
conditions (5)-(6) the following inequality holds for the solution of the problem (1)-(3):
lu (2, O)llg g, < Millu(z,0)ll5 g, + M | f (. O]F, My, My >0,

which yields the uniqueness and continuous dependence of the solution on input data.

Proof. Using (1), we get

T T T T
/ /u@&udxdt:/ /Ku-udxdt+/ /Du-udxdt—l—/ /f(x,t)ud:pdt. (8)
0 0 0 0
Q Q Q Q

Estimate the integral on the left-hand side of (8) using Lemma 1:

T 1 T
/ /u@&udmdt > 5/ 6y Nulff ¢ dt. (9)
0 0
Q
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The integrals on the right-hand side of (8) are estimated as follows:

T
c
/ /Ku cudrdt < 2ceeq ”qu,QT + ﬁ HVUHSQT , (10)
0 2 1
r 2
—/ /Du cudzdt > o ||Vullg g, (11)
o9
" fudedt < Zf12 0, + 2l (12)
; =g Wloar ™5 1%logr
)

Choosing &1 = (2¢3) ", &3 = (2¢1 — cg)_l, it follows from (8) that

2 1 2
O,QT + 201 - C% HfHO,QT :

T 2 C% 2
[ etz adrs (e - 2)Ivulig, <o
Using Lemma 2 implies
T 2 r 2
| e nliade< [ lute o)l B0 des
0

(@)

2
2c1 — ¢

T
/0 o (t%) Dy |1 (2, )12 d. (13)

Using the inequality (7), we obtain the statement of the theorem from (13).

3.3 Construction of the numerical method

For the numerical solution of the problem (1)-(3) we apply the finite difference method. In
Q7 , we introduce a uniform finite difference grid w;,, = W, X w,, where

On = {2y = (ih, jh): i=0,1,..,N, j=0,1,...N, Nh=1},

w, ={t,=nr, n=0,1,...M; T=71M}.

First let us derive a discrete analog of the fractional derivative in the sense of Caputo-
Fabrizio. For this purpose we use the technique applied in [30] for the derivation of the
discrete analog of the fractional derivate in the sense of Caputo. In the following lemma we
assume u (t) = u (-, 1).

Lemma 3 Let u(t) € C?[0,T]. The discrete analog of the derivative (4) with the
approzimation order O (T37%) is given by

Z 9n—s (u (ts—H) —u (ts)) ) (14>
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where
Ag,a’ s=0, n=0,
oo ) AYT+ B, s=0, n>0,
9 = A‘”—i—BSJrl By 1<s<n-—1 n>0,
A% — B9 s=mn, n>0,
0o €T —=1 . T —1 wo ET(VT—=2)+~T+2
AT = A =G BT = Iyerio+s) 821 (15)

Proof.  Following [30], let 0 =1 — «/2. Using the definition (4), construct the following
approximation for the fractional derivative of the function u () € C®[0,T] of order a, 0 <
a < 1, in the sense of Caputo-Fabrizio at a fixed point t,,4,, n € {0,1,..., M — 1}:

I & [ 3
a&n-&-v ( ) Agtm—au = 1—a Z/ €xp (_7 (tn+0' - 77)) UIS (7’}) d77+
s=1 Yts—1
1 [lee y
o exp (=7 (tnto — 1)) U (1) dn, (16)
tn

where g () is the approximation of u (1) on [ts_i,ts], s € {1,2,...,n}. Various approaches
to approximate s (n) result in different computational schemes which differ by the
approximation error, the complexity of the calculations. Among them, approaches based
on applying the trapezoidal rule, interpolation and predictor-corrector methods are known.
In this paper, we utilize the quadratic interpolation polynomial of v using three nodes t,_1,
ts and tgyq:

as (t) _ (t B ts);:z_ ts-‘rl)u (ts—l)_ (t B ts—lz—gt - ts-‘rl)u (ts>+ (t — ts—2122<t —t ) ( $+1> (17)
for which
w) =)= (i e (- ) (13)

6
holds, where ¢ € [ts_1,ts11], & € (ts—1,ts11). Using (17) in (16), we obtain

1 n ts Uts—1 + uft,s (T’ - tsf 1) d77
Ag, /
>/

tn+o‘
dn + / ,
1 —a s—1 eXp (7 (tn+0' - 77)) 1 -« exp (’Y (tn+cr - 77))

s=1

where u; s = (0¥ — u®) 77wz = (uf — ws1) 771 Taking into account the equality

<n,

/ts n—ts_% iy = exp (v7) (Y7 — 2) + 7 + 2
to_y XD (7 (tnso — 1)) 2y?exp(yT(n+ o —s+1))

we arrive at

1 = exp (y7) — 1
A, = — .
Otn+a a <; eXp (’YT (n + o— 5 + 1)) U/t7 1+
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t,s ut,s—l) +

i eXp(W)(W—2)+W+2(

u
— 2yexp(1T (n+ o0 —s+1)) exp (Y7o

exp (yTo) — 1u
) )

Finally, using the notations (15), we arrive at the assertion of the lemma.
In @y, we introduce the following difference scheme with weights of the approximation
order O (h? + 72):

AG,. . Yis = Oyij + Yy + ol (19)
yzoj = Pij» (20)
v =0, n>0 (21)

where @ = (“)1 +@2, U = \111 +\112,

Gmyij = 05 (Um,ij |77m 7] |> gm nym,u + 0 5 (77;;1;; + ‘nr—;,lzT]n D g’rjzlzyjnya(:j,zg?

\I/myz] — (gmy:(ifn)>$ ij ) (,0:; = f (.TU; tn-i—o’) )

n o __ n _ dm (a:ij? tn+0')
S i = =k ( Z_,j,tn+a> ) 52,@ =k ([Ei7j_%;tn+a> » Mmyij = ma

Yy = oyt + (1-0)y", (22)
vy is the set of boundary nodes of wj. Here we use standard notations from the theory of
difference schemes.

3.4 Stability and convergence of the difference scheme
We introduce scalar products and norms:

N-1 N N

E : 2 § E /‘ 2
uijvl-jh y (U, U] = uijvijh s

j=1 i=1 j=1

-1

N
i=1

2 2 2
ol = 33 w91 = [+ s
=0 j=0
N N N N
Hu9731H2 - Zzufl,ith’ Husz2 = Zzu@,ljhg
i=1 j=0 i=0 j=1

We prove several auxiliary lemmas.

Lemma 4 For any function y (t) defined on the grid wy,, the following inequality holds:
A[‘)"tnwy > QAgthmy?.

This Lemma is proved similarly to Lemma 1 from [29]. Below, the letters u with indices
denote positive numbers that do not depend on h and 7.
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Lemma 5 Under the conditions (6), the following inequality holds for the solution of the
difference problem (19)-(21):

A 9P + e [ V5@ < [y + el
Proof. Multiply the equation (19) scalarly by 3():
(A v ¥ ) = (0y, ¥) + (Ty, ¥'7) + (¢, y). (23)

Estimate the scalar products on the left-hand side of (23) using Lemma 4:

(0% g 1 [0
(A8, v 97) = 586, vl (24)
Estimate the terms on the right-hand side of (23) as follows:

2

(09, 57) = > (Omy. y7) < —||V il +€CQ 1. (25)
m=1
2 ) ,
(W) 2a Y (1, (4) ] — o |V, (26)
m=1
1
(0.5 < 5 (el + lv) - (27)
2
Taking into account (24)-(27) and choosing ¢ = %, we obtain from (23):
1
1 2 —|— 1
L ol + ey < 2 ey L, (28)

Using the definition y(®), from (28) we arrive at the statement of the lemma.

Lemma 6 [30] Let the non-negative sequences y"™ and o™, n =0, 1, 2,... satisfy the inequality

AOC

0tn+a

y < My Ayt 40", n>1,

where Ay > 0, Ay > 0 are some constants. Then there exists to such that for ™ < to, the
inequality holds

tn)"

ntl (— )
<2 (4 g, ) B A ),
here A\ = \ 2

where 1+2_|_21704

Based on Lemma 5 and Lemma 6, the following theorem is proved.
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Theorem 2 Under the conditions (6), there exists to such that for 7 < ty, the following
inequality holds for the solution of the difference problem (19)-(21):

n41112 (t )a
||y * H < p2 (Hy H +ﬁ0< X x [j™| )
which implies the uniqueness of the solution and stability of the difference scheme (19)-(21)
with respect to the initial data and the right-hand side.

Theorem 3 Under the the conditions of Theorem 2, the solution of the difference problem
(19)-(21) converges to the solution of the differential problem (1)-(3) and the following
imequality holds:

7% = ot < s (2 7).

Proof. Consider the problem for the difference z =y — w:

A, 25 = Oz + Yz + Py, (x,t) € whr, (29)

2z = 0, (30)

20 =0, n>0, (31)
Yh

where ¢ = ¢l — AG, | u + @u%’) + \Ilul(j) The following inequality holds for the solution
of the difference problem (29)-(31):

n+1 M4ta m
[0 < ey o, I (32)
where |[¢™| = O (h? + 72). (32) yields the convergence of the solution of the difference

problem (19)-(21) to the solution of the differential problem (1)-(3).

3.5 Implementation of the difference scheme

To solve the problem (19)-(21), we use the alternating directions method, which consists of
two stages [31]:

n—1

% (yn+2 - y”) + % > g0 (Wit —vi;) =

=0 (01 +0y) Y, ? +(1_0>(®2+\112)yz]a (33)
9% n+i 1 —

Toa (yl‘j“ — ) +— > Ogn (it —s,) =

=0 (0 + )y T + (1—0) (O + Ta) gl (34)

On each time layer, the solution of the problem (19)-(21) is reduced to a sequential
solution of tridiagonal systems of equations, which are solved by the Thomas algorithm. By
checking directly, one can make sure that the stability condition of the Thomas algorithm
holds. To check the accuracy of the difference scheme (19)-(21), a number of computational
experiments were performed on the example of two test problems.



N.B. Alimbekova, N.M. Oskorbin 123

4 Results and discussion

Problem 1. Consider the equation

ou ou 0*u O*u

+—F 5+ 5+ f(z1, 20,8
8951 8952 895% 8x§ f( 12 )

aOtU -
with the right-hand side

t
f (1, m9,t) = —% sin® () sin® (7a2) (2042 exp ( 1) — dacexp ( a 1)
a J—

+

t
+2a% exp (—&1) — t?0® — 2ta® — 20 + 2ta + 4o — 2) +

2

+4m*t* sin? () sin? (7ma9) — 27t? cos () sin (7x;) sin? (725) —

—2m%t3 cos? (mxy) sin? (mxy) — 27t sin? (7)) cos (729) sin (7)) —
—2m%t3 sin? (721 cos? (mxy)

and homogeneous initial and boundary conditions.
The exact solution to this problem is as follows:

u (w1, 19,t) = t*sin? (721 sin? (7a5) .

When analyzing the dependence of the error order on the spatial step, the value of the
time step is selected as 7 = 107°. The step value for the spatial variable h varied between

h=10"2and h = 107>,
The error value was determined by the formula

F = max max max ‘y u (ih, jh,t,)| .
0<n<M 0<i<N 0<j<N

When analyzing the dependence of the error order on the time step, the value of the
spatial step is selected as h = 10~%. The value of the time step varied between 7 = 107> and
7 =107% . The order of the fractional derivative is set to & = 0.3, & = 0.45 and o = 0.85.

Tables 1 and 2 show error values for various values of the parameters o, h and 7.

Table 1: Error analysis for Problem 1
o =0.85 o=0.775 o = 0.575

(a=0.3) (v = 0.45) (o =0.85)

h=1/100 | 1.582643-10~" | 1.535625-10~" | 5.953420-10~°
h=1/500 | 4.543282-107? | 6.625594 - 107° | 2.655208 - 10~
h =1/1000 | 1.683145-107Y | 1.659836 - 107 | 8.956221 - 10~1°
h =1/2000 | 5.325643-10710 | 4.859264 - 10710 | 6.958645 - 10~
h =1/5000 | 2.546234 -1071° | 2.654822 - 10710 | 5.659750 - 10~
h =1/10000 | 8.203144 - 10~ | 2.659820 - 10~1° | 3.659504 - 10~1°
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Table 2: Error analysis for Problem 1

o= 0.8 o=0.775 o= 0.575
(a=0.3) (a = 0.45) (v =0.85)
7=10""| 1.625822-1077 | 1.956430-10~Y | 8.659832-10~1Y
7=107%]1.659832 - 10~ | 8.956268 - 10~'? | 2.956354 - 10~ "2
7=10"" | 8.659825 - 10~ | 4.986372 - 10~'* | 4.356320 - 10~1°
7=10"% | 5.953167 - 10716 | 2.956363 - 10716 | 7.923544 - 10~'®
0.025
0.025 0.020
0.020
0.015
0.015
0.010 0.010
0.005
0.005

0.000
0.

Figure 1: Solution of Problem 1, @ = 0.85, n = 1000

Figure 1 shows a graph of the approximate solution of the problem on time layer n = 1000
at a = 0.85.
Problem 2. Consider the equation (35) with the right-hand side

f(x1,m0,t) = —Eﬂ' sin (27wzy ) sin (27xs) <exp (atf 1) — 1) +

(67

+1673t sin (2721 sin (272) — 47°t cos (2721 sin (27x,) — 47°t sin (2721) cos (2725)
and homogeneous initial and boundary conditions.
The exact solution to this problem is as follows:

u (21, x9,t) = 2wt sin (27xq) sin (2723) .

Tables 3 and 4 show error values for various values of the parameters o, h and 7. In Figure
2 the graph of the approximate solution of the problem on the layer n = 1000 at o = 0.85 is
given.
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Figure 2: Solution of Problem 2, o = 0.85, n = 1000
Table 3: Error analysis for Problem 2
o= 0.85 oc=0.775 o= 0.575
(a=0.3) (o = 0.45) (a = 0.85)
h =1/100 8.568827 - 10~ | 6.884689 - 1077 | 3.954957 - 10~
h =1/500 3.448455 - 1078 | 2.817526 - 10~® | 1.665078-10~®
h =1/1000 | 8.754912-107Y | 7.523579-107Y | 4.796715- 107
h =1/2000 | 2.324212-107° | 2.378951-10"% | 1.838244-107"
h = 1/5000 | 5.345784 -1071% | 9.680494 - 10~ | 1.015005 - 10~°
h = 1/10000 | 2.876746 - 10719 | 7.735310 - 10710 | 8.981407 - 10~1Y
Table 4: Error analysis for Problem 2
o =0.85 oc=0.775 o =0.975
(= 10.3) (v = 0.45) (v = 0.85)
7=10"°| 2.523844 - 107° | 1.635420- 10 | 6.623524 - 10~10
7=10"°| 3.520531 - 10~ | 7.435820 - 102 | 1.023465 - 10~ 2
7=10"" | 7.025432 - 10~ | 3.023564 - 10~ | 3.342564 - 10~ °
7=10"% | 3.623501 - 10716 | 3.623524 - 1010 | 6.526534 - 10~ '8

It follows from the results shown in Tables 1 and 3 that the error is a value of magnitude
O (h?). Similarly, the results in Tables 2 and 4 show that the error is of magnitude O (72).
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Thus, computational experiments have confirmed that the difference scheme converges with
the second order in both spatial and temporal variables.

5 Conclusion

Thus, an implicit finite difference scheme is constructed for a fractional differential equation
with variable coefficients containing a fractional time derivative in the sense of Caputo-
Fabrizio. The stability and error estimates of the difference scheme are established. The
empirical convergence agrees well with the theoretical estimates.

The results obtained in this work are the basis for the construction of finite element
methods for solving fluid flow problems in fractured porous media. In particular, the
constructed discrete analogue of the fractional derivative in the sense of Caputo-Fabrizio will
be used in subsequent works. Also, a comparison of solutions obtained using finite element and
finite difference methods will be carried out. Moreover, the results obtained can be applied
to the numerical solution of other equations containing a fractional time derivative.
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