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EQUIVALENCE OF THE FREDHOLM SOLVABILITY CONDITION FOR
THE NEUMANN PROBLEM TO THE COMPLEMENTARITY CONDITION

The methods of complex analysis constitute the classical direction in the study of elliptic equations
and mixed-type equations on the plane and fundamental results have now been obtained. In the
early 60s of the last century, a new theoretical-functional approach was developed for elliptic
equations and systems based on the use of functions analytic by Douglis. In the works of A.P.
Soldatov and Yeh, it turned out that in the theory of elliptic equations and systems, Douglis
analytic functions play an important role. These functions are solutions of a first-order elliptic
system generalizing the classical Cauchy-Riemann system. In this paper, the Fredholm solvability
of the generalized Neumann problem for a high-order elliptic equation on a plane is investigated.
The equivalence of the solvability condition of the generalized Neumann problem with the
complementarity condition (Shapiro-Lopatinsky condition) is proved. The formula for the index
of the specified problem in the class of functions under study is calculated.

Key words: higher order elliptic equations, generalized Neumann problem, Fredholm solvability
of the problem, normal derivatives on the boundary.

Б.Д. Қошанов, А.Д. Күнтуарова
Абай атындағы Қазақ ұлттық педагогикалық университетi, Қазақстан, Алматы қ.

Математика және математикалық моделдеу институты, Қазақстан, Алматы қ.
e-mail: koshanov@list.ru

Нейман есебiнiң фредгольмдi шешiмдiлiк шартының толықтыру шартымен
пара-парлығы

Кешендi талдау iстерi жазықтықтағы эллипстiк теңдеулер мен аралас типтегi теңдеулердi
зерттеуде классикалық бағытты құрайды же қазiргi уақытта iргелi нижелер алынды. өткен
ғасырдың 60-жылдарының басында эллипстiк теңдеулер мен жүйелер үшiн Дуглистiң
аналитикалық функцияларын қолдануға негiзделген жаңа теориялық же функционалды
тiл пайда болды. А. П. Солдатовтың же Yeh еңбектерiнде эллипстiк теңдеулер мен жүйелер
теориясында Дуглис аналитикалық функциялары маңызды рөл атқаратыны белгiлi болды.
Бұл функциялар классикалық Коши-Риман жүйесiн жалпылайтын бiрiншi реттi эллипстiк
жүйенiң шешiмдерi болып табылады. Бұл мақалада жазықтықтағы жоғары реттi эллипстiк
теңдеу үшiн Нейманның жалпыланған есебiнiң фредгольмдiк шешiлуi зерттелген. Толықты-
ру шартымен (Шапиро-Лопатинский шартымен) Нейманның жалпыланған есебiнiң шешiлу
шартының эквиваленттiлiгi делдендi. Зерттелетiн функциялар класындағы көрсетiлген есеп
индексiнiң формуласы есептеледi.

Түйiн сөздер: жоғары реттi эллиптикалық тедеулер, жалпыланған Нейман есебi, есептiң
фредгольмдi шешiмдiлiгi, шекарадағы нормал туындылар.
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Методы комплексного анализа составляют классическое направление в исследовании
эллиптических уравнений и уравнений смешанного типа на плоскости и в настоящее
время получены фундаментальные результаты. В начале 60-х годов прошлого столетия
для эллиптических уравнений и систем был развить новый теоретико-функциональный
подход, основанный на использовании функций, аналитических по Дуглису. В работах А.П.
Солдатова, и Yeh выяснилось, что в теории эллиптических уравнений и систем важную
роль играют функции, аналитические по Дуглису. Эти функции являются решениями
эллиптической системы первого порядка, обобщающей классическую систему Коши-Римана.
В данной статье исследована фредгольмовая разрешимость обобщенной задачи Неймана
для эллиптического уравнения высокого порядка на плоскости. Доказана эквивалентность
условии разрешимости обобщенной задачи Неймана с условием дополнительности (условием
Шапиро-Лопатинского). Вычислена формула для индекса указанной задачи в исследуемой
классе функций.

Ключевые слова: эллиптические уравнения высокого порядка, обобщенная задача Нейма-
на, фредгольмова разрешимость задачи, нормальные производные на границе.

Introduction

Complex analysis methods constitute a classical direction in the study of elliptic equations
and equations of mixed type on the plane. At present, active research is being carried out in
this direction in many mathematical centers of the world.

In a simply connected domain D on a plane bounded by a simple smooth contour Γ ∈
C2l,µ, l ≥ 2, 0 < µ < 1, for an elliptic equation of the 2l-order

2l∑
r=0

ar
∂2lu

∂x2l−r∂yr
+

∑
0≤r≤k≤2l−1

ark(x)
∂ku

∂xk−r∂yr
= F (1)

with constant highest coefficients ar ∈ R and lower coefficients ark ∈ Cµ(D), consider the
boundary value problem

∂kj−1u

∂nkj−1

∣∣∣∣
Γ

= fj, j = 1, . . . , l, (2)

where n = n1+in2 means the unit outward normal and natural kj are subject to the condition
1 ≤ k1 < k2 < . . . < kl ≤ 2l.
Here and below, the normal derivative (∂/∂n)k of order k is understood as the boundary
operator (

n1
∂

∂x
+ n2

∂

∂y

)k

=
k∑

r=0

(
k

r

)
nr
1n

k−r
2

∂k

∂xr∂yk−r

and a similar meaning has the boundary operator (∂/∂e)k with respect to the unit tangent
vector e = e1 + ie2 = i(n1 + in2).

This problem turns into the Dirichlet problem if kj = j, and turns into the Neumann
problem if kj = j + 1.

Materials and methods. The statement of this problem for kj+1 − kj ≡ 1 for a
polyharmonic equation originates from [1], where for k1 ≥ 2 it is called the generalized
Neumann problem. This name is further retained for an arbitrary set of indicators kj. Another
variant of the Neumann problem, based on the variational principle, was proposed in [2]. If
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lower coefficients and the right-hand side are equel to zero, then problem (1), (2) was studied
in [3, 4]. The case where they are different from zero, is studied detail in [5] in the space

C2l−1,µ
a (D) ≡ {u : u ∈ C2l(D) ∩ C2l−1,µ(D),

2l∑
r=0

ar
∂2lu

∂x2l−r∂yr
∈ Cµ(D)},

in particular, a necessary and sufficient condition for its Fredholm property is found.
Results and discussion. The study of equation (1) in the multidimensional case is of

great scientific interest. In the model case, equation (1) is called the polyharmonic equation
∆lu(x) = F (x), x = (x1, ..., xn) ∈ D ⊆ Rn. It is known that for this polyharmonic equation,
the Dirichlet problem is uniquely solvable for any right-hand side of the equation. In [6, 7],
a new representation of the Green function of the Dirichlet problem for a polyharmonic
equation in a multidimensional sphere is constructed explicitly. In [8, 9], a representation of
the Green function of the Neumann problem for the Poisson equation in a multidimensional
unit ball is obtained. In [10–12], Green functions of Dirichlet, Neumann, and Robin problems
for biharmonic and polyharmonic equations in a circle, semicircle, semi-ring, triangle, and
other standard plane domains are constructed. The results of these works are based on the
classical theory of integral representations for analytic, harmonic and polyharmonic functions
on the plane.

The paper [13] describes well-posed boundary value problems for a polyharmonic operator.
In this article, for a higher order elliptic equation, it is proposed to develop a new

functional-theoretical approach based on the use of functions that are analytic according
to Douglis [14–16].

In the early 60s it became clear [17,18], that in the theory of elliptic equations and systems
an important role is played by functions analytic in the sense of Douglis. These functions are
solutions of a first-order elliptic system generalizing the classical Cauchy-Riemann system.
In [19,20], this approach has already been successfully applied to problems of the plane theory
of elasticity (including the general anisotropic case). However, for domains with piecewise
smooth boundaries and equations with continuous coefficients and, especially, for problems
with nonlocal boundary conditions, this approach requires its further development.

In this paper, under the assumption Γ ∈ C2l,µ that the results obtained in [5] are extended
to the more standard class C2l,µ(D).

1 Description of the Fredholm property of problem (1),(2)

An operator A ∈ L(X, Y ) is called Fredholm if its kernel KerA and cokernel are finite-
dimensional, and

dim ImA = dim (cokerA)⊥.

The Fredholm property and the index of a problem are understood in relation to its bounded
operator, in our case

X ≡ C2l,µ(D) → Y ≡ Cµ(D)×
l∏

j=1

C2l−kj+1,µ(Γ).
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Let νk, 1 ≤ k ≤ m be all different roots of the characteristic equation

χ(z) = a2l
∏m

k=1
(z − νk)

lk
∏m

k=1
(z − νk)

lk = 0,

in the upper half-plane and the lk- multiplicity of the kth root, so that their total multiplicity
l1 + . . . + lm is equal to l. The ellipticity condition is that a2l ̸= 0 and the roots of the
characteristic polynomial χ(z) = a0 + a1z + . . .+ a2lz

2l do not lie on the real axis.
Let us introduce functions that are fractionally linear in z

ω(e, z) =
e2 − e1z

e1 + e2z
=

n1 + n2z

e1 + e2z
, (3)

where the dependence on the unit tangent vector e = e1 + ie2 to the contour Γ is indicated
explicitly. For definiteness, the vector e is oriented positively with respect to the domain D,
i.e. D lies to the left of this vector.

For an analytic l-vector-function g(z) = (g1(z), . . . , gn(z)), in a neighborhood of points
z1, . . . , zm, we introduce the block l × l-matrix

Wg(z1, . . . , zm) = (Wg(z1), . . . ,Wg(zm)), (4)

where matrix Wg(zk) ∈ Cl×lk is composed of column vectors

g(zk), g
′(zk), . . . ,

1

(lk − 1)!
g(lk−1)(zk).

As g below we use a vector with components

gj(z) = zkj−1, 1 ≤ j ≤ l. (5)

In this notation, the following theorem was proved in [5].

Theorem 1 a) Problem (1), (2) is Fredholm if and only if

detWg[ω(e, ν1), . . . , ω(e, νm)] ̸= 0, e ∈ T, (6)

where T stands for the unit circle. Accordingly, the index of this problem is given by the
formula

æ = −2

[
1

2π
arg detWg[ω(e, ν1), . . . ω(e, νm)]

∣∣∣∣
T
+ l2 −

∑m

j=1
l2j

]
, (7)

where the increment is taken along the counterclockwise unit circle.
b) In each of the following two cases

kj = k1 + j − 1, 1 ≤ j ≤ l; (8i)

m = 1, ν1 = ν. (8ii)

problem (1), (2) is Fredholm and its index is zero.

Obviously, condition (6) depends only on the set of numbers k1, k2, . . . , kl, so that for
fixed kj, when it is satisfied, problem (1), (2) is Fredholm in any domain.
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2 Equivalence of the Fredholm property condition for problem (1), (2) to the
complementarity condition

From the point of view of the general elliptic theory [21] problem (1), (2) is Fredholm
in the space C2l,µ(D) if and only if its boundary conditions satisfy as follows called the
complementarity condition (or the Shapiro-Lopatinski condition [22]). In this case, [23] also
says that the boundary conditions (2) cover the differential operator

L =
2l∑

r=0

ar
∂2l

∂x2l−r∂yr
,

corresponding to the main part (1). The indicated condition is as follows: starting from the
fixed point t ∈ Γ differentiation with respect to x and y in the expressions of the operators
L and Bj, we replace, respectively, e1(t) + zn1(t) and e2(t) + zn2(t). As a result, we get
polynomials

L(n, z) =
2l∑

r=0

ar(e1 + zn1)
2l−r(e2 + zn2)

r

and
Bj(z) = [n1(e1 + zn1) + n2(e2 + zn2)]

kj−1 = zkj−1, 1 ≤ j ≤ l.

Since n1 = e2, n2 = −e1, in the notation (3) the polynomial L(n, z) can be written in the
form

L(n, z) = (e1 + zn1)
2l

2l∑
r=0

ar[−ω(z)]r,

so L(z) = 0 is equivalent to
−ω(z) = ν, (9)

where ν is an arbitrary root of the characteristic equation χ(z). Moreover, their corresponding
multiplicities coincide.

Obviously, transformation (3) takes the upper half-plane onto itself, so the transformation
z → −ω(z̄) also has a similar property. In particular, the polynomial l-degree

L+(z) = (z − z1)
l1 . . . (z − zm)

lm , −ω(zj) = ν̄j, (10)

is formed by the roots of the equation L(n, z) = 0 lying in the upper half-plane.
In the adopted notation, the complementarity condition consists in the linear

independence of the polynomials Bj(z), 1 ≤ j ≤ l, modulo the polynomial L+(z). Thus,
this condition should be equivalent to condition (6) obtained in another way. This fact can
be established directly.

Lemma 1 Condition (6) is satisfied if and only if the polynomials Bj(z) = zkj−1, 1 ≤ j ≤ l,
are linearly independent in to the modulus of the polynomial L+(z).
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Proof 1 Suppose that these polynomials are linearly dependent modulo L+(z), that is, there
is a nontrivial linear combination of them B = α1B1 + . . . + αlBl, a multiple of L+. In the
notation (5), the polynomial Bj = gj, so this fact can be written in the form

B(z) =
l∑

j=1

αjz
kj−1 = Q(z)L+(z)

with some polynomial Q. In accordance with (10), this relation means that the polynomial B
at the points zk has a zero of order lk or, which is equivalent,

l∑
j=1

αjg
(s)
j (zk) = 0, 0 ≤ s ≤ lk − 1, 1 ≤ k ≤ m. (11)

These equalities represent a homogeneous system of l equations for α1, . . . , αl. It can be seen
from definition (4) that the matrix of this system coincides with the matrix transposed to
Wg(z1, . . . , zm). Therefore, a nonzero solution to system (11) is possible if and only if

detWg(z1, . . . , zm) = 0. (12)

According to definition (3), equality (9) is equivalent to zj = ω(νj); therefore, equality
(12) can be expressed in the form of vanishing of the determinant on the left-hand side of
(6). Thus, violation of the complementarity condition is equivalent to violation of condition
(6), which completes the proof of the lemma.

3 Continuation of the description of the Fredholm property condition for problem
(1), (2)

Note that formulas (6) and (7) will not change if we go from the vector g to the vector q
defined by the relation

g(z) = zk1−1q(z), q(z) = (1, zs1 , . . . , zsl−1), sj = kj+1 − k1. (13)

Moreover, as noted in [3,5], the determinants of the matrices W with these vectors are related
by the relation

detWg(z1, . . . , zm) =
∏
j

z
lj(l1−1)
j Wq(z1, . . . , zm).

In these designations, condition (6) and the index formula (7) can be given a different
form, more convenient for use. Let us introduce the fractional-linear functions

γk(z) =
νk − z

1 + νkz
, 1 ≤ k ≤ m, (14)

and the function
R(z) = detWg(γ1(z), . . . , γm(z)). (15)

This transformation γk(z) swaps the points ±i and is involutive:

γ(±i) = ∓i, γ[γ(z)] ≡ z. (16)



44 Equivalence of the Fredholm solvability condition for . . .

Moreover, for νk = i, the identity γk(z) ≡ i holds.
Thus, the rational function R(z) admits poles only at the points ν ′

k = −1/i ̸= i in
the upper half-plane and, in particular, is analytic in the lower half-plane. In addition, for
m ≥ 2 (m ≥ 3) at the points ζ = −i (ζ = ±i) vanishes. This follows from (34) and the fact
that for z1 = ... = zm = −i (z1 = ... = zm = ±i) matrix (4) has the same columns, so its
determinant is zero. In particular, the function R(z) is completely divisible by z2 + 1.

Theorem 2 Problem (1), (2) is Fredholm if and only if the rational function R(ζ) has no
real roots on the extended real line R = R∪{∞}, and under this condition, its index is given
by the formula

æ = 4(n−
∑

i<j
lilj), (17)

where n is the number of zeros of this function in the lower half-plane of the function, taking
into account their multiplicity.

Proof 2 Comparison of definitions (4) and (14) implies that

detWg[ω(e, ν1), . . . , ω(e, νm)] = R(e2/e1).

The function ω(e, ν) in (3) is even in the variable e ∈ T and therefore the quantity

arg detWg[ω(e, ν1), . . . ω(e, νm)]

∣∣∣∣
T
= 2arg detWg[ω(e, ν1), . . . ω(e, νm)]

∣∣∣∣
T+

,

where T+ is a semicircle in the right half-plane. The mapping e = e1 + ie2 → t = e2/e1
realizes a homeomorphism of this semicircle onto the extended real line R, and bypassing it
from the point e = −i to e = i corresponds to movement on a straight line in the positive
direction. Therefore, condition (6) is equivalent to the fact that the function R has no real
roots on the extended real line, and the equality

arg detWg[ω(e, ν1), . . . ω(e, νm)]

∣∣∣∣
T
= 2arg detWg[γ1(t), . . . γm(t)]

∣∣∣∣+∞

−∞
.

As a result, formula (7) becomes

æ = − 2

π
argR(t)

∣∣∣∣+∞

−∞
− 2(l2 −

∑m

j=1
l2j ).

The rational function R has no poles in the lower half-plane, so, taking into account Rouche’s
theorem, the previous equality coincides with (36). It is only necessary to take into account
that the lower half-plane remains on the left when traversing the straight line in the negative
direction and that

l2 −
∑m

j=1
l2j = 2

∑
i<j

lilj.

The theorem is proved.

Let us consider in more detail the function γ(z), defined by (14) with ν = νk. For ν = i
this function is identically equal to i, so we can assume ν ̸= i.
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Lemma 2 Let ν ̸= i. The transformation z → γ(z) takes the lower half-plane to the circle

B = {z : |z|2 + 1− 2ρImz < 0}, ρ =
|ν|2 + 1

2Imν
. (18)

This circle has the center point iρ radius r =
√
ρ2 − 1, lies entirely in the upper half-plane,

contains the point z = i and is invariant under the involution z 7→ z′ = −1/z.
In addition, the points ν и ν ′ = −1/ν lie on its boundary circle L = ∂B.

Proof 3 By (14), we have

Im[γ(z)] =
(1 + |z|2)Imν − (1 + |ν|2)Imz

|1 + νz|2
.

Hence the image of the lower half-plane is the disc B, which lies entirely in the upper half-plane
and contains the point z = i. By the symmetry principle, the points pmi are symmetric as
relative to the straight line R, and to the circle L = ∂B. In particular, the center of this circle
must lie on the imaginary axis. Denoting the center and radius of this circle, respectively,
iρ and r, we come to the relation |i − iρ||i + iρ| = r2, whence r2 = ρ2 − 1. The equation
|z − iρ|2 = r2 of the circle L can be written in the form |z|2 + 1− 2ρImz = 0, which proves
the description (18) of the circle B.
Obviously, the points γ(0) = ν and γ(∞) = −1/ν lie on L. In particular, substituting z = ν,
into this equation, we arrive at the expression for ρ in (18). The fact that the circle L is
invariant under the transformation z 7→ z′ = −1/z follows directly from its equation. The
lemma is proved.

Lemma 2 is used for the case m = 2 of two points ν1, ν2 which, according to Theorem
2, can be considered different without loss of generality. Let their numbering be such that
ν1 ̸= i. Then, by virtue of (16), the transformation γ1 takes the disc B to the lower half-plane,
and we can introduce the function

S(z) = R[γ1(z)] = (detWg)[z, δ(z)], δ(z) = γ2[γ1(z)], (19)

analytic in the disc B. In explicit form,

δ(z) =
1 + τz

τ − z
, τ =

1 + ν1ν2
ν2 − ν1

∈ B. (20)

The fact that the point τ does not belong to the closed circle B is a consequence of Lemma
2. Indeed, τ = −1/[γ1(ν2)], and by Lemma 2 the point z = γ1(ν2) lies outside B, so this is
true and for τ = z′ = 1/z. With respect to the function S Theorem 3 takes the following
form.

Theorem 3 Let m = 2 with ν2 ̸= ν1 ̸= i and the notation of Lemma 2 is adopted. Then the
Fredholm property of problem (1), (2) is equivalent to the fact that the function S(z) has no
zeros on the circle L = ∂B. When this condition is satisfied, its index is given by formula
(17), in which n is the number of zeros of the function S in the circle B, taken with account
of their multiplicity.

Note that, like R, the function S vanishes at the points ±i. This function is especially
simplified if 1 + ν1ν2 = 0, then the transformation δ in (20) is an involution z 7→ z′ = −1/z.
In this case, Theorem 1 turns into Theorem 3 from the work [5].
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4 Application of the results to the general equation of the fourth and sixth orders

Let us illustrate the application of Theorem 3 by the example of fourth-order equation (1).
Since the lower-order terms do not affect the Fredholm property and the index of the problem,
we can restrict ourselves to the main part of the equation with ν2 ̸= ν1 ̸= i. This equation
can be written in the form

L1L2u = 0 (21)

with second-order operators

Lk =
∂2

∂y2
− 2(Re νk)

∂2

∂y∂x
+ |νk|2

∂2

∂x2
, k = 1, 2.

With respect to the difference s = k2 − k1, which in the considered case takes three values
s = 1, 2, 3, problem (2) is written in the form

∂iu

∂ni

∣∣∣∣
Γ

= f1,
∂i+su

∂ni+s

∣∣∣∣
Γ

= f2, 0 ≤ i ≤ 3− s. (22s)

According to (4), (11), in the case under consideration, the matrix Wq takes the form

Wq(z1, z2) =

(
1 1
zs1 zs2

)
, detWq(z1, z2) = zs2 − zs1,

so that S(z) = [δ(z)]s − zs. Explicitly form

S(z) =
(1 + z2)Ps(z)

(τ − z)s
,

where P1(z) = 1, P2(z) = −z2 + 2τz + 1 and

P3(z) = [qz2 + (1− q)τz + 1][q2z2 + (1− q2)τz + 1], q = e2πi/3. (23)

Note that the polynomial P2 is nonzero in B. Indeed, let z2− 2τz− 1 = 0 for some z ∈ B. So
the point z′ = −1/z also belongs to B, then the point τ = (z + z′)/2 ∈ B, which contradicts
(20).

Since in the considered case
∑

i>j lilj = 1, then, based on Theorem 1, we obtain the
following conclusion.

Remark 1 For s ≤ 2 problem (21), (22s) is Fredholm and its index is zero, and for s = 3 it
is Fredholm if and only if the zeros of P3 polynomial do not lie on the boundary circle L of
the disc B, defined by Lemma 2 by ν = ν1. Under this condition, its index is æ = 4k, where
k is the number of these zeros in the disc B, taken with multiplicity.

As the following lemma shows, with a suitable choice of ν1 and ν2 , it is always possible
to achieve that one of the zeros of the polynomial P3 lies on the circle L.
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Lemma 3 Let the point ν = ν1 lie in the upper half-plane and in the notation of Lemma 2

τ = −iρ−
√
(ρ2 − 1)/3. (24)

Then the point

ν2 =
1 + τν1
τ − ν1

,

also lies in the upper half-plane, and for these points the Fredholm property of problem (21),
(22s) is violated.

Proof 4 First of all, check that the point ν2 lies in the upper half-plane. Indeed, it is clear
from the definition of ν2 that τ = −1/γ1(ν2). Therefore, if Imν2 ≤ 0, then, by Lemma 2, the
point τ must belong to B, which is impossible.

Let it1 and it2, t2 > t1, be the intersection points of the circle L with the imaginary axis.
Then, according to (18), the equalities t2k + 1− 2ρtk = 0, k = 1, 2, we have

t1 + t2 = 2ρ, t1t2 = 1, t2 − t1 = 2
√
ρ2 − 1. (25)

It is asserted that the point z = it2 is the root of the first factor in (23) and, therefore,
problem (21), (22s) is not Fredholm.

Indeed, since 1/z = −it1, the equation e2πi/3z2 − τ(1 − e2πi/3)z + 1 = 0 can be rewritten
in the form

eπi/3it2 − e−πi/3it1 = −iτ
√
3,

which, taking into account relations (25), is equivalent to equality (24).

For elliptic equations of orders higher than the fourth, it is already difficult to describe
explicitly the roots of the corresponding polynomials. As example, let us consider a sixth-
order equation, i.e. l = 3. In accordance with Theorem 2, it suffices to restrict ourselves to
considering two cases: (i) all roots are pairwise distinct, i.e. l1 = l2 = l3 = 1 and (ii) one of
these roots is multiple, for example, l1 = 1, l2 = 2. Accordingly to these cases, similarly to
(21), we have the equations

L1L2L3u = f, (26i)

L1L
2
2u = f, (26ii)

the corresponding operators of the second order. With respect to the positive differences
r = k2 − k1 и s = k3 − k2, for which r + s ≤ 5, problem (2) is written in the form

∂iu

∂ni

∣∣∣∣
Γ

= f1,
∂i+su

∂ni+s

∣∣∣∣
Γ

= f2,
∂i+s+1u

∂ni+s+1

∣∣∣∣
Γ

= f3, 0 ≤ i ≤ 5− r − s. (27r,s)

In accordance with this, vector (13) should be taken in the form q = (1, zr, zr+s), so that for
the matrix Wq in definition (4), we have the expressions

(i)Wq =

 1 1 1
zr1 zr2 zr3
zr+s
1 zr+s

2 zr+s
3

 , (ii)Wq =

 1 1 0
zr1 zr2 rzr−1

2

zr+s
1 zr+s

2 (r + s)zr+s−1
2

 .
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In case (i) the determinant of the matrix Wq(z1, z2, z3) can be represented in the form

−detWq = (zr1 − zr2)z
r+s
3 + (zr1 − zr3)z

r+s
2 + (zr3 − zr2)z

r+s
1 .

Therefore, for function (14) we have the equality

−R(z) =
(1 + z2)P (z)

[(1 + ν1z)(1 + ν2z)(1 + ν3z)]r+s

with some polynomial P (z). Here it is taken into account that for m ≥ 3 the function R(z)
vanishes at the points z = ±i.

Since
∑

i>j lilj = 3, then, based on Theorem 3, we obtain the following conclusion.

Remark 2 The Fredholm property of the problem (26i), (27) is equivalent to the absence of
real zeros of the polynomial P (ζ) on the circle L and its index is æ = 4(n − 1), where n is
the number of these zeros in the lower half-plane.

The polynomial P for r = 1 according to

γi(z)− γj(z) =
(νi − νj)(1 + z2)

(1 + νiz)(1 + νjz)

we have

P (z) =
′∑
(νi − νj)[(1 + νiz)(1 + νjz)]

s(νk − z)s+1,

where the prime at the sign of the sum means that the summation is performed over cyclic
triples

(i, j, k) = (1, 2, 3); (2, 3, 1); (3, 1, 2).

If in addition s = 1, then, as direct verification shows, P (z) = c(1 + z2)2 with the factor

c =
′∑
(νi − νj)ν

2
k = (ν1 − ν2)ν

2
3 + (ν2 − ν3)ν

2
1 + (ν3 − ν1)ν

2
2 .

In this case, the index of the problem is zero, which is consistent with Theorem 2.
Let us turn to case (ii), where we can assume ν2 ̸= ν1 ̸= i. In this case

detWq = zr−1
2 [szs2(z

r
2 − zr1)− rzr1(z

s
2 − zs1)] = zr+s−1

1 zr−1
2 (z2 − z1)χ(z2/z1),

where (q − 1)χr,s(q) = sqs(qr − 1)− r(qs − 1) with the polynomial

χr,s(q) =
r+s−1∑
j=0

αjq
j, αj =

{
−r, 0 ≤ j ≤ s− 1,
s, s ≤ j ≤ r + s− 1,

of degree r + s− 1 ≤ 4. Explicitly

χ1,2(q) = −1 + 2q + 2q2, χ2,1(q) = −2− 2q + q2,
χ1,3(q) = −1 + 3q + 3q2 + 3q3, χ3,1(q) = −3− 3q − 3q2 + q3,

χ2,3(q) = −2− 2q + 3q2 + 3q3 + 3q4, χ3,2(q) = −3− 3q − 3q2 + 2q3 + 2q4,
χ2,2(q) = −2− 2q + 2q2 + 2q3 = 2(q + 1)2(q + 1).
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As in the case l = 2, from this we arrive at the following expression for the function S(z)
of Theorem 3:

S(z) = zr+s(1 + z2)
(1 + az)r−1

(a− z)r
Pr,s(z), Pr,s(z) = [qjz

2 + (1− qj)az + 1],

where qj are the roots of the polynomial χr,s(q), taken taking into account the multiplicity.
Since

∑
i>j lilj = 2, then, based on Theorem 3, we obtain the following conclusion.

Remark 3 The Fredholm property of the problem (26ii), (27) is equivalent to the absence of
zeros of the polynomial Pr,s on the circle L and, accordingly, its index æ = 4(n− 1), where n
is the number of these zeros in the lower half-plane.

The final answer can be given only in the case r = s = 2. For it

P2,2(z) = (z2 − 2τz − 1)2(z2 + 1)

and, as shown in the case l = 2 of a fourth-order equation, the first factor here has no zeros
in the closed circle B. Therefore, the problem (26ii), (272,2) is Fredholm and its index is zero.
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