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SIMULATION OF NUCLEATE BOILING BUBBLE BY THE PHASE-FIELD
AND LATTICE BOLTZMANN METHOD.

This article reviews the mathematical and computer modeling of the process of thermal phase
transition in two-phase fluid flows. The nucleate boiling process is investigated in the presence of a
constant heat source on a solid wall. Bubble formation and phase transition are taken into account.
The flow characteristics and temperature distribution during nucleate boiling are obtained. The
results of the numerical study were obtained using a 2D numerical algorithm implemented on the
basis of the D2Q9 model of the Lattice Boltzmann method (LBM-Lattice Boltzmann method)
and the phase field method. The calculations show that first the nucleation of a bubble is formed,
then the bubble grows, breaks away from the boundary with the heat source, then, rising upward,
undergoes deformation under the action of buoyancy forces. The effect of gravity and surface
wettability on the bubble diameter during ascent is also numerically investigated. The results
obtained are in good agreement with the experimental and numerical results of other authors.
Key words:Nucleate boiling, phase- field method,pool boiling, interface capturing, Lattice
Boltzmann method, Cahn-Hilliard equation.
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Ou-Qapabu arsingarsl Kazak yarTeik, yHuBepcuTeri, Kazakcran, AiMars K.
*e-mail: satenova.bekzat89@gmail.com
CyibBIKTBIH OyFa aifHa/Iy mpoilieccin ¢da3asibIK, epic meH BoJsibIiMaH TOPJIBIK, TeHAEY 9/1ici
OOMBIHITIA MOJIEJIJIEY.

Bepinren makamgama cy#BIKTHIKTHI €Ki (a3asbl arbIHAAPBIHIAFBI KbLITY (Da3aChIHbIH aybICy IIPO-
IIECIH MaTeMaTHKAJBIK, 2KoHE KOMIBIOTEPJIK MOJEIb/ey KapacThIpbuiran. KarTel kKabblpraja
TYPaAKTHI KbLITY K631 60JIFaH Ke3/eri, TAMITBIHBIH OyFa aiffnay mporieci 3eprresinesi. Kemiprmikriyg,
naiiga 60/Iybl koHe (asajblK aybicy eckepliemi. TaMmimblHbIH KaiiHay Ke3iHzeri maiiza 60JaTbiH

aFbIH CUTIATTAMAJIAPhI MEH TEMIIEPATYPAHBIH, TAPAJIYbI AJIbIH]IHI.
Canypik, 3eprreyin nHormkesepi (LBM- Lattice Boltzmann method) Bosbimas Topuisbik Teseyi

omiciain, D2Q9 Momeni MeH das3abiK epic 9mici Herisinge xKy3ere achIipbliran 2D caHIbIK aJaropuT-
MiHiH KOMeriMeH 2Ky3ere achpbLIabl. Kcerreynep KopceTKeH e, aJIbIMeH KOIIpImK naiiga OoJra-
JIbI, COJTIAH KeHiH KOIipIIiK eceli, COChIH Kby KO3iHiH 9CEpIHEH IeKapaJaH apblLiajibl, COJaH KeiliH
JKOFapbl KOTEPLTiN, Kepi uTepy KVIIiHiH dcepinen jgedopmarusara yinbipaiasl. Ketepiny kesinmge
aybIPJIBIK, KYII MeH GeTTiK Kepijay KYIIiHIH KeIipIIiK JuaMeTpiHe 9cepi Jie CaHJIBIK 3epTTeJIreH.
Anbraran HoTIKejIep 6aCKa aBTOPJIAPBIH IKCIEPUMEHTAJIbI YKOHE CAHJIBIK, HOTHXKEJIEepIMEH ca-
JIBICTBIPBLIA OTBIPHII, KAKCHI COMKECTIK KOPCETKEHIH allTyra 00J1a/Ibl.
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B mammoit craThbe paccMaTpHUBAETCS MATEMATUIECKOE M KOMIBIOTEDHOE MOJEINPOBAHUE TPOIIEC-
ca TemaoBOTO (a30BOr0O IMepexoma B IMOTOKAX ABYX(as3Hoil KuakocTu. Vcciemyercst mporiecce
y3bIPHKOBOTO KHUIIEHUsI MPU HAJUYIUK TIOCTOSTHHOTO TEIJIOBOTO MCTOYHWKA HA TBEPJION CTEHKE.
VuursiBaeTcsi 0Opa3oBaHue Iy3bIPHKOB U (ba30BbIil nepexol. [loryueHbl XapaKTepUCTHKY [TOTOKa,
¥ PpACIpeJIeJIeHue TeMIEPAaTypbl B IPOIECCe IIy3bIPHKOBOI'O KHUIIEHUsl. Pe3ysIbTaThl YUC/IEHHOTO
WCCJIEIOBAHUSI TIOJIYI€HBI C TIOMOIIBIO UCIO0JIb30BaHus 2D dmciieHHOro ajropuTMa, peagn3yeMoro
na 6aze D2Q9 momenn merona pemerodnbix ypasuenuit Bosbumana (LBM) u merona dasosoro
nosisi. [IpoBesieHHbIe pacdeTbl MOKA3BIBAIOT, 9TO CHadYaja o0pa3yeTcsl 3apOoKJeHue My3bIpbKa,
3aTeM IIY3bIpb pacTeT, OTPbIBaCTCd OT I'PaHUIIBI C UCTOYHUKOM TeIlJla, 3aTeM, IIOJHUMasACh BBEPX,
rperepreBaeT JedopManuio o JedCTBHEM CHJI ILIaBydecTd. Takrke UHCICHHO HCCJIE0BAHO
BJIUSTHUE CHJIbI TSI2KECTA U CMAdUBAEMOCTH HOBEPXHOCTH Ha MAMETD IIy3bIPbKa IPU BCILIBITHUH.
[Tosydyennbrie pe3yIbTATHI UMEIOT XOPOIIEEe COTJIACOBAHUE C IKCIEPUMEHTAJIHHBIMU U IHCJIEHHBIMA
pe3yJbTaTaMu JIpYTUX aBTOPOB.

Kuarouessbie ciioBa: Mcnapenue, ¢pa3oBbIil mepexo, Temaonepegatia, MeTos1 ha30Boro moJs, METO,
peleToYHoro ypaBaenusi bosbiimana, ypaBaenne Kana-Xusnapia.

1 Introduction

Thermal multiphase flows are widely used in various natural phenomena and industrial fields,
from energy conversion in nuclear reactors to cooling of microelectronic devices. Over the past
decades, various methods of direct numerical simulation of multiphase thermal flows have
been presented. Despite the growing number of studies on two-phase multicomponent flows,
direct modeling of two-phase flows with dynamic interfaces remains a challenge. The main
difficulties are associated with the need to simultaneously take into account many effects,
such as interfacial mass transfer, latent heat and surface tension, in accordance with the
laws of conservation of mass, momentum and energy. One of the most important problems
encountered in multiphase flow modeling is interface tracking, which can demonstrate the
unsteady morphology of interface dynamics. The most commonly used numerical models for
interface tracking can be divided into two categories: sharp interface methods such as the
volume of fluid (VOF) method [1,11], interface tracking [2|, immersed boundary method, and
diffuse interface methods, such as, the level set method [3] and the phase field method [4].
In recent years, the lattice Boltzmann method (LBM) based on the molecular kinetic theory
has attracted a lot of scientific attention and has become widely used for modeling complex
multiphase systems due to its generality, ease of implementation and computational efficiency
[5,6]. This is a mesoscopic method based on the discretization of the Boltzmann equation.
In particular, several LBM thermal models have been successfully developed for multiphase
and multicomponent flows, mainly including Shan-Chen pseudopotential model [7], He et al.
model [8], the Rothmann Keller color model [9], Swift et al. free energy model [10] and phase
field based LBE model [12]. Among them, the color model and the pseudopotential model do
not explicitly describe the evolution of the phase interface, where the interactions between
liquid and vapor are modeled using a pseudopotential parameter that depends on the density,
and the interfaces between different phases arise due to the interaction force between liquid
and gas particles. Deformation, displacement, destruction and merging of phase interfaces
occurs automatically, without using any special methods to track or capture the interfaces.
In the model of He et al., mobility is related to density, but physics of interface capturing
equation is not accurate. In contrast, the free energy model, which describes phase separation
by the van der Waals equation of state, has wide application. However, it lacks Galilean
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invariance, because of this, terms appear that are not related to the Navier - Stokes equation.
Whereas, phase field models are capable of calculating topological changes such as splitting
and merging, and thus are successfully applied to multiphase fluid flows involving large
interface deformations. The phase field model describes the interface in terms of the mixing
energy, which can be described using the Cahn-Hilliard equation. The energy description
of the phase field model provides a unified set of thermodynamically consistent systems of
basic equations for the two phases, which can be discretized on a fixed grid within the Euler
approach. This model can also be used to simulate heat transfer during liquid-vapor phase
transition. To this end, several hybrid two-dimensional LBM models have been proposed
[13-16], in which the original terms are added to the corresponding Can-Hilliard equation
and the thermal LB equation to determine the phase transition and latent heat, respectively.
In this paper, we develop a mathematical model for simulation of liquid- vapor phase- change
heat transfer problem based on the solution of Navier-Stokes equations, temperature equation
and the convective Cana-Hilliard equation. The numerical model is built on the basis of the
LBM using the D2Q9 model. The accuracy and efficiency of the existing method have been
tested by solving the problem of droplet evaporation in a liquid medium. In addition, the
effects of the gravity on the bubble diameter is numerically investigated. We demonstrate
that the results obtained by this approach are in good agreement with other theoretical
predictions.

1.1 Mathematical modeling

The investigated problem is considered in a limited area in the form of a rectangle. The
dynamic behavior of a bubble on a heated wall is shown in Figure 1. The heat source is
placed at the bottom of the rectangle.

F
3

L,

Figure 1: Computational domain of nucleate boiling bubble
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The Governing equation for the thermal two-phase flows with phase change consist of the
continuity equation, the momentum equation for the mixture, the equation for temperature,
and the convection Cahn-Hilliard equation:

' Vu=Q,
8(;:) + V(puu) = =Vp+ V[n(Vu + VUT)] Y P+ F,
o ’ 0
5+ Vleu) = VIMVi) + Qi = 1,2
AL 4 (uT) = V(aVT) + Qr.

\ ot

where u - is the velocity components, p- is the pressure, p- is the density, p;, po- are the
densities of fluid and vapor respectively, T' - is the temperature, 7- is the dynamic viscosity,
¢; - is the phase field,g - is the gravitational acceleration, M; - is the mobility, u;- is the

mobility , F' = F, + F, = Zle wiVe; + pg - is the summation of interface force and body
1 1
force, Q@ = —Q1 + —5Q2 - is the heat flux of liquid and vapor components, Q; = —Qy =
1 P2
1 kVT, . .. .. .
—————— - is the mass flux due to liquid- vapor phase transition, where k- is the thermal
P HVopVVop

k
conductivity, « = — - is the diffusion, Hy,, = (—AH)- is the latent heat of evaporation

PCp
_ H VopR2 Co

Qr = - is the heat flux, due to evaporation, c,- is the specific heat capacity.
pe

P
To distinguish the region of space occupied by liquid and gas phases are used an order
parameter c:

Lol a liquid
| ¢ gas

For a system of a two-phase medium consisting of a gas and a liquid, the Landau free
energy function F' is defined as:

F=(d,V7?) = /V[xp(?) 2 %vcicj]dv, (2)

where ¥U(c) = 222] Biilg(ci)—g(c;)—g(ci+c;)] — is the bulk free- energy density, ¢ = (c1, ¢2)
- is the order of parameter, which consists from gas and liquid ¢; + ¢ =1
For the isothermal system represented as:

g(c) =c*(1 = ¢)?

The variation of the free-energy function F' with respect to the order parameter c¢ yields the
chemical potential p; as:
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2
Hi = Ho,i — Z A Vie;
J

3D 3
Where the bulk free energy po,; = Z” 26;l9(ci) — g(c;) — gleci+¢5)] J\ij = I Bij = 50

- are the constant related from interfacial thickness and surface tension force, o;; = 0j; - is

the surface tension formed between liquid ¢ and gas j,D - is the interfacial thickness.
The system of equation (1) has following initial and boundary conditions:

Initial conditions:

u=v=0,T="Ts,cr=1,c=0

Boundary conditions:

At the bottom wall (y = 0):

u:vzo,T:Th,x:&,%:%:

20y dy

At the inlet and outlet walls (z =0,z = L,):

The periodic boundary conditions are applied for u, v, T, ¢y, co

At the top wall (y = L,):

(9T 801 802
u:’(]:07—: —_— — =

oy "oy Oy

2 Phase field model for two-phase gas and liquid systems

The time dependence of the order parameter ¢; given by the following advective Cahn-Hilliard
equation to describe each phase:

0
ﬁ + V clu V(Mlv,ul) + Ql

aacz (3)

— + V(cu) = V(MxVz) + Q2

Whenc —>Cg :>Q1 —Q2, Q2 = p—RQPQ p0R262p(2)7
2

where Ry = Pz is the vapor velocity at the interface due to evaporation.

For the heat transfer process, the intensity of the heat flux is determined by
r=—kVT

To find the fraction of evaporated liquid into vapor, we equate the heat for converting the
liquid into vapor by the intensity of the heat flux.
The heat spent on the transformation of liquid into vapor is determined by

qv = qr = Hyom = —kEVT

After equating, the flux of mass evaporating at the interface can be estimated from the

heat-conducting as flowing:
ENT

HVop

m = —




112 Simulation of nucleate pool boiling . ..

on the other hand
m = pVVVop = p2VVop

Next, we get the density of the bubble in the volume of the liquid due to heat.

EVT

P2 = _HVopVVop

1
where Vi, = 67rd3 is the volume of the bubble,, d is the diameter of the bubble.

At least, the vapor velocity at the interface due to evaporation defined as:

1 kVT

Rp= — =i
2 Y HVopVVop

The volume fraction of the component ¢; is defined as the ratio of the volume of the ¢
component to the total volume of the mixture:

Zcizl

i

Pi = Cz‘ﬁ?

where p? - is the physical density of components.
The density of the mixture p is defined by law

2
p= Zpi
i=1

3 Numerical method

The numerical solution in this work is based on the D2Q9 model of the Lattice Boltzmann
method. The two dimensional Lattice Boltzmann equation in the Batnagar-Gross-Krook
(BGK) approximation can be written as The two-dimensional LB equation for continuity,
momentum and energy equations can be described as:

F(T + it t+ AL) — (2 t) = —f—ft(fi(?, £ — 79T, 1) + (1 - QA—tht (4)

Tf

The interface capturing is modeled by a convective Chan-Hilliard equation and the
corresponding two-dimensional LB equation follows as:

G (T + PALE A — g (T ) = — g (@) — g T ) + (1

Te 27,

)@m (5)



B.A. Satenova, et al. 113

hi(Z + €At + At) — hy(T,t) = —ﬁmi(?,t) — RS2, t) + (1 — ﬂ)QT (6)

TT 2TT

where m = 1,2 - liquid and gas components, f;, g/, h; - are the velocity, phase- field and
energy distribution functions respectively, e; - is the discrete lattice velocity,

1 .
T = 3 +ci(m— 5) +co(my — 5),7'0 =177 = 3 +c(mir — 5) + co(Tyr — =) - are the relaxation

times, F;- is the external force, Q,,,Qr are the fluxes, At - is a time step, f{4,g;"“ hi? - are
equilibrium distribution functions for velocity,phase- field and energy respectively.

The equilibrium distribution functions can be written as: [17]:

b= Zi;éo fiti=0
fieq = wp(l + Cmlbm €ialla uoeuﬁ(eiaeib’ - Czo_aﬁ)
’ pc2 c? 2¢2

)i #0

Cm = 2izo i =0

m,eq 2
g; = Fm,um CmCiala Cmuauﬁ(eiaeiﬁ - Csaaﬁ) . (8)
CLJZ( Cg C? 203 )7 t 7£ 0
hi® = w;T(1+ 3e;u) 9)

where ¢ = RT - is the speed of sound, R- is the universal gas constant, T',,- is a constant
controlling the strength of mobility, o,s- is the Kronecker delta.
The discrete velocity set of D2Q9 model is given by

e =(0,1,1,0,—1,—-1,—1,0,1)c

ey = (0,0,1,1,1,0,—1, 1, —1)c

The values of weight coefficients are taken as:

(4
§7i207
1 .
wi={ gt =T (10)
L 5—8
— .1 = J—
367 h)

The external force in the LB model proposed by Guo et al. [18] is used in this paper.
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i 7
E:wi(l—%)[( 1027)+ z(c 17)]?

(11)

where the force F' is given by ? = ?8 + ?b.
The fluxes @, @r in the LB model proposed by Seta et al. [19] are defined as:

2
Qum = wi( Tc)q

2
Qr = wi(l - —)QT

T

The evolution equation is consists of two steps, collision and streaming

fi(?vt) _ fieq(?vt) +

Tf

f1(T 1) = fi(T 1) + At(—

?7 t) — gzm,eq(77 t)

Te

g (T 1) = g (T ) + Ar(— I )+ A1,

2, 1) — b T t)

Th

)+ AtQr (12)

Fi(T 4+ AL+ A = (T, t)
g (T + AL L+ AL) = g7 (T )
hi(T 4+ AL+ At) = BT, t) (13)

The macroscopic dimensionless density, phase filed and temperature are calculated by:

8

8 8 8
P = Zfivpu = Zfi?i + %?>T = Zgim + QTQAt,Cm = Zhi + QZAt (14)
=0 =0 =0 =0

The second-order central difference is used to approximate the directional derivatives in
e; direction as:

e T o+ i) sl

=2

The implementations of boundary conditions for each velocity distribution functions are
as follows:
Zero velocity condition for all walls

[i(Z it + At) = foi(T ot +AL), €5 - T >0, (15)
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Where the phase and temperature are constant, the boundary conditions for the
distribution functions are chosen as follows:

g}"(?w,t+ At) = g,z’m(?w,t + At) + 2w;Cy, e >0,

hi(T ,t + At) = h_i(T o, t + At) + 20Ty, € - T > 0, (16)

where ¢, u T,, are the wall phase and temperature, respectively.
The Neumann boundary condition are used for temperature and phase — field distribution
functions

G(T ot + At) = g_i"™(T o, t + A1), € - 7 >0,

Bi(Z oyt + AL) = h_i(Z , t + AL), ;- T >0, (17)

4 Results and discussions

To verify the developed model for two-phase flow phase-change simulations, a two-dimensional
Poiseuille problem was solved channel.
Analytical solutions of velocity and temperature fields are calculated as: [20)]

yQ
uemact<y) - umam(l - ﬁ)

Tosnar(y) = T )y 4 < Prad o1 = (3 = 1),

A comparison of velocity and temperature profiles of analytical solutions and numerical
ones has been made, for Pr = 0.7(air) at different time step, as shown in Figures 2 and 3.
It is clearly seen that the numerical results are in excellent agreement with the analytical
solution.

In order to assess the validity of the model for two-dimensional (2D) problems, the
simulation of a single bubble rising in a saturated liquid in a rectangular domain size 128 x 128
is carried out. The computational domain with L = L, = L, = 0.1 is considered.

Grid step and time step are defined as follows:

L
Ax = N At = 0.01Az.

We consider a two-phase flow of liquid and vapor with surface tension ¢ = 0.01 latent

kJ
heat Hy,p, = 10k—, mobility M =1, I' = 2 and interfacial thickness W = 2.
9
The physical parameters for the liquid phase properties are set as:

k
pr = 200kg/m? = 0.1 Pa*s,c, = 200 J/(kg*K),k; = 40 W/(m*K),0p = —

P1Cpi
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Thermal Poiseuille flow

1 T

Exact
Numetical o

0.4 - 1

0.2 - B

YH

Figure 2: Velocity profile of two-dimensional Poiseuille flow. Comparison between numerical
and analytical solutions at Ti,, = 1, Tpor = 0, Pr = 0.7, Upq, = 0.1.

Thermal Poiseuille flow
12 T T
Umax=0.1; Exact o
time=0.05, Numerical
time=0.1, Numerical ——
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Figure 3: Temperature profile of two-dimensional Poiseuille flow. Comparison between
numerical and analytical solutions at Ty, = 1, Tpor = 0, Pr = 0.7, Upqes = 0.1.

The vapor properties taken as follows:
k
pg = dkg/m3,p, = 0.05 Pa*s,c,, = 400 J/(kg*K),k, = 1 W/(m*K), oy = —.
P2Cpl

Other simulation parameters are determined as: The dimensionless numbers for this
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problem are Reynolds number Re = pUL/n and Atwood number At =

P1— P2
pP1+ P2

At the initial time step, the uniform of temperature 7T}, is established with a constant heat
flux is placed at the central point on the bottom wall for gas phase, while the temperature

for liquid phase fixed to T, = 500K.

The required physical parameters are shown in Table 4.

Table 1: LBM parameters for liquid and gas components

LBM parameters Values
. . U Ax
maximum velocity Uwm = — where ¢, = —
Cy At
density of a mixture Prom = 1
dynamic viscosity Mbmy = M/ Ny Momy = g /N
ki H . it i At Hg At
inematic viscosi Vpm, = ———=,— ——=
Y torm pr Ax?’ py Ax?
density of liquid and gas Plbm, = ﬂ, Plbm, = Py

diffusion coeflicients

relaxation coefficients of liquid and gas for temperature

gravitational acceleration

p
At At
Alpm; = alA_a:Q’ Alymg = OégA—x2
TIT = 3041me + 1/2, TgT = ?)qumg =+ 1/2
Az
m = — Tle C; = ——
giv ¢ HE Cq A2

In order to investigate the effect of the gravity, the simulations of pool boiling for various
values of gravitational accelerations are performed. Figure 4 shows the time evolution of
the bubble shape with velocity vectors and temperature distributions for g, = 0.5. It is
seen that a bubble nucleation is formed at first, and then the bubble grows and leaves the
wall, going up with deformation by the buoyancy. In addition, according to the evolution of
temperature distribution in time, it can be seen that the heat is transmitted up with the
rising bubble. Figure 5 shows the changes in the form of the bubble, depending on the time
when g, = 0.08. It is seen that the origin of the bubble of oval shape is formed at first. It was
also investigated that the diameter of the bubble decreases with an increasing gravitational
accelerations. When gp,,, = 0.5 requires a larger number of iterations than with g, = 0.08

and the bubble form is different.

5 Conclusion

This paper proposed a two-dimensional thermal model LB for two-phase liquid and gas
phases. The method was applied a two-dimensional simulations of nucleate pool boiling with
a definitive heat source on a solid wall. In order to check the adequacy of the developed
implementation model, a test task was solved. Numerical results have good agreement with
the analytical solution. It was found that in preliminary calculations using this method, you
can simulate pool bubble boiling for liquid-vapor systems at different temperatures.Finally,
we obtained that the diameter of the bubble is proportional depend from the acceleration
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t = 5000At t = 10000A¢t

t = 12000At t = 17000At

Figure 4: The changes of bubble shapes during nucleate boiling at different time step for
Jibm = 0.5.

t = 4000At t = 5000A¢

giwm- The effects of the appearance of bubbles, breaking the interface of the phases under the
action of temperature, the bubble floods at the expense of buoyancy forces. The dependence
of the interface of the phases from the intensity of the heat flux, the surface tension and the
buoyancy force are obtained. The velocity of vaporization is calculated.
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t = 6000At t = 9000A¢

Figure 5: The changes of bubble shapes during nucleate boiling at different time step for
Jdivm = 0.08.
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