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ON ROOT FUNCTIONS OF NONLOCAL DIFFERENTIAL
SECOND-ORDER OPERATOR WITH BOUNDARY CONDITIONS OF
PERIODIC TYPE

In this paper we consider one class of spectral problems for a nonlocal ordinary differential operator
(with involution in the main part) with nonlocal boundary conditions of periodic type. Such
problems arise when solving by the method of separation of variables for a nonlocal heat equation.
We investigate spectral properties of the problem for the nonlocal ordinary differential equation
Ly(z) = —y" (z) + ey’ (—x) = My (x), —1 < = < 1. Here A is a spectral parameter, || < 1.
Such equations are called nonlocal because they have a term y” (—z) with involutional argument
deviation. Boundary conditions are nonlocal y' (—1) + ay’ (1) = 0, y(—1) — y (1) = 0. Earlier
this problem has been investigated for the special case a = —1. We consider the case a # —1.
A criterion for simplicity of eigenvalues of the problem is proved: the eigenvalues will be simple
if and only if the number r = /(1 —¢) /(1 +¢) is irrational. We show that if the number r is
irrational, then all the eigenvalues of the problem are simple, and the system of eigenfunctions of
the problem is complete and minimal but does not form an unconditional basis in La(—1,1). For
the case of rational numbers r, it is proved that a (chosen in a special way) system of eigen- and
associated functions forms an unconditional basis in Lo(—1,1).

Key words: Nonlocal differential operator, spectrum, eigenvalue, multiplicity of eigenvalues,
eigenfunction, associated function, unconditional basis.
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IIlexkapaJsbIK HMIapTTapbl IEPUOATHI TUMTI eKiHIIi peTTi JoKaIai eMec muddepeHInaIabIK,
oriepaToOPAbIH, TYOIpJIiK (PYyHKIUITIAPHI TYypPabl

Byn xyMmbicTa JIOKAIBIBI €Mec IEePUOATHI IMEKAPAJIBIK IMAPTTHl KAapallailblM JIOKAJIbIbBI €MeC
muddepennmanaer oneparop (6actel GediriHge uHBOMIONMsT 6ap) YIIIH CIEKTPIIK €CEeNTepIiH
6ip KJ1achbl KapacThIpbLLIbl. MyHIall ecenrep JIOKAJIBIbl €MeC KbLIYy OTKI3MINTIK TeHjey YIIiH
KOUBLIFAH ecenTep/li alHbIMAJbLIAp/Abl aXKbIPATy oJiciMeH Imemkenje mafiga 6Gosmazger. Bisz
Ly(z) = —y" (z) + ey’ (—z) = My (z), —1 < & < 1 Typingeri JokamaBl eMec Kapamnaibiv aud-
depeHnmaaablK TeHAeyre KOWBIIFaH eCeNTep/IiH CIeKTPJIIK KacueTTepiH 3eprreiimiz. MymHmars
A - cumekTpiik mapamerp, |g| < 1. MyHzmaii Tenmeynep Jokaabapl emec, ce6ebi ombiH y (—x)
TYpiHJeri apryMeHTTIH WHBOJIOTHUIHOHIBIK aybITKybl 6ap Myrreci 6omanst. y' (—1) + ay’ (1) = 0,

y(—1) — y (1) = 0-yoKaJIbIBl eMec IIeKapaJiblK IapT GOJbIT TabbLIaIB. BypbiH Oyl ecentiy,
a = —1 kesingeri gepbec Karmailbl KapacThIPbLIIbI. bBiz Oyn ecenrtin a # —1 Karnaiibia
KapacCThIPaAMBI3.

Biz 6yn ecenTin MeHITIKTI MOHIEPIHIH KapamalbIMIbLIBIK KPUTEPHUIH IS/ IIK: MEHITIKTI
MOHZIEp] KapamaitbiM (oJiajibl COHJIa TeK CoHja raHa, erep r = +/(1 —e¢) /(1 + ) upporuonas
6osica. Erep r wmppormonaa 6oJica, OHJA €CENTIiH MEHIMKTI MOHJIEPIHIH OapJIbIFbl KapalaibIM
GosaTbiabiH, 6ipak, Lo(—1,1)-1e cescis 6a3uc 60IMARTHIHBIH KOPCETTIK. T PAIMOHAJ CaH Ke3iHJe,
MEeHIIKT] koHe Kocbutran dyukiusiaap Lao(—1,1)-ne ce3ciz 6asuc Gonarbiabl (apHalibl TaHAL
AJIBIHFAH) J[OJIEJIJICHI€H.
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Tyitin cesnep: Jlokanbasl emec mudhepeHnnaIblK OIepaTop, CIEKTP, MEHIIKTI MOHIep, MEH-
mIiKTI MOHJIEPIIH eceJiiri, MeHImiKkTi (PyHKIMs, co3ci3 ba3uc.
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O kopHeBbIX QPYHKIMAX HEJOKAJIbHOT0O AuddepeHInajbHOr0 oreparopa BTOPOro MmopsaaKa
KPaeBbIMH YCJOBUSIMH IIEPUOINUECKOTO THUMA

B macrogmeil pabore paccMaTpUBAETCA OJUH KJIACC CIEKTPAJILHBIX 3aJa4 JJId HEJOKAJIHHOrO
0OBIKHOBEHHOIO JiudDepeHNUaJIbHOrO oneparopa (¢ MHBOJIONMEN B IJIABHONH 9aCTH) ¢ HEJOKAJIb-
HBIMHA KDPAEBBIMH YCJIOBUSMU. MEPUOJMIECKOrO THIA. TaKWe 3a7a9M BO3HUKAIOT TPH PENICHUH
METOJIOM Pa3ie/IeHnsl IEPEMEHHBIX 3a/1a4 JJIsl HEJIOKAJIBHOTO yPaBHEHUS TEIIONPOBOIHOCTH. MbI
UCCIIEYEeM CIIEKTPAJILHBIE CBOWCTBA 34241 JJIsl HEJIOKAJIHLHOTO OOBIKHOBEHHOTO U dDEpeHIAa b
Horo ypasuenns Ly (z) = —y" (z) + ey’ (—x) = Ay (x), —1 < & < 1. 3mech A - CUEKTPaIbHbBIIT
napamerp, |¢] < 1. Takue ypaBHEHUS HA3BIBAIOTCI HEJOKAJBHLIMA, TAK KAK OHHM COJIEPIKAT
wied y” (—x) ¢ MHBOJIOTUIMOHHBIM OTKJIOHEHHEM apryMmenta. KpaeBble yCJIOBUS SIBJISIOTCS
nesokanababiME Y (—1) + ay’ (1) = 0, y(—1) — y (1) = 0. Panee sra 3a1a4a 6bUIa UCCIEI0BAHA
JUIsL 9acTHOTO ciydas a = —1. Hamu paccmarpuaercs ciayuaii a # —1. Hamu mokasan kpurepuit
IIPOCTOTHI COOCTBEHHBIX 3HAYCHUN 33[a41: COOCTBEHHBIE 3HAYEHUS OYLyT MPOCTHIMU €CJIA U TOJBKO
ecian ancyio r = /(1 —¢) /(1 +€) siBasiercst UppaIyioHaIbHBIM. MBI HOKa3a/IH, YTO €CJIU TUCII0
7 UPPAIMOHAIBLHOE, TO COOCTBEHHBIE 3HAYEHUS 3aJa4M - BCE NMPOCTBHIE, 4 CHCTEMa COOCTBEHHBIX
byHKIMI 330240 SIBISETCS TOJHON W MUHHMAJBHON, HO He obpaldyeT Oe3ycjaoBHOro Oa3mca B
Ly(—1,1). Jast coyvasi panmoHAIBHBIX T JIOKA3aHO, UTO (CIENUATBHBIM OOPa30M BBIODAHHAS)
cucreMa cOGCTBEHHBIX U TIPUCOEMHEHHBIX (DyHKIMi obpasyer 6e3ycioBHbIil 6asuc B La(—1,1).

Kurouessbie cioBa: HesokanbHblil quddepeHnuaibHbIl 0lepaTop, CIIeKTP, COOCTBEHHOE 3HAYE-
HIe, KPATHOCTH COOCTBEHHBIX 3HAYECHUI, COOCTBEHHAA (DYHKIINAS, IPUCOeINHEHAAasT PYHKIHsI, 6e3-
YCJIOBHBIN Oa3uC.

1 Introduction

It is well known that many spectral problems for ordinary differential operators arise in
using the method of separation of variables (Fourier method) to solve initial-boundary value
problems for evolution equations. Due to the fact that spectral properties of self-adjoint
problems are well studied and the system of eigenvectors of self-adjoint operators forms an
orthonormal basis, researchers use self-adjoint boundary conditions to model various processes
of natural science. And in order to use more complex differential equations and/or more
complex boundary conditions in modeling, it is necessary to develop the spectral theory
of nonlocal operators. Such operators, as a rule, are non-self-adjoint. Therefore, nothing is
known about their spectral properties and additional research is required in each particular
case.

In this paper we consider one class of spectral problems for a nonlocal ordinary differential
operator (with involution in the main part) with nonlocal boundary conditions of periodic
type. Such problems arise when solving by the method of separation of variables for a nonlocal
heat equation.

For example, one can consider a problem of modeling thermal diffusion process which
is close to one described in the article of Cabada and Tojo [1], where the example is given
that describes a specific physical situation. We consider a closed metal wire (length 2) that
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is wrapped around a thin sheet of insulation material. Assume that the position x = 0 is
the most low in the wire, and the wire goes around the insulation up to the left to the point
x = —1 and to the right to the point x = 1. Since the wire is closed, then the points x = —1
and x = 1 physically coincide. It is assumed that the insulating layer is slightly permeable.
Hence, the value of the temperature u(z,t) (at point x of the wire at time ¢) on one side
of the insulation affects the diffusion process on the other side of the insulation, at point
(—x,t). For this reason, the standard heat equation is modified by adding an additional term
el (—x,t) to the "classical" term w,,(x,t). Thus, this process is described by the nonlocal
heat equation

(2, 1) — Uge (2, 1) + Uy (—2,t) = f(2,1), (1)

in Q= {(z,t): -1 <x<1,0<t<T} Here f(x,t) is a function of influence of an external
source; |e| < 1 is a coefficient depending on the permeability of the insulating layer ¢t = 0 is
an initial moment of time; ¢ = T is a final moment of time.

The initial temperature distribution in the wire is considered known:

u(z,0) =7(z), —1<z<l. (2)

Since the wire is closed, it is natural to assume that the temperature at the ends of wire is
the same:

u(—1,t) =u(l,t), 0<t<T. (3)

If we consider the case when an additional external thermal effect occurs at the junction
of the ends of the wire then boundary conditions of periodic type but non-self-adjoint, arise.
Consider the process, where the temperature flux at one end at each time t is proportional
to the rate of change of the average temperature over the entire wire. After non-singular
transformations such a boundary condition can be reduced to the form

ur(—1,t) +au,(1,1) =0, 0<t<T. (4)

Here a is a certain coefficient characterizing the proportionality of the temperature flux at
one end and the rate of change of the average temperature over the entire wire.

Such a mathematical model can serve as a direct justification of the need to consider the
nonlocal differential equations and the nonlocal boundary conditions for them. Our paper is
devoted to the investigation of spectral properties of the problem arising when solving the
formulated problem (1)—(4) by the method of separation of variables.

2 Materials and methods
3 Spectral problem

The use of the Fourier method for solving problem (1)—(4) leads to a spectral problem for
the operator £ given by the differential expression

Ly(x)=—y" () +ey (—x) =Xy (x), -1 <z <1, (5)
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and the boundary conditions of periodic type

{ Up(y) =y (=1) +ay' (1) =0, (6)
Uz (y) =y (=1) —y (1) =0,

where A is a spectral parameter.

Spectral problems for Eq. (5) were first considered, apparently, in [2], [3]. Cases of the
Dirichlet and Neumann boundarya = —1 were considered. Cases of the boundary conditions
when the system of root vectors forms a Riesz basis in Ly were singled out. Here we consider
a case a # —1. This case has not yet been investigated before.

Close spectral problems were considered in the works [4]- [9]. In [4] for Eq. (5) a problem
with the nonlocal conditions

was studied. It was proved that if r = /(1 —¢) /(1 +¢) is irrational, then the system of
eigenfunctions is complete and minimal in Ly(—1,1) but is not an unconditional basis. For
rational , a method for choosing associated functions for which the system of root functions
of the problem is the unconditional basis in Ls(—1,1) was indicated. A similar result was
proved in [5] for the case of the space L,(—1,1).

A problem for Eq. (5) with the nonlocal boundary conditions

y(=1) =By(1), y'(-1)=y'(1)

was investigated in [8] for the case of the space Lo(—1, 1) and in [9] for the space L,(—1,1). In
these papers it was also shown that the multiplicity of eigenvalues depends on the rationality
or irrationality of the number 7.

Since for Eq. (5) the spectral theory of boundary value problems is not yet fully formed,
then each separate case of boundary conditions must be considered separately. The spectral
problems with the nonlocal conditions (6) have not been previously considered. In this
connection, we note the works [10]- [18] in which close problems related with spectral
properties of nonlocal problems were considered.

4 General solution of equation (5)

To construct a general solution of equation (5), consider the Cauchy problem with data at
the interior point

Ly(z) = —y" (x) + ey’ (—z) = Ay () = f(z), -1 <z <1, (7)

y(0)=A4, ¢ (0) =B, (8)

with arbitrary constants A and B. Here f(x) € C[—1,1].
By direct calculation it is easy to show that this problem (7) to (8) is equivalent to the
integral equation

x

v (z) + /\/x k(z,)y(t)dt = A+ B — / k(o t) f(1)dt, ()

—T —T
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with the integral operator

/w k(o (t)dt = - _1a2 {oz/o (z + t)p(t)dt + /;(x - t)gp(t)dt.}

—x —x

Let us show that the integral equation (9) has a unique solution. For this, we introduce
a new function

Y (x) = y(a)e ™,

where p > 0 is a positive parameter which we will choose below.
Then for Y (z) we obtain the integral equation

Y (2) + )\/x b (2 )Y (8)dt = (), (10)

—T

where it is indicated

ki(z,t) = k(z,t)e Hlel=H]

(x) = (A + Br) e el — / k() fu()dt,

filw) = flx)e .
By I, denote the integral operator in the left-hand side of (10). Estimating its norm in
Ly(—1,1), we have

A 2u—1 —2p
) < AL VAL

— a2 [

Hence it is easy to see that for any A we always can choose a positive number g > 0 such
that the operator norm will be less than one: ||,]] < § < 1. Therefore, with this choice of y,
equation (10) has the unique solution Y (z) € Lo(—1,1).

That is why equation (9) has the unique solution y(z) € Lo(—1, 1). Further, it is easy to
justify by the classical formula that y(z) € C?*[—1,1] for f(z) € C[—1,1]. Thus, it is proved

Lemma 1. For any values of the parameter X\, of the constants A and B and for any
function f(z) € C[—1,1] the Cauchy problem (7) to (8) has the unique solution y(x) €
c2[-1,1].

As follows from this lemma, the general solution of equation (5) is two-parameter. As
fundamental solutions we choose two functions c(x,\) € C?[—1,1] and s(z,\) € C?[—1,1]
which are solutions of equation (5) and satisfy the Cauchy conditions:

c(0,)) =$'(0,A) =1, (0,\) =s(0,\) =0.

The existence of such solutions is ensured by Lemma 1.
By direct calculation it is easy to obtain these solutions explicitly:

X A
H2 = 1+¢

1
c(x,\) = cos (), s(xz,\) o sin (pox), T
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It is also easy to verify that the chosen solutions have the following symmetry properties:
c(—z,A) =c(z,N), s(—z,\)=—-s(x,)), —1<z<I1. (11)
Thus, the general solution of equation (5) has the form:
y(z,\) = Cie(x, N) + Cas(z, \) (12)

with arbitrary constants C and Cs.

5 Eigenvalues of problem (5) to (6)

First of all, it is easy to see that A = 0 is an eigenvalue of problem (5) to (6). The corresponding
eigenfunction has the form:

yo(z) = 1.

Consider a case A # 0. Satisfying the general solution (12) of equation (5) to the boundary
conditions (6), we get the linear system

C1U; (e(x, X)) + CoUy (s(z, A)) =0,

ChUs (c(z, X)) + CoUs (s(z, A))
Its determinant will be the characteristic determinant of the spectral problem (5) to (6):

Up (e(x,N) Uj (s(z,N)

A= ‘ Uz (c(w,A)) Us (s(w, )

)| _
p| =0

Therefore, taking into account the symmetry conditions (11), we calculate
AN =2(1—a)d(1,N)s(1,)) = 0. (14)

First of all from (14) we get that for a = 1 each number \ is the eigenvalue of problem
(5) to (6), regardless of the value of e. In this case system (13) has the form

CQS/(]., /\) == 0,
028(1, /\) =0.

Since |s'(1, A)| 4+ [s(1, A)| > 0, then it follows that Cy = 0. Thus, it is proved
Lemma 2. For a = 1 each number X\ is the eigenvalue of problem (5) to (6).
Corresponding eigenfunctions have the form

A
1—¢

y (@, A) = cos (i), iy = (15)

Now consider the case when a # 1. Then from (14) we obtain ¢/(1, A)s(1, \) = 0. Therefore,
taking into account the explicit form of fundamental solutions, we have

sin () sin (pe2) = 0.
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Thus, problem (5) to (6) has two series of the eigenvalues

A = (1 —e)(kr)?, k=0,1,2, ...,
(16)
A = (1 +e)(nm)?, n=1,2, ..

Lemma 3. Problem (5) to (6) has multiple eigenvalues if and only if the number r =
V(L —¢)/(1+¢) is rational.
Proof. Indeed, suppose that any two eigenvalues from different series coincide:

A =22,
This is equivalent to the equality

(1—¢)(kn)* = (14 ¢)(nm)>

That is, the coincidence of eigenvalues is possible if and only if for some kg, ng € N 7 = ng/ko
holds. That is, only if the value r is rational.

6 Spectral problem for irrational numbers r

Let r be an irrational number. Then, by virtue of Lemma 3, all eigenvalues of problem (5)
to (6) are simple and are given by the formulas (16). By direct calculation from (13) we get
that

y,(:)(x) = cos(kmz),
(17)
y$2(x) = (14 a)r cos(nm) cos (222) + (a — 1) sin (%) sin(n7z),

where £ =0,1,2,... and n = 1,2, ..., correspond to these eigenvalues.
Lemma 4. The system of functions (17) is complete and minimal in Lo(—1,1).
Proof Consider an arbitrary function f(z) orthogonal to system (17). Since it is

orthogonal to all functions y,gl)(x), k=0,1,2,..., then we have

11 f(z) cos(kmx)dx = /Ol{f () + f (_x)} cos(kmzx)dz.

But the system {cos(kmx), k = 0,1,2, ...} forms a basis in Ly(0, 1). Therefore, f(z)+ f(—z) =

0 holds almost everywhere on the interval (—1,1). That is, this function is odd.

Therefore, from the orthogonality of f(x) to all functions i (x), n=1,2,... we obtain

O—/ f(@)yP(z)dr = (a — 1) sm /f ) sin(nwx)dz

Since a # 1 and the number r is irrational, then from this we have

0= /_11 f(z)sin(nrz)dr = /Ol{f () — f (—a:’)} sin(nmx)dzx.
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But the system {sin(nmz),n = 1,2, ...} forms a basis in Ly(0, 1). Therefore, f(z)— f(—z) =0
holds almost everywhere on the interval (—1,1). That is, this function is even.

Thus, the function f(x) turns out to be simultaneously even and odd almost everywhere
on the interval (—1,1). Consequently, f(z) = 0 holds almost everywhere on the interval
(—1,1). This proves the completeness of the system of functions (17) in Ly(—1,1).

Since the system under consideration (17) is a system of eigenfunctions of an linear
operator, then it has a biorthogonal system consisting of eigenfunctions of an adjoint operator.
We will not dwell here on a specific form of this system and the adjoint operator. But from
the existence of the biorthogonal system follows the minimality of the system of functions
(17) in Ly(—1,1). Lemma is proved.

Now let us show that despite the fact that the system of functions (17) is complete and
minimal in Ly(—1,1), it does not form an unconditional basis. For this, we use the necessary
condition for the basis property from [19].

Lemma 5. ( [19], Th. 3.135, s. 219) Let {u;} be a closed and minimal system in o Hilbert
space H. If the system {u;} is an unconditional basis in H, then the strict inequality holds

limsup‘<i,M>‘ <1, (18)
j=oo |\ gl [l

where (-,-) is the inner products in H.
By virtue of this lemma, for the unconditional basis property in Ly(—1,1) of the system
of functions (17), it is necessary to satisfy the strict inequality

y(l) (2)
lim sup <%,%> <1 (19)
J—00 Hykj ynj

for all possible infinitely increasing subsequences k; and n;.
Calculating the norms of the eigenfunctions, we obtain

o] =
2
||yf12)H2 = (14 a)*? {1 + " sin (ﬂ> } + (1 — a)*sin® (T) .
2nm r r
Therefore,
1
ly @I = (1+ @+ (1= a)?sin? (“2) +0 (—) (20)
r n
for n — oo.

Calculate the inner products in Ly(—1,1):

1
2] =1l | costiona) o (%57 ) an

sin(k—%)ﬂ+0< 1 >

(k—%)w k+n

=|1+alr
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for k,n — oo.

According to the Dirichlet’s approximation theorem (see, example, [20], Th. 1A, p. 34),
for any irrational number o there exists an infinite set of irreducible fractions % (where p and
q are integers) such that

Choosing here @ = %, we get that there exist infinite subsequences of the natural numbers
k; and n; such that

1

.
;

1k

T nj

For these subsequences we will have

1
< —.

1

M

r

J

Therefore, there exists the limit

lim sin (kj —nt—J) T
oo (k=) w

= 1.

From this we have that the limit exists
: O @2\ _
Jim (ol )| = 11+ al

From (20) it is easily seen that the limit exists

lim ‘
Jj—00

Ui, ) = [1+alr.

Finally, substituting everything obtained in (21), we get

(1) (2)
w, oy
lim <%%> —1 (21)

for our chosen (according to the Dirichlet’s approximation theorem) infinitely increasing
subsequences k; and n;. That is, the necessary condition of the unconditional basis property
(3.3) is not satisfied. Thus, the following lemma is proved.

Lemma 6. Let r be irrational. Then the system of eigenfunctions (3.2) of the spectral
problem (1.8), (1.9) is complete and minimal but does not form an infinite basis in Lo(—1,1).

nj



38 On root functions of nonlocal . ..

7 Spectral problem for rational numbers r

Now consider the case when r is a rational number. Then there exist natural numbers ng
and ko such that » = 72. In this case, as follows from (16), problem (5) to (6) has an infinite
number of double eigenvalues

)\(1) _ )\(2)

koj — “'noj’

JjeN. (22)

As mentioned above, the spectral problems for Eq. (5) with periodic boundary conditions
(a = —1) were considered in [2], [3]. For periodic problems it was shown that root subspaces,
consisting of two eigenfunctions, correspond to the double eigenvalues. Here we consider the
case a # —1.

For a # —1, one eigenfunction and one associated function correspond to the double
eigenvalues (22).

By direct calculation it is easily shown that for the cases when 7 # 72, problem (5) to
(6) has the eigenfunctions

yp (x) = cos(krz),

(23)
y$2(2) = (14 a)r cos(nm) cos (222) + (a — 1) sin (%) sin(n7z),
where k =0,1,2,... and n = 1, 2, ..., except the cases when k = k7, n = ngj for some j.
And for those cases when 7 = Z—g (that is, when k = kyj, n = ngj for some j), problem

(5) to (6) has the eigenfunctions y,(ci)] (x) and the corresponding associated functions ,;1(x):
(1) (z) = kni
Ypoj (7) = cos (kojma),
(24)

Yngjn (T) = —m {sin(kojme) + 521(—1)mo ) sin (ngjmz) } .

Here we mean by the associated functions (according to M.V. Keldysh) solutions of the
inhomogeneous equation

Ly () = —ypy (@) +eypy (—2) = Ay (2) + 9V (@), —1 <z <1, (25)

satisfying the boundary conditions (6).
It is well known that the associated functions are not defined uniquely. Functions of the
form

~ 1
ykoj,1(11) = ykoj,l(x) + ijl(co)j(x)

for any constants C; are also associated functions of problem (5) to (6) corresponding to the
eigenvalues )\,(ct)J and the eigenfunctions y,(ﬂl))] (). "Problem of choosing associated functions"
is also well known. This problem is related to the fact that with one choice of the constants
C; the system can form a basis, and with other choice of these constants the system does
not form an unconditional basis. To avoid this problem, we fix such a choice of associated

functions by formula (24).
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Lemma 7. The system of eigen- and associated functions (23) to (24) of problem (5) to
(6) is complete and minimal in Ly(—1,1).

The proof is similar to the proof of Lemma 4. Consider an arbitrary function f(x)
orthogonal to the system of functions (23) to (24). Since it is orthogonal to all functions
y,(:)(x), k=0,1,2,..., then, as in the proof of Lemma 4, we have that f(x)+ f(—z) = 0 (that
is, this function is even) holds almost everywhere on the interval (—1,1).

Further, from the orthogonality of f(x) to all functions yi (x) from (23) we get that

/_1 f(z)sin(nrz)dx =0 (26)

for all n = 1,2, ..., except the cases when n = ngj for some j.

It follows from the oddness of f(x) that it is orthogonal to the functions x sin(kgjmz).
Therefore, from the orthogonality of f(z) to all functions yy,;1(z) from (24) we get that (26)
holds and for the cases when n = nyj for some j.

Since the system {sin(nmz),n = 1,2, ...} forms the basis in Ly(0, 1), then f(z)—f(—z) =0
(that is, this function is even) holds almost everywhere on the interval (—1,1).

Thus, the function f(z) turns out to be simultaneously even and odd almost everywhere
on the interval (—1,1). Consequently, f(z) = 0 holds almost everywhere on the interval
(—1,1). This proves the completeness of the system of functions (23) to (24) in La(—1,1).

Since the system under consideration (23) to (24) is the system of eigen- and associated
functions of a linear operator, then it has a biorthogonal system consisting of eigen- and
associated functions of an adjoint operator. We will not dwell here on a specific form of this
system and the adjoint operator. But from the existence of the biorthogonal system follows
the minimality of the system of functions (23) to (24) in Ly(—1,1). Lemma is proved.

Now let us prove that system (23) to (24) forms the unconditional basis in Ly(—1,1). For
this we need a biorthogonal system. It is a system of eigen- and associated functions of the
adjoint problem:

Lv(x)=—0"(x) +e" (—z) = v (x), —1<z<]1, (27)

Vi(v) = (=1) =o' (1) =0,
Vo(v)=(a—e)v(=1)+ (1 —as)v (1) =0.
Since the eigenvalues (16) of problem (5) to (6) are real, then they are also and the
eigenvalues of the adjoint problem (27) to (28). The system of eigen- and associated functions
of this problem can be constructed explicitly.
The eigenfunction
1 (1+4a) ,

vo(z) = 5 mr x (29)

(28)

corresponds to a zero eigenvalue.
By direct calculation it is easily shown that for those cases when % Z—g, problem (27) to
(28) has the eigenfunctions

v, (z) = cos(kmx) — lta,.2 (=D

1—a’ sin(rkm) SID(T’I{ZTFQ}),

(30)

sin( &
s

Dig) = —L 1 _sin(nre
Un (J?) —  1-a ( ) ( )’
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corresponding to the eigenvalues )\,(Cl) and /\22), where £k = 0,1,2,... and n = 1,2, ..., except
the cases when k = koj, n = ngj for some j.
And for the cases when = 72 (that is, when k = kqj, n = ngj for some j), problem (27)

to (28) has the eigenfunctions vfi)](a:) and the associated functions corresponding to them
Vko1 (7):
Uy () = —hoj (1 = ) Er (= )" sin (nojma)
(31)
Upgjo (@) = =122 (—1) (o Fko)ig cos(ngjma) + cos (kojma) .

When constructing this system of eigen- and associated functions of the adjoint problem,
we have normalized the eigenfunctions so that the biorthogonality conditions

(20 =1, 202y =1,

hold for all £ =0,1,2,... and n = 1,2, ..., except the cases when k = kqj, n = ngj for some j.

And for the cases when 7 = Z—g (that is, when k = koj, n = ngj for some j), we have

required the fulfilment of the biorthogonality conditions

1 2
<yl(co)j7vkoj,1> =1, <ynoj7lvvr(m)j> =L

Here by (-,-) we denote the inner product in Ly(—1,1).
For what follows, we need to estimate the norms of the constructed eigen- and associated
functions. By direct calculation we find

=1 Hyg)‘f = (1+a)*r? {1 + " sin (M—ﬂ> } + (1 — a)?sin? (E) :

2nm T T

1
"

2 2
(1)‘2:1 1+a r '
Uk + (1 —a) sin®(rkr)’

2
(1)":1_ 2 1 11 +<1—a)l .
Ynoj ;| Ynost (2kojm (1 — 8))2 {3 9 (k’oj)2 1+a) [’

2 1+a\”
@ " _ : 2 2.
Upoj ‘ = (2kojm(1 —¢)) (1—a> re;

= {1 : }
9 4

veial? =1+ ezt '
[ R0z | <1—a) 3 2(koj)’

Analyzing these explicit formulas, we see that only the asymptotic behavior of multipliers
sin (%) and sin(rkm) is not obvious. Let us show that these multipliers are strictly separated
from zero.

Lemma 8. If r is a rational number: r = Z—g, then for all values of the indices n and k,

when n # ngj and k # koj, the inequalities hold

sin (?)‘ > |sin (nlo) sin (%) ' . (32)

1 1
(1 —a)?sin? (”T—”) ’

o2 =

. |sin (rkm)| >
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The proof will be carried out by the method used in [7], [8], [9]. Since n # ngj, then the
representation n = ngj + ¢ holds for some j,i € N, 1 <7 < mng — 1. Therefore, 2 = kqj + ]fl—(zf

Since 7 # i, then this number & = koj + %)O—Z is not an integer. Consequently, we have:

. nmw . n . . ™ . . ™
‘sm (—)‘ = ‘sm (7r (— — k:()]))’ = |sin (—koz) sin (—) ‘ )
r r Mo Un
The second inequality from (32) is proved similarly. Since k # kqj, then the representation

k = koj + ¢ holds for some j,7 € N, 1 <17 < kg — 1. Therefore, rk = ngj + ’"”k—‘())’ Since 7 Z—g,

>

then this number 7k = ngj + % is not an integer. Hence we have:

sin lni > |sin T
ko V)T ko )|

Lemma 9.If r is a rational number: v = 72, then each of the systems (23) to (24) and
(29) to (31), after the normalization in Ly(—1,1), satisfies a Bessel type inequality and hence
forms an unconditional basis in La(—1,1).

Note that the system {¢;} has the Bessel property in a Hilbert space H, if there exists a
constant B > 0 such that the Bessel type inequality

Z|<f, eil* < BIfII”

|sin (rkm)| = [sin (7 (rk — noj))| =

holds for all elements f € H.

Proof By virtue of the above estimates of the eigen- and associated functions, to justify
the Bessel property, it suffices to prove the Bessel property of the following three type of
systems (j € N):

cos(jmx), sin(jmx); (33)

cos (@jﬁfl/’) , sin (@ij> ; (34)
Un Un

xcos(jmz), zsin(jrx). (35)

System (33) is orthonormal in Ly(—1,1) and hence satisfies the Bessel type inequality
with constant B = 1. The Bessel property of system (35) follows from the Bessel property of
system (33), because the multiplier x is bounded. Finally, system (34) is a Bessel system by
virtue of the following assertion proved in |7], [8], [9].

Lemma 10. (7], [8], [9]) Let {v;} be a sequence of complex numbers such that

sup [Im (y;) | < oo, sup Z 1 < o0. (36)
J >1
ji| Re(v;)—t| <1

Then each of the systems {sin(v;x)} and {cos(v;x)} is a Bessel system in Lo(—1,1).
System (34) satisfies condition (36) because

Im (v;) = 0, Z 1< 2mg+ 1.
j:|Re(y;)—t|<1

The unconditional basis property of the systems (23) to (24) and (29) to (31) follows from
the well-known Bari theorem [21]. The proof of Lemma 9 is complete.
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8 Formulation of main result

Combining all the results, we formulate them together in the form of one theorem.
Theorem Let a # —1. Then the spectral problem (5) to (6) has the following properties.
*x For a = 1 each number X will be an eigenvalue of problem (5) to (6). Corresponding
eigenfunctions are of the form (15).
x Problem (5) to (6) has double eigenvalues if and only if the number r = /(1 —¢) / (1 +¢)
1s rational.
x If v is an irrational number, then all eigenvalues of problem (5) to (6) are simple, and its
system of eigenfunctions (17) is complete and minimal but does not form an unconditional
basis in Lo(—1,1).
* If r is a rational number, then there exists an infinite countable subsequence of eigenvalues
of problem (5) to (6) which are double. The rest of the eigenvalues of problem (5) to (6) (there
are also infinite countable number of them) are simple. One eigenfunction and one associated
function correspond to each double eigenvalue. The system of eigen- and associated functions
(23) to (24) of problem (5) to (6) is complete and minimal in Lo(—1,1). The associated
functions of problem (5) to (6) can be chosen in such a special way that this special system
of eigen- and associated functions forms an unconditional basis in Ly(—1,1).

9 Conclusions

Thus, in this paper, we consider one class of spectral problems for a nonlocal ordinary
differential operator (with involution in the main part) with nonlocal boundary conditions
of periodic type. The main result of the work is to study the questions of the unconditional
basis property of the system of root vectors of the given differential operator. We have proved
the criterion for the simplicity of the eigenvalues of the problem. In addition, it have been
proved that the system of root vectors forms an unconditional basis only in the case of multiple
eigenvalues. Therefore, (in the case of multiple eigenvalues) this system of root vectors can be
further used to solve problems of nonlocal heat conduction with nonlocal boundary conditions
of periodic type.
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