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EQUIVALENCE OF THE FREDHOLM SOLVABILITY CONDITION FOR
THE NEUMANN PROBLEM TO THE COMPLEMENTARITY CONDITION

The methods of complex analysis constitute the classical direction in the study of elliptic equations
and mixed-type equations on the plane and fundamental results have now been obtained. In the
early 60s of the last century, a new theoretical-functional approach was developed for elliptic
equations and systems based on the use of functions analytic by Douglis. In the works of A.P.
Soldatov and Yeh, it turned out that in the theory of elliptic equations and systems, Douglis
analytic functions play an important role. These functions are solutions of a first-order elliptic
system generalizing the classical Cauchy-Riemann system. In this paper, the Fredholm solvability
of the generalized Neumann problem for a high-order elliptic equation on a plane is investigated.
The equivalence of the solvability condition of the generalized Neumann problem with the
complementarity condition (Shapiro-Lopatinsky condition) is proved. The formula for the index
of the specified problem in the class of functions under study is calculated.

Key words: higher order elliptic equations, generalized Neumann problem, Fredholm solvability
of the problem, normal derivatives on the boundary.
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MeTompl KOMILIEKCHOTO AaHAJIM3a COCTABJSIOT KJIACCHYECKOE HAIPABJICHUE B WCCJIEIOBAHUN
SJUTUNITHIECKUX YPABHEHUN W ypaBHEHWI CMEIIAHHOIO THUIA HA IJIOCKOCTH W B HACTOSIIEE
BpeMsI MOJIydeHbl (DyHIaMEHTaJbHbIEe Pe3ysibTarsl. B Hadasge 60-X rojoB HPOIIJIOr0 CTOJIETHS
JUIST JUIMIITUYECKUX YPaBHEHUH M CHCTEM ObLI Pa3BUTh HOBBIA TEOPETHKO-(YHKIIMOHAJIBHBII
II0/IX0/I, OCHOBAHHBIN Ha UCIOAb30BaHUM DYHKIMH, aHajuTnueckux 1o Jyrimcy. B paborax A.TI.
CosmaroBa, m Yeh BBISCHUIOCH, YTO B TEOPUHU SUIANTUIECKAX YPABHEHUI U CHCTEM BAXKHYIO
posib urpaior GyHKnuM, aHagutTudeckue 1o Jlyrmmcy. Dt QyHKIUMA SBISIOTCS PEIIEHUSIMU
/IMITUIECKOI CHCTEMBI TIEPBOTO TOPsIKa, 060bIaomneit Kiaccudeckyio cucteMy Komm-Pumamna.
B nanmoit crathe mcciemoBaHa (ppearosibMoBasi Pa3pernimMocTh 0000mennoi 3aauu Heiimvana,
JUIST SJUTUITAYECKOIO YPaBHEHUsI BBICOKOI'O IOPSIIKA Ha ILIOCKOCTH. JloKazaHa 9KBUBAJIEHTHOCTH
yCI0BUM paspemumMocTu 06001enHoit 3a0auu Helimana ¢ ycioBreM JOHOTHUTENLHOCTH (yCIIOBUEM
[Tanupo-Jlonarunckoro). Borauciena dbopmysa s uHIEKCa YKA3aHHON 3a/1a49U B UCCJIEIYyeMOIi
KJTacce QyHKIHA.

KuroueBble ciioBa: 3/uMNTUYECKUE YPaBHEHHST BHICOKOTO MOpPsiika, obobiennas 3aaaqa Heiima-
Ha, PPeroIbpMOBA PA3PENIUMOCTh 3aJla9i, HOpMaJbHbIE IIPOU3BOJIHBIE HA TPAHUIIE.

Introduction

Complex analysis methods constitute a classical direction in the study of elliptic equations
and equations of mixed type on the plane. At present, active research is being carried out in
this direction in many mathematical centers of the world.

In a simply connected domain D on a plane bounded by a simple smooth contour I' €
C?r 1 >2,0< pu <1, for an elliptic equation of the 2/-order

Za + Z a (:B)ﬂ =F (1)
r 172[ ray rk axkfrayr -

0<r<k<2i—1

with constant highest coefficients a, € R and lower coefficients a,; € C’“(E), consider the
boundary value problem
oki—ly,

a9 ko—1 :f'7 jzla"‘7l7 (2)
onki=t|. 7

where n = n; +iny means the unit outward normal and natural k; are subject to the condition
1§k’1<k‘2<...<k’1§21.
Here and below, the normal derivative (9/0n)* of order k is understood as the boundary

operator
0 N &R\, ., O
(m% e 8y> B ; <r> it Oz oy

and a similar meaning has the boundary operator (9/de)* with respect to the unit tangent
vector e = ey + iey = i(ng + ing).

This problem turns into the Dirichlet problem if k; = j, and turns into the Neumann
problem if k; = 7 + 1.

Materials and methods. The statement of this problem for k;;; — k; = 1 for a
polyharmonic equation originates from [1|, where for k; > 2 it is called the generalized
Neumann problem. This name is further retained for an arbitrary set of indicators k;. Another
variant of the Neumann problem, based on the variational principle, was proposed in [2]. If
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lower coefficients and the right-hand side are equel to zero, then problem (1), (2) was studied
in [3,4]. The case where they are different from zero, is studied detail in [5] in the space

21 ol
C2 (D) = {u:ue C*(D)NC* D), > araxflffgyr € C*(D)},
r=0

in particular, a necessary and sufficient condition for its Fredholm property is found.

Results and discussion. The study of equation (1) in the multidimensional case is of
great scientific interest. In the model case, equation (1) is called the polyharmonic equation
Alu(z) = F(x), = (21, ...,z,) € D C R™ Tt is known that for this polyharmonic equation,
the Dirichlet problem is uniquely solvable for any right-hand side of the equation. In [6,7],
a new representation of the Green function of the Dirichlet problem for a polyharmonic
equation in a multidimensional sphere is constructed explicitly. In [8,9], a representation of
the Green function of the Neumann problem for the Poisson equation in a multidimensional
unit ball is obtained. In [10-12], Green functions of Dirichlet, Neumann, and Robin problems
for biharmonic and polyharmonic equations in a circle, semicircle, semi-ring, triangle, and
other standard plane domains are constructed. The results of these works are based on the
classical theory of integral representations for analytic, harmonic and polyharmonic functions
on the plane.

The paper [13] describes well-posed boundary value problems for a polyharmonic operator.

In this article, for a higher order elliptic equation, it is proposed to develop a new
functional-theoretical approach based on the use of functions that are analytic according
to Douglis [14-16].

In the early 60s it became clear [17,18], that in the theory of elliptic equations and systems
an important role is played by functions analytic in the sense of Douglis. These functions are
solutions of a first-order elliptic system generalizing the classical Cauchy-Riemann system.
In [19,20], this approach has already been successfully applied to problems of the plane theory
of elasticity (including the general anisotropic case). However, for domains with piecewise
smooth boundaries and equations with continuous coefficients and, especially, for problems
with nonlocal boundary conditions, this approach requires its further development.

In this paper, under the assumption I' € C?*# that the results obtained in [5] are extended
to the more standard class C?#(D).

1 Description of the Fredholm property of problem (1),(2)

An operator A € £(X,Y) is called Fredholm if its kernel KerA and cokernel are finite-
dimensional, and

dim ImA = dim (coker A)*.

The Fredholm property and the index of a problem are understood in relation to its bounded
operator, in our case

l
X =C*"D) - Y =C"(D) x [[c* (D).
j=1
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Let v, 1 < k < m be all different roots of the characteristic equation

)l m 7k — 0
) = ay z—uk kil(z—yk) =0,

in the upper half-plane and the [;- multiplicity of the kth root, so that their total multiplicity
li + ... 4 L, is equal to [. The ellipticity condition is that ag # 0 and the roots of the
characteristic polynomial x(z) = ag + a1z + ... + ayz* do not lie on the real axis.
Let us introduce functions that are fractionally linear in z
€y — €12 niy + noz

p— prm— 3
W(e, Z) e; + ez €1+ ez ’ ( )

where the dependence on the unit tangent vector e = e; + iey to the contour I' is indicated
explicitly. For definiteness, the vector e is oriented positively with respect to the domain D,
i.e. D lies to the left of this vector.

For an analytic [-vector-function ¢g(z) = (¢1(2),...,ga(2)), in a neighborhood of points
Z1, ..., %m, we introduce the block [ x [-matrix
Wo(z1,- ooy zm) = We(z1)s ..o, We(2m)), (4)

where matrix W, (z;,) € C*'* is composed of column vectors

1 _
9(21), g'(21)s - - -, mg(l’“ RIENE
As g below we use a vector with components
gi(z) =28 1<5 <1 (5)

In this notation, the following theorem was proved in [5].
Theorem 1 a) Problem (1), (2) is Fredholm if and only if
det W,w(e,11),...,w(e,v,)] #0, eeT, (6)

where T stands for the unit circle. Accordingly, the index of this problem is given by the

formula
cEoy 113} | (1)

where the increment is taken along the counterclockwise unit circle.
b) In each of the following two cases

1
e = —2 5. 18 det W, w(e, 1), ... w(e, vm)]
m

T

ki=k+j—1,1<75<1; (81)
m=1, v =v. (817)
problem (1), (2) is Fredholm and its index is zero.

Obviously, condition (6) depends only on the set of numbers kq, ko, ..., k;, so that for
fixed k;, when it is satisfied, problem (1), (2) is Fredholm in any domain.
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2 Equivalence of the Fredholm property condition for problem (1), (2) to the
complementarity condition

From the point of view of the general elliptic theory [21] problem (1), (2) is Fredholm
in the space C?*(D) if and only if its boundary conditions satisfy as follows called the
complementarity condition (or the Shapiro-Lopatinski condition [22]). In this case, [23] also
says that the boundary conditions (2) cover the differential operator

2l 82[
L=ty
; a axQZ—rayr

corresponding to the main part (1). The indicated condition is as follows: starting from the
fixed point t € I' differentiation with respect to z and y in the expressions of the operators
L and Bj;, we replace, respectively, e1(t) + zni(t) and es(t) + zns(t). As a result, we get
polynomials

20

L(n,z) = Z a,(er + 2n1)* " (eg 4 zng)"

r=0
and
Bj(2) = [ni(e1 4 2n1) 4 na(ex + znp) ]t =21 1< <1
Since ny = ey, ny = —eq, in the notation (3) the polynomial L(n, z) can be written in the
form

2l

L(n,z) = (e; + zny)% Z a,[—w(2)],
so L(z) = 0 is equivalent to
—w(z) = v, (9)

where v is an arbitrary root of the characteristic equation x(z). Moreover, their corresponding
multiplicities coincide.

Obviously, transformation (3) takes the upper half-plane onto itself, so the transformation
z — —w(Z) also has a similar property. In particular, the polynomial [-degree

LT(2)=(z—2)" .. (2= zp)l™,  —wl(z) =7, (10)

is formed by the roots of the equation L(n, z) = 0 lying in the upper half-plane.

In the adopted notation, the complementarity condition consists in the linear
independence of the polynomials B;(z), 1 < j < [, modulo the polynomial L*(z). Thus,
this condition should be equivalent to condition (6) obtained in another way. This fact can
be established directly.

Lemma 1 Condition (6) is satisfied if and only if the polynomials Bj(z) = 2%~ 1 < j <,
are linearly independent in to the modulus of the polynomial L*(z).
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Proof 1 Suppose that these polynomials are linearly dependent modulo L™ (z), that is, there
is a nontrivial linear combination of them B = an By + ...+ ayB;, a multiple of L*. In the
notation (5), the polynomial B; = g;, so this fact can be written in the form

B(z) = Y a7 = Q)L (2)

with some polynomial Q. In accordance with (10), this relation means that the polynomial B
at the points z has a zero of order l or, which is equivalent,

l
>oag’(m) =0, 0<s<h-11<k<m. =
j=1

These equalities represent a homogeneous system of | equations for ay,...,a;. It can be seen
from definition (4) that the matriz of this system coincides with the matriz transposed to
Wy(21, ..., 2m). Therefore, a nonzero solution to system (11) is possible if and only if

det Wy(z1,...,2m) = 0. (12)

According to definition (3), equality (9) is equivalent to Z; = w(v;); therefore, equality
(12) can be expressed in the form of vanishing of the determinant on the left-hand side of
(6). Thus, violation of the complementarity condition is equivalent to violation of condition
(6), which completes the proof of the lemma.

3 Continuation of the description of the Fredholm property condition for problem

(1), (2)

Note that formulas (6) and (7) will not change if we go from the vector g to the vector g
defined by the relation

g(z) = zkl_lq(z), q(z) = (1,27, ...,2%Y),  sj =kjs1 — k1. (13)

Moreover, as noted in [3,5], the determinants of the matrices W with these vectors are related
by the relation
1i(li—1
det Wy(z1, ..., 2m) = H ng( ! )Wq(zl, ey Zm)-
J
In these designations, condition (6) and the index formula (7) can be given a different
form, more convenient for use. Let us introduce the fractional-linear functions
Ve — 2

= 1<k < 14
7k<z> 1+ szv SRS M, ( )

and the function
R(z) = det Wy(m1(2), ..., vm(2)). (15)

This transformation v(z) swaps the points +i and is involutive:

V(&) =Fi, ()] == (16)
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Moreover, for vy, = i, the identity x(z) = i holds.

Thus, the rational function R(z) admits poles only at the points v, = —1/i # ¢ in
the upper half-plane and, in particular, is analytic in the lower half-plane. In addition, for
m > 2 (m > 3) at the points ( = —i ({ = £i) vanishes. This follows from (34) and the fact
that for z; = ... = 2, = —i (21 = ... = 2z, = i) matrix (4) has the same columns, so its
determinant is zero. In particular, the function R(z) is completely divisible by 2% + 1.

Theorem 2 Problem (1), (2) is Fredholm if and only if the rational function R(C) has no
real Toots on the extended real line R = RU {00}, and under this condition, its index is given

by the formula
@ =4(n — Zm Lil;), (17)

where n is the number of zeros of this function in the lower half-plane of the function, taking
into account their multiplicity.

Proof 2 Comparison of definitions (4) and (14) implies that
det WQ[W(e, Vl)a Tt ,W(G, Vm)] = R(eQ/el)'

The function w(e,v) in (3) is even in the variable e € T and therefore the quantity

arg det Wy[w(e,v1),...w(e,vy,)]| = 2arg det Wylw(e,v1),...w(e, vn)]|
T T+

where T is a semicircle in the right half-plane. The mapping e = e; + iea — t = ey/e;
realizes a homeomorphism of this semicircle onto the extended real line R, and bypassing it
from the point e = —i to e = i corresponds to movement on a straight line in the positive
direction. Therefore, condition (6) is equivalent to the fact that the function R has no real
roots on the extended real line, and the equality

+o0o
arg det W[w(e, 1), ...w(e,vy)]| = 2arg det W,y (1), ... ym(t)]
T —00
As a result, formula (7) becomes
2 o 2 o2
@ = ——arg R(t) N —2(1° — ijl l5).

The rational function R has no poles in the lower half-plane, so, taking into account Rouche’s
theorem, the previous equality coincides with (36). It is only necessary to take into account
that the lower half-plane remains on the left when traversing the straight line in the negative

direction and that .
2 2 _
= — E j:llj =2 E Lil;.
i<j
The theorem is proved.

Let us consider in more detail the function 7(z), defined by (14) with v = . For v =i
this function is identically equal to 7, so we can assume v # .
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Lemma 2 Let v # i. The transformation z — ~(z) takes the lower half-plane to the circle
v[*+1
2Imy

B={z:]z>+1-2pImz <0}, p= (18)

This circle has the center point ip radius v = \/p?> — 1, lies entirely in the upper half-plane,
contains the point z =i and is invariant under the involution z — 2’ = —1/z.
In addition, the points v u v’ = —1/v lie on its boundary circle L = 0B.

Proof 3 By (14), we have

2 2
Iy (2)] = (1+ |z]*)Imv (1;L 4 )]mz'

11+ vz
Hence the image of the lower half-plane is the disc B, which lies entirely in the upper half-plane
and contains the point z = i. By the symmetry principle, the points pmai are symmetric as
relative to the straight line R, and to the circle L = OB. In particular, the center of this circle
must lie on the imaginary axis. Denoting the center and radius of this circle, respectively,
ip and r, we come to the relation |i —ip|li + ip| = r?, whence r* = p* — 1. The equation
|z —ip|> = r? of the circle L can be written in the form |z|?> + 1 — 2pImz = 0, which proves
the description (18) of the circle B.
Obviously, the points v(0) = v and y(oc0) = —1/v lie on L. In particular, substituting z = v,
into this equation, we arrive at the expression for p in (18). The fact that the circle L is
invariant under the transformation z — 2z’ = —1/z follows directly from its equation. The
lemma is proved.

Lemma 2 is used for the case m = 2 of two points 14, v, which, according to Theorem
2, can be considered different without loss of generality. Let their numbering be such that
v1 # i. Then, by virtue of (16), the transformation 7, takes the disc B to the lower half-plane,
and we can introduce the function

S(2) = Bim(2)] = (det Wy)[z,0(2)], 0(2) = 2[mn(2)], (19)
analytic in the disc B. In explicit form,
5(2):1+TZ,T:M€B. (20)
T —Z Vy — 11

The fact that the point 7 does not belong to the closed circle B is a consequence of Lemma
2. Indeed, 7 = —1/[y1(12)], and by Lemma 2 the point z = (1) lies outside B, so this is
true and for 7 = 2/ = 1/z. With respect to the function S Theorem 3 takes the following
form.

Theorem 3 Let m = 2 with vy # 1y # i and the notation of Lemma 2 is adopted. Then the
Fredholm property of problem (1), (2) is equivalent to the fact that the function S(z) has no
zeros on the circle L = 0B. When this condition is satisfied, its index is given by formula
(17), in which n is the number of zeros of the function S in the circle B, taken with account
of their multiplicity.

Note that, like R, the function S vanishes at the points +i. This function is especially
simplified if 1 + vyv5 = 0, then the transformation ¢ in (20) is an involution z — 2z’ = —1/z.
In this case, Theorem 1 turns into Theorem 3 from the work [5].
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4 Application of the results to the general equation of the fourth and sixth orders

Let us illustrate the application of Theorem 3 by the example of fourth-order equation (1).
Since the lower-order terms do not affect the Fredholm property and the index of the problem,
we can restrict ourselves to the main part of the equation with vy # 14 # 7. This equation
can be written in the form

LlLQU =0 (21)
with second-order operators
0? 0? 0?
L, = — —2(R P k=12
k 8y2 ( eyk)ay6x+|yk| 6x2’ )

With respect to the difference s = ky — ki1, which in the considered case takes three values
s =1,2,3, problem (2) is written in the form
o'
on’

oty
fla

r o+ |,

According to (4), (11), in the case under consideration, the matrix W, takes the form

1 1 s s
Wy(z1, 22) = ( - ) , det Wy(z1, 20) = 25 — 21,

so that S(z) = [0(2)]® — 2°. Explicitly form

(1+2%)P(2)

() = L,
where Pi(z) =1, Py(2) = =22 +272 + 1 and
Py(2) = [ + (1 — )mz + 1][¢*2* + (1 — *)rz + 1], g = ™73, (23)

Note that the polynomial P, is nonzero in B. Indeed, let 22 — 272 — 1 = 0 for some z € B. So
the point 2/ = —1/z also belongs to B, then the point 7 = (z 4 2')/2 € B, which contradicts
(20).

Since in the considered case ij l;l; = 1, then, based on Theorem 1, we obtain the
following conclusion.

Remark 1 For s <2 problem (21), (225) is Fredholm and its index is zero, and for s = 3 it
18 Fredholm if and only if the zeros of P3 polynomial do not lie on the boundary circle L of
the disc B, defined by Lemma 2 by v = vy. Under this condition, its index is & = 4k, where
k is the number of these zeros in the disc B, taken with multiplicity.

As the following lemma shows, with a suitable choice of 14, and v, , it is always possible
to achieve that one of the zeros of the polynomial P5 lies on the circle L.
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Lemma 3 Let the point v = vy lie in the upper half-plane and in the notation of Lemma 2

r=—ip— VP -1)J3 (24)
Then the point
1+ 7111
Vy = )
T — 1

also lies in the upper half-plane, and for these points the Fredholm property of problem (21),
(22 ) is wviolated.

Proof 4 First of all, check that the point vy lies in the upper half-plane. Indeed, it is clear
from the definition of vo that 7 = —1/7(vs). Therefore, if Imvy < 0, then, by Lemma 2, the
point T must belong to B, which is impossible.

Let ity and its, to > t1, be the intersection points of the circle L with the imaginary axis.
Then, according to (18), the equalities t3 + 1 — 2pty, = 0,k = 1,2, we have

tl + t2 == 2p7 tltg = ]., t2 - tl == 2\/ p2 — 1. (25)

It is asserted that the point z = ity is the root of the first factor in (23) and, therefore,
problem (21), (22) is not Fredholm.
Indeed, since 1/z = —ity, the equation e*™/322 — 7(1 — €*™/3)z + 1 = 0 can be rewritten
in the form
™3ty — "3t = —iT\/g,

which, taking into account relations (25), is equivalent to equality (24).

For elliptic equations of orders higher than the fourth, it is already difficult to describe
explicitly the roots of the corresponding polynomials. As example, let us consider a sixth-
order equation, i.e. [ = 3. In accordance with Theorem 2, it suffices to restrict ourselves to
considering two cases: (i) all roots are pairwise distinct, i.e. [; = ly = I3 = 1 and (ii) one of
these roots is multiple, for example, [y = 1, [, = 2. Accordingly to these cases, similarly to
(21), we have the equations

L1L2L3U = f, (262)

LiLiu = f, (26i1)
the corresponding operators of the second order. With respect to the positive differences

r=ky — ki us=ks— ko, for which r + s <5, problem (2) is written in the form

ai-‘rsu az’+s+1u

it

= 1+s
r on

d'u
on’

0<i<5—r—s. (27,5)

F:f2, WF:JCP”

In accordance with this, vector (13) should be taken in the form ¢ = (1, 2", 2""#), so that for
the matrix W, in definition (4), we have the expressions

1 1 1 1 1 0

; — T T T . _ T T r—1
()W, = - S A , ()W, = FAR 4 T2 1
it agte gt 20 AT (r 4 8)2h T
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In case (i) the determinant of the matrix W, (21, 22, 23) can be represented in the form
—detWy = (27 — 25) 25" + (2] — 23)25 " + (25 — 25) 20"
Therefore, for function (14) we have the equality

(14 2%)P(z)
[(1 + V12>(1 + VQZ)(l + y3z)]7’+s

—R(z) =

with some polynomial P(z). Here it is taken into account that for m > 3 the function R(z)
vanishes at the points z = =+i.
Since ), ; l;l; = 3, then, based on Theorem 3, we obtain the following conclusion.

Remark 2 The Fredholm property of the problem (261), (27) is equivalent to the absence of
real zeros of the polynomial P(() on the circle L and its index is & = 4(n — 1), where n is
the number of these zeros in the lower half-plane.

The polynomial P for r = 1 according to

(vi — vy)(1 +2°)
1+ v2) (14 v;2)

7i(2) = 7;(2) = (

we have
/

P(2) =Y (i — vp)[(1 + vi2) (L + )P (v — 2)*H,

where the prime at the sign of the sum means that the summation is performed over cyclic
triples
(1,5, k) = (1,2,3); (2,3,1); (3,1,2).

If in addition s = 1, then, as direct verification shows, P(z) = ¢(1 + 22)? with the factor

/
c= Z(VZ —v))p = (i — )i + (o —v3)vf + (V3 — 1)V

In this case, the index of the problem is zero, which is consistent with Theorem 2.
Let us turn to case (ii), where we can assume v, # vy # i. In this case

detWy = 2 [s23(25 — 27) — 127 (25 — 29)] = 2177125 (22 — 20)x(22/ 20),

where (¢ — 1)x,s(q) = s¢°(¢" — 1) — r(¢® — 1) with the polynomial

r4+s—1 -
_ oa=d o 0=iss—L
Xr.s(q) E O: AT { s, s<j<r+s—1,
]:

of degree r + s — 1 < 4. Explicitly

x12(0) = =14 2¢ +2¢°, x21(q) = =2 — 29+ ¢,
x13(0) = =14 3¢+ 3¢° + 3¢°, x31(¢) = =3 — 3¢ — 3¢* + ¢*,
x23(0) = =2 —2q +3¢* + 3¢ + 3¢*, x32(q) = =3 — 3¢ — 3¢* + 2¢° + 2¢",
x22(q) = =2 —2¢+2¢° +2¢° =2(qg+ 1)*(¢ + 1).
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As in the case [ = 2, from this we arrive at the following expression for the function S(z)
of Theorem 3:

(14 az) !

S(2) = 2 )

Pﬁs(Z), P,,-“g(Z) = [q]ZQ + (1 — qj)aZ + 1]7

where g; are the roots of the polynomial x;, (¢), taken taking into account the multiplicity.
Since ), ;lil; = 2, then, based on Theorem 3, we obtain the following conclusion.

Remark 3 The Fredholm property of the problem (26ii), (27) is equivalent to the absence of
zeros of the polynomial P, on the circle L and, accordingly, its index se = 4(n — 1), where n
15 the number of these zeros in the lower half-plane.

The final answer can be given only in the case r = s = 2. For it
Pyo(2) = (22 =212 — 1)*(2* + 1)

and, as shown in the case [ = 2 of a fourth-order equation, the first factor here has no zeros
in the closed circle B. Therefore, the problem (26i7), (2722) is Fredholm and its index is zero.
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