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INFINITE DISCRETE CHAINS AND THE MAXIMAL NUMBER OF
COUNTABLE MODELS

The paper is aimed at studying the countable spectrum of small linearly ordered theories. The
objectives of the research are to study the structural properties of countable linearly ordered
theories, as well as to promote the solution to the well-known open problem of model theory,
Vaught’s conjecture, which assumes that the number of countable models of a countable complete
first-order theory cannot be equal to N;. An important step in solving Vaught’s conjecture is
the search for conditions under which the theory has the maximal number of countable pairwise
non-isomorphic models. By limiting ourselves to linearly ordered theories we do not get special
advantages from the viewpoint of studying their countable spectrum. Therefore, in the article,
a restriction on 1-types and 1-formulas of the theory is introduced. It is proved that a small
countable linearly ordered theory that satisfies the restriction and has an infinite discrete chain
has the maximal number of countable non-isomorphic models. To build models, the authors use
the method of constructing countable models over countable sets, based on the Tarski-Vaught
criterion. It is shown that it is possible to carry out the construction in such a way that the types
of unnecessary elements in the resulting model are omitted, what guarantees non-isomorphism of
the models and their maximal number.
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chain, omitting types.
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IMTekTeyci3z auckperTi TizGeKTEp »KOHE CAHAJIBIM/IBI MOAEJIbAEPAIH, MAKCUMAaJI bl CAHbI

By MakaJsta MIarbiH CHIBBIKTBIK, PETTEITEH TEOPUIaPIbIH CAHAIBIMIBLI CIIEKTPIiH 3epTTEyTe OarbIT-
TajraH. 3epTTEYIiH MAKCATHI CAHAJIBIMIIBI ChI3BIKTHIK, PETTEJIIeH TEOPUSIIAPIbIH, KYPbLIBIMIIBIK Ka-
CHETTEPIH 3ePTTEY, COHBIMEH KATap MOJIEJIbIEP TEOPUSICHIHBIH OEJITLI AIlbIK, IpobIeMach — Oipinti
PeTTi TOJIBIK, TEOPUSHBIH, CAHAJIBIM/IBI MOJIEIbIEPIHIH CAHBI Ni-Te TeH 00JIMANIbI Jel OOJKANTHIH
Boot rumnoresachin 1remntyii ajra JKbUIKBITY. T€OPHUSHBIH eKeyapa n30MOPGMTHI €MeC CAHAJIBIM-
bl MOJIEJIBIEP/IIH CaHbl MaKCHMAJIbl OOJIATHIH IMapTTap/bl i3/1ey BooTr runoresachin miemnryeri
MaHBI3/IBl KajgaM. CBI3BIKTBIK PETTE/INeH TEeOPHUsiIapMEH IIEeKTeJie OTBIPHII, 0i3 OJapiblH caHa-
JIBIMJIBI CITEKTPIH 3€PTTEY TYPFBICHIHAH €PEKIle apTHIKINbLIBIKTapFa ue OosmaiiMbi3. COHIBIKTAH
OChbI TeOpusAHBIH l-Tunrepi MeH l-dopMmysanapbiHa MeKTey enrisireni. Makasama OChbl MIeKTey Il
KaHAFATTAHIBLIPATHIH YKOHE IeKTeyCi3 AUCKpeTTi Tizberi 6ap, CaHAJIBIMIBI CBI3BIKTHIK PETTEITeH
MIAFBIH TEOPUSACHIHBIH N30MOPMTHI €MeC CaHAJBIMIBI MOENBbAEPIIH MAKCUMAJIIbI CAHBI Oap eKeH-
Jiri mpmenmenai. Mogenbaepdi Kypy yiria aBropsap Tapckuit-Boor esmeMmiapTbiHa HEri3/Ie/reH
CAHAJIBIMIBI YKUBIHIAPBIHBIH, YCTIHEH CAHAJIBIMIIBI MOJIE/TBIEPIH KYPY OJIICIH KOIIaHaabl. Kuryphl-
JIBICTBI AJIBIHFAH MOJIEJIB/IEr] KAYXKEeT eMeC JIeMeHTTEPIiH, TUIITEPIiH Tycipin kacayFa 00JIaThIHIBIFBI
KOpCeTiIren, Oy MOJAETbAEPIIH T30MOPPU3M OOIMAYBIHA YKOHE OJAPIbIH MAKCHMAJIILI CaHbl 6ap
eKeH/IirHe KemJiaiK bepeti.

TvyiiliH ce3aep: MmAarblH TEOPUsi, CHI3BIKTHIK PET, CAHAJIBIM/IBI MOJIEJb, CAHAIBIMIBI MOJEIbAEP/IIH
CAHbI, JTUCKPETTI Ti30e, TUNITEPI TOMEHIETY.
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BeckoneuHbIe AUCKPpEeTHBbIe IIelIn 1 MaKCuMaJIbHO€ 9IHUCJIO CYETHBIX Mo,ae.nef/i

anHast craThd HalpaBjeHa HA U3yUE€HUE CUYETHOTO CIEKTPaA MAJBIX JIMHEHHO yIOPSIOYUEeHHBIX
Teopuit. [lensamu uccieoBanus SIBASIOTCS U3yUYeHUE CTPYKTYPHBIX CBOMCTB CUETHBIX JUHEHHO
VIIOPSIIOYEHHBIX TEOPUil, a TaK»Ke, MPOJBUYKEHWE PEICHUS W3BECTHOW OTKPBITON TPOOJIEMBbI
Teopuu Mojiesieil — runore3sl Boora, KoTopas IPeIIoaraer, YTo JIcje CIETHBIX MOJIeell CIETHOM
IIOJTHO TEOPUU IIEPBOI'O IOPsIKA HE MOXKET PABHATHCH Nj. BaXKHBIM IIIaroM B PEIIEHUN TUIIOTE3bI
Boora sBisiercst momck ycJaoBHUil, IPU KOTOPBIX TEOPHUS UMEET MAKCUMAJILHOE YHCJO CUETHBIX
OIapHO Hem30MOP(hHBIX Mogeseil. OrpaHUYUBasiCh JTUHEIHO YIOPSIOYEHHBIMU TEOPHUSIMU, MbI
HE TIOJIy9IaeM OCOOBIX MPEUMYIIECTB C TOYKHU 3PEHUs] M3YUEHUs WX CIETHOro cuekrpa. [losTomy,
B craTbe, OyIeT BBeleHO orpanuyenHne Ha l-tunbl u 1-dopmyisl gannoit teopuu. B crarne mo-
Ka3bIBAETCSI, UTO MaJjas CUYETHas JUHENHO YIIOPsIJIOUeHHasl TeOpHsd, YIOBJIETBOPSIONIAs JTaHHOMY
OT'PAHMIECHUIO U UMEIOITas OECKOHETHYIO TUCKPETHYIO I€Ib, UMEET MAKCUMAJILHOE UC/IO CIETHBIX
Hen30MOPGHBIX Mojeseit. [[jisi mocTpoeHust Momesieil aBTOPBI MPUMEHSIOT METOJI TOCTPOEHUS
CUYETHBIX MOjeell HaJ CUYETHBIMA MHOXKECTBAMHU, OCHOBAHHBIN Ha KpurTepunm Tapckoro-Boora.
ITokasbiBaeTcsi, 9TO MOXKHO MPOBECTU IIOCTPOEHHME TAKUM OOPA30M, UTO THUIIBI HEHYKHBIX 3JIe-
MEHTOB B IIOJIYYE€HHON MOJIEJN OIIyCKAIOTCS, UTO TapaHTHPyeT He HM30MOPMU3M MOJeseill U uX
MaKCHUMaJIbHOe KOJIMIECTBO.

KuroueBbie cioBa: mMajias TeOpus, JUHEHHBIN MOPAIOK, CIETHAS MOJE/b, YUCJIO CIETHBIX MOJIE-
JIelt, TUCKpeTHas Iellb, OIIyCKaHue TUIIOB.

1 Introduction

Vaught’s conjecture states that if the continuum hypothesis fails, for a countable complete
theory T' I(T,Ny) is either finite, Ry or 25. Vaught’s conjecture was confirmed for various
classes of theories: [1-6]. But for countable theories in general, this question is still open.

A theory T is said to be small if | | S,(T")| = No. If a countable theory is not small, it

n<w
has the maximal number of countable non-isomorphic models. Therefore, in the article, we

restrict to studying small theories. We want to find theories that have the maximal number
of countable models.

Theorem 1 [7-9] Every countable model M of a small theory T can be represented as a
union of some elementary chain (9MM(a;))icw of prime models over the tuples ;.

In Theorem 1 K.Zh. Kudaibergenov and S.V. Sudoplatov used a special method to
inductively reconstruct a countable model of a small theory. The authors applied modified
versions of this method to construct new models of small theories [10-13| as elementary
submodels of an N;-saturated model. In the article, we consider one more application of such
construction and prove that a small ordered theory that satisfies a special restriction and has
a model with an arbitrarily long finite, and, therefore, with an infinite, discrete chain has the
maximal countable spectrum.
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2 Main Part

We use Gothic letters 2, 9%, N, ... to denote structures, and we use capital letters (A, M,
N, ...) for universes of those structures.

For subsets A, B C M of a structure 91 of a linearly ordered theory T we use the following
notations:

At ={ye M |forallac A, MEa<~};
A= ={ye M |forallaec A, M}~ <a}.

We write A < Bifforalla € A, b€ BM = a <b. If Aand B are C-definable (C C M),
then AT, A~ and A < B are also C-definable.

For a 2-formula ¢(z,y) denote ¢(z,y)” = Vz(p(z,y) — z > z), and ¢(z,y)" =
Vz(p(z,y) = 2 < ).

Definition 1 The set A is convex in a set B 2O A if for all a,b € A and allc € B, a <c<b
implies ¢ € A. The set A is convex if it is convex in M.

Definition 2 A formula o(z,y,a) is said to be a convex formula, if for every be M
©(M,b,a) is convex in every model of M =T containing b and a.

Definition 3 [14] 1) A convex closure of a formula ¢(x,a) is the formula:

(@) == Iy 2 (0(y1,8) Ay, @) A (1 < o < o))

2) A convez closure of a type p(x) € S1(A) is the following type:
pe(x) == {¢*(z,a) | p(x,a) € p}.

Similarly, tp®(a/A) == {¢(x,a) | ¢(x,a) € tp(a/A)}.

In weakly o-minimal theories, and, therefore, in o-minimal theories, p¢(9%) = p(9M) for
every p € S1(A).

Definition 4 [15, 16] Let 9 be a linearly ordered structure, A C M, IMM be |A|T-saturated,
and p € S1(A) be a non-algebraic type.

1) An A-definable formula p(z,vy) is p—preserving if there are a, v1, ¥2 € p(M) such that
p(M) N (p(M, ) \ {a}) #0 and 1 < (M, a) < 72.

3) A p-preserving formula ¢(x,y) convez to the right (left) on the type p if there is a €
p(M) for which p(IM) N (M, «) is convez, « is the left (right) endpoint of the set p(M, ),
and o € p(M, a).

We introduce special notations for the following formulas:
S(x,y) ::x<y/\Vt(m§t§y_>t:x\/t:y);

So(w,y) = (z =y);
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and for all n > 1,

Sp(x,y) =321, 329, ..., T2z (ZB =21 <2< ...<Zpp1 =YyA /\ S(zi,ziﬂ));
1<i<n

S_p(z,y) := 321, 329, ..., F2naa (m =21 <2< ... < Zpn1 =YN /\ S(zi1, zz))

1<i<n

Definition 5 Let p1,ps € S1(A). We say that py is attached to py, if there exists n € Z such
that for some §; € p1 (M) the element 65 € S, (81, M) realizes p,.

The relation of attachment of types is an equivalence relation on the set S;(A).

Restriction 1 We restrict to theories T such that for every M = T and every A C M,
where M is |A|T-saturated, there is no infinite family P C S1(A) of pairwise attached non-
isolated types such that for every A-definable formula ¢ such that  and —¢ belong to at least
one type of P each,

1) each ¢ and —p is in an infinite number of types from P;

2) for every & realizing some type from P, for every n € Z there exist m., m? > n and
m3,my, < n such that Sy (6, M)N@(M) # 0, Spmz (6, M)N—p(M) # 0, Sy (6, M)N(M) # 0,
and Sy (6, M) N =p(M) # 0.

All weakly o-minimal theories satisfy the Restriction 1.

Theorem 2 Let M be a sufficiently saturated model of a small linearly ordered theory T' that
satisfies Restriction 1. If in 9N there exists an infinite discrete chain, then I(T,Ry) = 280,

Proof of Theorem 2. For all n > 1 denote

P, (z,y) = 321322...3zn(x =5 <z2<..<z,= y) /\Vz(:v <z<y—
J21325(S (21, 2) A S(z, 22))>

Consider the consistent set py := {P,(z,y)}n>1, and let (ag, fo) € go(M). For n < w denote
Qn(z, a0, Bo) = 3x13w9... 32, Fy1 Fyo... Fyn(o = 1 < 22 < 0. < Ty < 2 < Yy < oo < Yo <
y1 = Bo). Then q(z) := {Qn(z, ao, Bo) }n<w is locally consistent.

The given theory T is small, therefore the theory T U tp(cpfp) is small as well. Since
in a countable model there is only a countable number of places to choose a realization of
a 2-type, if we prove that T U tp(apfy) has 2% countable models, then 7' also has. So, for
convenience, we add the elements ag and [y to our language and replace T with the theory
T U tp(aofo).

There are two cases.

1) Suppose that there exist 01,09 € ¢(9N) with ¢p(d1) = tp(d2) =: r, and there exists ¢ > 1
such that MM = S.(d1, 7). Then for every m € Z, Spe(61, M) C r(9N).

For m € N denote S™(x,y) := Vz(Spme(y,2) >y <z < z2).

Let p1(z,y) :== po(z,y) Ur(z) Ur(y) U {ng(y, x) | pr is a convex to the right on the type
r formula such that for all m € N and all o € 7(90), ((S™(cr, M) N7 (IM)) C pr(M, a))} U
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{gpL(x,y) | pr(x,y) is a convex to the left on r formula such that for all n € N and all

B e r(), ((S™™(B,M)NnrEN) C goL(M,B))}. Consistence of pi(z,y) can be verified

directly. If T" is weakly o-minimal, then p; is a complete 2-type.
For v, 71,72 € q(M) and n € Z we define neighborhoods of elements and intervals between
neighborhoods:

Voo () == {7 € ¢(OM) | Sim(7,7') for some m € Z};
Vi (1) ==1{7" € a(M) | Sinn(7,7") for some m € Z};
(Va(1), Vo(2)) gy == {7 € (M) | Vaemy (1) <" < Vgamy (12) }-

Then Vi) (01) = Vjgn)(61) € 7(MM). When no ambiguity appears, we omit 9 from the
indexes.

Lemma 1 There exists a complete type p(x,y) D pi(x,y) such that for all (o, 3) € p(IM)
and all 6,05 € (Vi.(a), Vi (B))rmy, tp°(01/aB) = tp°(d2/af).

Proof of Lemma 1. Towards a contradiction suppose that the lemma is not true. Let
p(z,y) be a type extending py, and let (a, 8) be a tuple realizing p. Then there exist a convex
{a, B}-formula 9 (z,y, a, B) and 61,02 € (Vi.(a), Vo (B))r@m) such that §; € ¥(M, o, 5) < 6.
We can choose this formula so that the set ¢)(M, «, ) coincides with the set (Y(M,a, 8)T)~
and has d; as its left endpoint. Notice that there are ] and 0} such that 6] € (M, a, B) < J)
and 0, € S(07, M).

For P(z,y) € p, R(x) € r, k,l,m < w such that [ +m < k denote

AP,R,k,l,m(I7y) = (I < y/\ - Sk(x7y) A P(ZL’,y)/\
E!zlﬂzg(l/J(zl,x,y) A =)(z9,x,y) N 51(21,22))> — Jz132y (x <21 < z9 < YA
R(Zl) A R(z2> A S('Zl; 22) A _‘Sl<‘r7 ’Zl) A —|Sm(z2’y) A w<217 l’,y) A _'w(z%xa y))

Let (Pi)i<w and (Rj);<, be two infinite sequences of formulas from the types p and r
respectively such that

M = VaVy (P (2,y) = Pi(z,y)), M Ve (R (x) — Ry(2)),
p(R) = N\ P(M), and r(90) = () By(M).
1<w J<w
By compactness, we can see the following:

There are increasing sequences (i(n)), (j(1n))n<w, (E(1))n<w, (1)) n<w, (M(N))n<w
such that for every m < w M |= Va:'VyApi(m,Rj(n),k(n),l(n)m(n) (x,y).

Then the formula ¢ (x, «, 5) should divide some neighborhood in 7: there exists v € r(9N)
such that V,.(a) < V,.(7) < V.(8) and (M) N (M, o, ) N V() # 0.

Let G(z,, B) := ¥(x, o, B) AEIy(Sl(a:, y)ANY(y, a, B)) If necessary, we can narrow down
G by adding conjunction with a formula of r(x). This guarantees that the future formulas
¥, will act the same way as ¥(x, «, #). Every first order property that holds for realizations
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of some type should hold for all realizations of some of its formula. The formula G(z, «, )
defines a single element ¥ (M, a, 8) N r(M) whose S'-successor is in —)(M, o, 3). Without
loss of generality, let this element be . Then the following two cases cases are possible:
Case A. ip(y/a) =tp(B/a) and tp(y/B) = tp(a/p);
Case B. tp(y/a) # tp(8/a) or (and) tp(v/5) # tp(a/P).

In Case A, for every m < w there exist n < w, m; < w, my; > m, such that

Mm = ‘v’xVy((Pml (xz,y) A ﬁS”(x,y)) —
32132 (P (2, 21) A Pa(21,9) A S (21, 20) A (21,2, 9) A =) (22, x,g)))

Then, the definable set of @ < x < [ is divided into three disjoint sets definable by
formulas ¥ (z, a, B), po(z,, 8) :=a <z < V(M,a, ) and ¢i(z, o, B) := V¥V (M,a, ) <z <
£ with

wo(M, o, B) < ¥(M,«, B) < p1(M,«, 3).
Define

Yoz, o, ) = 2(P(z, o, 2) AN ¥(z, @, B));
¢1(xvaaﬂ) = 32(77/)(1‘, Zvﬁ) A \Il(z,(y?ﬁ)).

The formulas 1)y and 1)y are defined correctly since, in Case A, tp(ad) = tp(d3) = p. In
Case B 7 still realizes some complete extension of the type pyg. By supposing that Lemma 1
is not true, there exists a formula ¢°(z,a,v) and (or) a formula ¥'(z,~,3) that has the
same properties as ¥ (z,a, ). Then, in the definitions of ¢y and 1 replace ¥ (z,y) with
Y9(z,y) and ¢! (z, y) respectively. Then 1) divides the interval (V, (), V,(7)),, and ¢ divides

(Va(7), V4(8))q-
Let

Wo(z, a, B) = o(w, , B) A Fy(=¢o(y, o, B) A S'(2,9));
\I/1<I‘,Oé,ﬁ) = wl(aj?aaﬁ) A Ely(_'wl(yaaaﬁ) A 51(1:73/))

The formulas ¥y and W, define singletons 7o and 7y in ¢o(M, a, ) Nr (M) and 1 (M, o, B) N
r(9M) whose S'-successors are in —ho(M, v, ) Nr(IM) and =y (M, ar, ) Nr(IMN) respectively.
Each of those singletons can satisfy an analogue of either the Case A or the Case B. Suppose
that they satisfy the Case A: tp(a,v) = tp(y0,7) = tp(y,71) = tp(n,B) = p. In Case B,
replace 1 with suitable formulas the same way as in the definitions of 1y and ;.

We have V(o) < V;(70) < Vi(7) < Vi(n) < Vi(B).

Denote @oo(z,a,8) == a < x < Go(M,, ), por(z,a,B) = Vo(M,a,8) < x <
U(M,a,pB), ero(z,a, ) ==V (M,a,8) < x < V1 (M,a, ), and p11(z, a0, 5) := U1 (N,a, B) <
x < p.

We continue defining such formulas by induction:

Vro() = F21320 (Vp(21) A Ui (20) AY(, 21, 20) )5
Yr1(2) := 32322 (Vo (21) A Us(22) A (2, 21, 22)).

If 7 consists only of zeros, denote
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Yro(z) == 322(\117(22) ANY(z, a, z2));

If 7 consists only of ones, denote

le(l’) = E|Zl (\IJT(Zl) A w(% Zl?ﬁ))?

Above, 1 () is obtained by removing the one or more digit from 7 such that ¥, is the
left (right) “closest” to W,. In Case B, replace v in the definitions with a suitable formula as
before.

Define

Uoo(x) == Fz(ro(x) A S(x,2) A heo(2)); Wrr(x) = F2(r(z) A S(z,2) A i (2));
oro(z) ==V, (M) <z < V(M) and pn(x) == ¥, (M) < 2 < ¥s(M). Then we obtain
SOTO(M) < ‘I;T(M) < ngl(M); 9070<M) U @Tl(x) - QDT(M)'

This way, for arbitrary v € 2 we constructed the following set of 1-afS-formulas: r, :=
{Yvmy(z) | n < w}. It is obviously consistent. But this is impossible in a small theory. A
contradiction. 0 Lemma 1

A 1-type r € S1(A) is said to be irrational if 7(91)* and r¢(91)~ are both non-definable
sets. By Lemma 1 there is a type ¢(z,y) such that for every o, 5 € p(IM) if tp(«, 5) = q(x,y),

for every v € (Vyp(a), Voo(B))ps tr°(7/aB)(M) = (Vpola)™ < @ < Vpu(B)7)(M) is an
irrational type. From this follows that the type tp(v/af) is non-principal.

It follows from Lemma 1, that for every formula (z,z,y) such that 9 |
VaVy (Y (M, z,y) < yAVz(¢(z, 2, y) <> ¥(z,2,y) ")), there are the following two possibilities:
1) There exists kg < w for which Vz (ﬂSkO(:c, z) = Y(z, x, y)) € p(x,y), or, equivalently,

for Tl[l/f](%y) = V:L‘1<Sl(l'1,x) — 32(¢(2,$7y) N _\w(zal‘hy))) /\vyl(sl(yayl) —
vz (~u(z,2,9) & (2 m ) ), Tilvl(@,y) € p.
2) There exists lp < w for which ‘v’z((m < z A=Sh(zy) — ¢(z,x,y)> €

p(z,y), or, equivalently, for Th[v|(z,y) = Vi (go(yhy) — 32(¢(z,x,y) A ﬂgb(z,x,yl))) A

Var (' (a1,2) = V2 ((z2,9) © U(z01.9)) ). Tl (@) € p
The formulas VaVy(T:[¢](z,y) — —Te[](x,y)) and VZUVZU(T2["¢]<$7Z/) -
ﬂTl[w](x,y)) are in the theory T'. Therefore, ( (x,y) Vv Ta[Y](z y))
Then py(z,) = po(z5) U {Ti[u](z,9) V Tolel(z.) | M | vmvy(wM,x,y) <y

Vz (w(z, x,y) < P(z,x, y)*‘))} should be consistent, and every its extension to a complete

type should satisfy the property from Lemma 1.
We can generalize Lemma 1 the following way:

Lemma 2 For every n (n < w), there exists an n-type p"(x1,...,x,) such that for every
increasing sequence oy, Qua, . . ., oy, of realizations of p in M such that tp(aq, ag, ..., an) =D,
for everyi (1 <i < n), and every 61,02 € (Vg (i), Vgo(ait))q,

tp°(01/a) = tp®(d9/ @), and
(51/@) () = {m € g(M) | Vi) <m < Vyfasnr) )

Here a:= (v, g, ..., ().
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Let tp(8) = p(7) satisfy Lemma 2. Then for every i(1 <4 < n), and every formula 9;(z, )
with 97t ): 51 < wl<M, (5) < (5¢+1 and

m ): VxVy <E|Z¢Z(Z z,Y, 51 H_l) — Vz(%(z T, Y, 5Z H_l) A %’(27% Y, g:{i+1)+_)>

one of the following two cases is possible:
1) There is kg < w for which Vz(=S*(z,2) = (2, z,y,057)) € p(z,y, 5T, or,
equivalently, for

Tl [szx? Y, 572‘171‘4_1) = vxl (Sl (.%'1, $) — Jdz (%‘(2’ z,Y, 571’1,1'—&-1) _'wl<z r, Y, 51 H_l))) A
vyl <90(y17 y) — vz(ﬁwz(% r,y, S'f{i+1) e _‘?/JZ(Z T, Y1, 5Z H_l)))a

Th[wi](2,y, 0,4") € p(x,y, 057).
2) There exists lj < w for which Vz((x < 2 A=Sh(zy) — ¢i(2’x7y’ggi+1)) c

p(z,y, 051, or, equivalently, for

T2[¢i]<x7y>57i{i+1) = vyl (Sl<yayl) — 32(%(2 x ngi,i—&—l) _'wl<z z 3/1?75z H_l))) A
v-171 <Sl(x17 ) - VZ(@bZ(Z z y75”+1) A w(’Z?ml’y)))’

Tolwi](2,y, 0,+") € plx,y, o57).
Because

M = VaVy (T2 [ (z, y, 05+) — Dol (,y, 65 )) AVay(Tali (e, y, 65) —
-1 [¢Z] (l‘, Y, 5224_1))’

(Tu [ (, y, 8571) v Tolb] (, y, 857Y)) € pla, y, 6i7+Y).
Therefore, the following set is consistent:

(@) = p5(0) U {Ty0)(2) Y Tl | O b= (o, 75600) A (M, ) <
Yy AVz(Y(z, 2y, 50 & (2,2, y, 25T ))}

Every complete extension of pf should satisfy the property in Lemma 2.
Denote A, = {(i1,42,...,0n) | 91 < i < -+ < i, < w}. For every p € S, let 7, :=

Tp(1)Zp(2) - - - Tu(n)- Lemma 2 implies consistence of the set  |J ¢ (Z,) :=T.
n<w, PESH
Let 91 be an N;-saturated elementary extension of 91. There exists a countable ordered

set D C N that satisfies I' and is ordered by the type of w. Consider the Ehrefeucht-
Mostovski type EM(w/D) = {¢(z1,...,z,) | for every p € S,,n < w,MN = ¢(a,)}. Then,
['(z1,29,...,2p,...) € EM(w/D). The Standard Lemma [17] implies that for every infinite
linear ordering there is an indiscernible sequence (d;),;cs. Since pt(z,) € EM(w/D), every
finite sequence of J of length n forms a tuple Ju that satisfies the property from Lemma 2.
This allows us to conduct the construction of 2% countable models.

Let g = (p1, oy ey fliy - )i<ws i € {0, 1}, be an infinite sequence of zeros and ones. And
let Kﬂ = {:‘il, RQ}U{I{QZ'_L]‘ | 1€ N,] € @}U{ligi’l, K22 | 1€ N, i = O}U {Iﬁgi’l, KR2i.2, K23 | 1€
N, ;i = 1} be an indiscernible subset of (1) that exists by the previous statements, and



54 Infinite discrete chains and ...

such that the sets V,m)(k, ;) are disjoint and ordered lexicographically by the indices i, j,
and k1 < K;j < kg for all ¢ and j. Fix some enumeration K, = {x1, k2, ..., k;, ...}. For n < w
denote &, := (K1, Ka, ..., k). We use an analogical notation ¢, := (c1, ¢z, ..., ¢,) later as well.

Now we construct a countable model 2, < O such that K, C A,. We want the models
obtained for different sequences i to be non-isomorphic.

Step 1. Let @1 := {p1:(x) | i < w} be the set of all non-equivalent 1-formulas over ()
such that 91 = () for all i < w. First we find a witness for ¢; ;(x). Since the theory
T is small, ¢ has a principal over () subformula ¢; ;. The formula ¢;;, in turn, has a
principal subformula ¢, ;1 over ;. The formula ¢, ;; has a principal subformula over ko,
and so on. We obtain a principal over parameters nested sequence of formulas ¢y ; ;, that has
to be realized in the N;-saturated model 91. Denote this realization by ¢;. Denote C; := {¢; },
and K7 := {r1}.

Next, we continue the same procedure. To satisfy the Tarski-Vaught criterion, on each
step we form a new set of parameters, and realize one formula over each of the existing sets
of parameters.

At the end of step n we have defined the finite nested sets C; C Cy C ... C C,, and, for
every i, 2 < i < n, the family ®; of all C;_; U K;_;-definable 1-formulas that have witnesses
in 1.

Step n—+1. Firstly, realize one new formula from &, then from ®,,...,®, ;. For 1 <
m < n let i, be the smallest index such that ¢,,;. € @, was not considered before.
Construct a nested sequence of principal over parameters formulas: ¢, ;. (N, Ry, ™) D
Omimo (N, Fi, €™) 2 Qi (N, Fng1,€72) 2 o0 2 @i, (N, B, €72) 2 ..., where €™ is
the tuple enumerating the set C,, (¢msnm to be exact), and ¢"2 = EW ©m_1 s the tuple

2
enumerating all the ¢’s obtained so far. Choose a realization ¢ m+1)n im € N of this sequence.
2

Then Contim o, is principal over K,,_; and the ¢;’s for j < @ + m.

Let ®,,1 be the family of all K, U C),-definable 1-formulas that are satisfiable in 1.

Choose ¢n+1)n iny1 @S before, as a realization of a chain of nested principal subformulas.
2

Denote C,, 11 := {c1, ca, ..., c(nzl)nJmH}.
Let A, == K U |JC;. By Tarski-Vaught criterion A, is a universe of an elementary
i<w

substructure of M.
It can be easily verified by induction that for every i < w the type tp(c;/K,) is principal

starting from a sufficient n < w. For instance, for every n > i—1. Then r(,)\ U Vyon) (k) =
kEK,

(), since otherwise, if some element of 2, was in this set, it would have a principal type over
some tuple from K, but, by Lemma 2, this is impossible.

Since the theory T is small, the theory T U tp(apfo, k1, k) is small as well. The
number of different infinite sequences p of zeros and ones equals to 2%, thereofre I(T U
tp(cBo, k1, ko), Ng) = 280, and (T, Ry) = 2%,

2) Suppose that for all 01,09 € ¢(9M) with tp(d1) = tp(d2), and all n € Z, M = —5,,(1, 02).
Then for every complete type ¢; 2O q over {«, B} and every § € ¢1(9), J is the only realization
of ¢y in its neighborhood V'(¢) := |J S.(d, M).

neN
2.1) Suppose that there exists ¢; € S1(T') such that ¢ C ¢;, and ¢; has exactly n attached

types for some n € N. This case contradicts with 2): for every § € ¢;(9) its neighborhood
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V(9) is infinite, but every its element should have a type attached to ¢; and realized by a
singleton.

2.2) Let II be the set of all types from S;(T") that extend ¢ and have an infinite number
of attached types. We consider the case when II is infinite. Let Il = PU R, where P contains
all the principal types from II, and R — all non-principal types from II. Since T is small, P
and R can be either countable, finite or empty. Fix enumerations P = {py, pa, ..., Di, - bi<ws
R={ri,ro, ..., ... bicw

2.2.1) Suppose that P is not empty. Consider, for instance, p; € P. Since all the types
of II have unique realizations inside of a single neighbourhood, each r,, will be different from
the other types of R by a formula 1, (x) := Jz1(p1(x1) A Sp(x,21)), where ¢ is the isolating
formula of p;, and n is the distance between realizations of p; and r,.

2.2.2) Suppose that P = {).

2.2.2.1) Suppose there exists a formula ¢ that belongs to only a finite number of
types from II. Then, analogically with 2.2.1), for every n < w we can find a formula that
distinguishes 7, from all other types form II: ¢, (z) := Jz13zo.. 3, ( A S, (zi, 2i41) A

1<i<m—1
N o(x;) A Sp(x,x1)), where m is the number of types ¢ belongs to, and n,nq, ..., ny,_1 are
1<i<n
sufficient integers.

In cases 2.2.1) and 2.2.2.1), the set I' := {—¢; | i < w, ; is an isolating formula of
pit U{—; € r; | i <w} is alocally consistent set of negations of representatives of all types
of TI, and every its completion to a 1-type is not in II. Then, by 2.1), the proof is done.

2.2.2.2) Let 2.2.2.1) be not true. Then every ()-definable formula ¢ will belong either to
no types from II, or to all of them, or both ¢ and —¢ belong to an infinite number of types
from II. This contradicts with Restriction 1.

O

Corollary 1 Let 9 be a model of a small linearly ordered theory T that satisfies
Restriction 1. Let for every n < w there is m,, > n such that in 9N there exists a discrete
chain of length m,,. Then I(T,Ry) = 2%°.

Proof of Corollary 1. By compactness, there exists an infinite discrete chain in some
elementary extension 9 of 9. Then, by Theorem 2, I(T,R,) = 2%.
O

Corollary 2 Let T be a small linearly ordered theory that satisfies Restriction 1 and such
that I(T,Rg) < 2%,

1) There ezists np € N such that in every model of T length of every discrete chain is
less than ny.

2) If T has no finite models, every model of T is densely ordered up to finite discrete
chains.

3 Conclusions

In the article, in order to avoid a fictitious linear order, a special restriction on theories was
given. It was proved that if a small linearly ordered theory satisfies this restriction and has
an infinite discrete chain, then it has 2% countable non-isomorphic models. Two corollaries
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of this theorem were given. Description of all cases of maximality of the countable spectrum
ultimately leads to consideration of all possible countable spectra of complete theories with
a definable linear order.
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