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ON ROOT FUNCTIONS OF NONLOCAL DIFFERENTIAL
SECOND-ORDER OPERATOR WITH BOUNDARY CONDITIONS OF

PERIODIC TYPE
In this paper we consider one class of spectral problems for a nonlocal ordinary differential operator
(with involution in the main part) with nonlocal boundary conditions of periodic type. Such
problems arise when solving by the method of separation of variables for a nonlocal heat equation.
We investigate spectral properties of the problem for the nonlocal ordinary differential equation
Ly (x) ≡ −y′′ (x) + εy′′ (−x) = λy (x), −1 < x < 1. Here λ is a spectral parameter, |ε| < 1.
Such equations are called nonlocal because they have a term y′′ (−x) with involutional argument
deviation. Boundary conditions are nonlocal y′ (−1) + ay′ (1) = 0, y (−1) − y (1) = 0. Earlier
this problem has been investigated for the special case a = −1. We consider the case a 6= −1.
A criterion for simplicity of eigenvalues of the problem is proved: the eigenvalues will be simple
if and only if the number r =

√
(1− ε) / (1 + ε) is irrational. We show that if the number r is

irrational, then all the eigenvalues of the problem are simple, and the system of eigenfunctions of
the problem is complete and minimal but does not form an unconditional basis in L2(−1, 1). For
the case of rational numbers r, it is proved that a (chosen in a special way) system of eigen- and
associated functions forms an unconditional basis in L2(−1, 1).
Key words: Nonlocal differential operator, spectrum, eigenvalue, multiplicity of eigenvalues,
eigenfunction, associated function, unconditional basis.
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Шекаралық шарттары периодты типтi екiншi реттi локалдi емес дифференциалдық
оператордың түбiрлiк функциялары туралы

Бұл жұмыста локальды емес периодты шекаралық шартты қарапайым локальды емес
дифференциалды оператор (басты бөлiгiнде инволюция бар) үшiн спектрлiк есептердiң
бiр класы қарастырылды. Мұндай есептер локальды емес жылу өткiзгiштiк теңдеу үшiн
қойылған есептердi айнымалыларды ажырату әдiсiмен шешкенде пайда болады. Бiз
Ly (x) ≡ −y′′ (x) + εy′′ (−x) = λy (x), −1 < x < 1 түрiндегi локалды емес қарапайым диф-
ференциалдық теңдеуге қойылған есептердiң спектрлiк қасиеттерiн зерттеймiз. Мұндағы
λ - спектрлiк параметр, |ε| < 1. Мұндай теңдеулер локальды емес, себебi оның y′′ (−x)
түрiндегi аргументтiң инволютициондық ауытқуы бар мүшесi болады. y′ (−1) + ay′ (1) = 0,
y (−1) − y (1) = 0-локальды емес шекаралық шарт болып табылады. Бұрын бұл есептiң
a = −1 кезiндегi дербес жағдайы қарастырылды. Бiз бұл есептiң a 6= −1 жағдайын
қарастырамыз.

Бiз бұл есептiң меншiктi мәндерiнiң қарапайымдылық критериiн дәлелдедiк: меншiктi
мәндерi қарапайым болады сонда тек сонда ғана, егер r =

√
(1− ε) / (1 + ε) ирроционал

болса. Егер r ирроционал болса, онда есептiң меншiктi мәндерiнiң барлығы қарапайым
болатынын, бiрақ L2(−1, 1)-де сөзсiз базис болмайтынын көрсеттiк. r рационал сан кезiнде,
меншiктi және косылған функциялар L2(−1, 1)-де сөзсiз базис болатыны (арнайы таңдап
алынған) дәлелденген.

c© 2021 Al-Farabi Kazakh National University

https://orcid.org/0000-0001-6019-9515
https://orcid.org/0000-0001-6003-5342
https://orcid.org/0000-0001-8450-8191


30 On root functions of nonlocal . . .

Түйiн сөздер: Локальды емес дифференциалдық оператор, спектр, меншiктi мәндер, мен-
шiктi мәндердiң еселiгi, меншiктi функция, сөзсiз базис.

Г. Дилдабек1∗, М.Б. Иванова1,2, М.А. Садыбеков1
1Институт математики и математического моделирования, Казахстан, г. Алматы

2Южно-Казахстанская медицинская академия, Казахстан, г. Алматы
∗e-mail: dildabek@math.kz

О корневых функциях нелокального дифференциального оператора второго порядка с
краевыми условиями периодического типа

В настоящей работе рассматривается один класс спектральных задач для нелокального
обыкновенного дифференциального оператора (с инволюцией в главной части) с нелокаль-
ными краевыми условиями. периодического типа. Такие задачи возникают при решении
методом разделения переменных задач для нелокального уравнения теплопроводности. Мы
исследуем спектральные свойства задачи для нелокального обыкновенного дифференциаль-
ного уравнения Ly (x) ≡ −y′′ (x) + εy′′ (−x) = λy (x), −1 < x < 1. Здесь λ - спектральный
параметр, |ε| < 1. Такие уравнения называются нелокальными, так как они содержат
член y′′ (−x) с инволютиционным отклонением аргумента. Краевые условия являются
нелокальными y′ (−1) + ay′ (1) = 0, y (−1) − y (1) = 0. Ранее эта задача была исследована
для частного случая a = −1. Нами рассматривается случай a 6= −1. Нами доказан критерий
простоты собственных значений задачи: собственные значения будут простыми если и только
если число r =

√
(1− ε) / (1 + ε) является иррациональным. Мы показали, что если число

r иррациональное, то собственные значения задачи - все простые, а система собственных
функций задачи является полной и минимальной, но не образует безусловного базиса в
L2(−1, 1). Для случая рациональных r доказано, что (специальным образом выбранная)
система собственных и присоединенных функций образует безусловный базис в L2(−1, 1).

Ключевые слова: Нелокальный дифференциальный оператор, спектр, собственное значе-
ние, кратность собственных значений, собственная функция, присоединенная функция, без-
условный базис.

1 Introduction

It is well known that many spectral problems for ordinary differential operators arise in
using the method of separation of variables (Fourier method) to solve initial-boundary value
problems for evolution equations. Due to the fact that spectral properties of self-adjoint
problems are well studied and the system of eigenvectors of self-adjoint operators forms an
orthonormal basis, researchers use self-adjoint boundary conditions to model various processes
of natural science. And in order to use more complex differential equations and/or more
complex boundary conditions in modeling, it is necessary to develop the spectral theory
of nonlocal operators. Such operators, as a rule, are non-self-adjoint. Therefore, nothing is
known about their spectral properties and additional research is required in each particular
case.

In this paper we consider one class of spectral problems for a nonlocal ordinary differential
operator (with involution in the main part) with nonlocal boundary conditions of periodic
type. Such problems arise when solving by the method of separation of variables for a nonlocal
heat equation.

For example, one can consider a problem of modeling thermal diffusion process which
is close to one described in the article of Cabada and Tojo [1], where the example is given
that describes a specific physical situation. We consider a closed metal wire (length 2) that
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is wrapped around a thin sheet of insulation material. Assume that the position x = 0 is
the most low in the wire, and the wire goes around the insulation up to the left to the point
x = −1 and to the right to the point x = 1. Since the wire is closed, then the points x = −1
and x = 1 physically coincide. It is assumed that the insulating layer is slightly permeable.
Hence, the value of the temperature u(x, t) (at point x of the wire at time t) on one side
of the insulation affects the diffusion process on the other side of the insulation, at point
(−x, t). For this reason, the standard heat equation is modified by adding an additional term
εuxx(−x, t) to the "classical" term uxx(x, t). Thus, this process is described by the nonlocal
heat equation

ut(x, t)− uxx(x, t) + εuxx(−x, t) = f(x, t), (1)

in Ω = {(x, t) : −1 < x < 1, 0 < t < T}. Here f(x, t) is a function of influence of an external
source; |ε| < 1 is a coefficient depending on the permeability of the insulating layer t = 0 is
an initial moment of time; t = T is a final moment of time.

The initial temperature distribution in the wire is considered known:

u(x, 0) = τ(x), −1 ≤ x ≤ 1. (2)

Since the wire is closed, it is natural to assume that the temperature at the ends of wire is
the same:

u(−1, t) = u(1, t), 0 ≤ t ≤ T. (3)

If we consider the case when an additional external thermal effect occurs at the junction
of the ends of the wire then boundary conditions of periodic type but non-self-adjoint, arise.
Consider the process, where the temperature flux at one end at each time t is proportional
to the rate of change of the average temperature over the entire wire. After non-singular
transformations such a boundary condition can be reduced to the form

ux(−1, t) + aux(1, t) = 0, 0 ≤ t ≤ T. (4)

Here a is a certain coefficient characterizing the proportionality of the temperature flux at
one end and the rate of change of the average temperature over the entire wire.

Such a mathematical model can serve as a direct justification of the need to consider the
nonlocal differential equations and the nonlocal boundary conditions for them. Our paper is
devoted to the investigation of spectral properties of the problem arising when solving the
formulated problem (1)–(4) by the method of separation of variables.

2 Materials and methods

3 Spectral problem

The use of the Fourier method for solving problem (1)–(4) leads to a spectral problem for
the operator L given by the differential expression

Ly (x) ≡ −y′′ (x) + εy′′ (−x) = λy (x) , −1 < x < 1, (5)
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and the boundary conditions of periodic type{
U1 (y) ≡ y′ (−1) + ay′ (1) = 0,
U2 (y) ≡ y (−1)− y (1) = 0,

(6)

where λ is a spectral parameter.
Spectral problems for Eq. (5) were first considered, apparently, in [2], [3]. Cases of the

Dirichlet and Neumann boundarya = −1 were considered. Cases of the boundary conditions
when the system of root vectors forms a Riesz basis in L2 were singled out. Here we consider
a case a 6= −1. This case has not yet been investigated before.

Close spectral problems were considered in the works [4]- [9]. In [4] for Eq. (5) a problem
with the nonlocal conditions

y(−1) = 0, y′(−1) = y′(1)

was studied. It was proved that if r =
√

(1− ε) / (1 + ε) is irrational, then the system of
eigenfunctions is complete and minimal in L2(−1, 1) but is not an unconditional basis. For
rational r, a method for choosing associated functions for which the system of root functions
of the problem is the unconditional basis in L2(−1, 1) was indicated. A similar result was
proved in [5] for the case of the space Lp(−1, 1).

A problem for Eq. (5) with the nonlocal boundary conditions

y(−1) = βy(1), y′(−1) = y′(1)

was investigated in [8] for the case of the space L2(−1, 1) and in [9] for the space Lp(−1, 1). In
these papers it was also shown that the multiplicity of eigenvalues depends on the rationality
or irrationality of the number r.

Since for Eq. (5) the spectral theory of boundary value problems is not yet fully formed,
then each separate case of boundary conditions must be considered separately. The spectral
problems with the nonlocal conditions (6) have not been previously considered. In this
connection, we note the works [10]– [18] in which close problems related with spectral
properties of nonlocal problems were considered.

4 General solution of equation (5)

To construct a general solution of equation (5), consider the Cauchy problem with data at
the interior point

Ly (x) ≡ −y′′ (x) + εy′′ (−x)− λy (x) = f(x), −1 < x < 1, (7)

y (0) = A, y′ (0) = B, (8)

with arbitrary constants A and B. Here f(x) ∈ C[−1, 1].
By direct calculation it is easy to show that this problem (7) to (8) is equivalent to the

integral equation

y (x) + λ

∫ x

−x
k(x, t)y(t)dt = A+Bx−

∫ x

−x
k(x, t)f(t)dt, (9)
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with the integral operator∫ x

−x
k(x, t)ϕ(t)dt ≡ 1

1− α2

{
α

∫ 0

−x
(x+ t)ϕ(t)dt+

∫ x

0

(x− t)ϕ(t)dt.

}
Let us show that the integral equation (9) has a unique solution. For this, we introduce

a new function

Y (x) = y(x)e−µ|x|,

where µ > 0 is a positive parameter which we will choose below.
Then for Y (x) we obtain the integral equation

Y (x) + λ

∫ x

−x
k1(x, t)Y (t)dt = ψ(x), (10)

where it is indicated

k1(x, t) = k(x, t)e−µ[|x|−|t|],

ψ(x) = (A+Bx) e−µ|x| −
∫ x

−x
k1(x, t)f1(t)dt,

f1(x) = f(x)e−µ|x|.

By Iλ denote the integral operator in the left-hand side of (10). Estimating its norm in
L2(−1, 1), we have

‖Iλ‖ ≤
|λ|

1− α2

√
2µ− 1 + e−2µ

µ
.

Hence it is easy to see that for any λ we always can choose a positive number µ > 0 such
that the operator norm will be less than one: ‖Iλ‖ ≤ δ < 1. Therefore, with this choice of µ,
equation (10) has the unique solution Y (x) ∈ L2(−1, 1).

That is why equation (9) has the unique solution y(x) ∈ L2(−1, 1). Further, it is easy to
justify by the classical formula that y(x) ∈ C2[−1, 1] for f(x) ∈ C[−1, 1]. Thus, it is proved

Lemma 1. For any values of the parameter λ, of the constants A and B and for any
function f(x) ∈ C[−1, 1] the Cauchy problem (7) to (8) has the unique solution y(x) ∈
C2[−1, 1].

As follows from this lemma, the general solution of equation (5) is two-parameter. As
fundamental solutions we choose two functions c(x, λ) ∈ C2[−1, 1] and s(x, λ) ∈ C2[−1, 1]
which are solutions of equation (5) and satisfy the Cauchy conditions:

c(0, λ) = s′(0, λ) = 1, c′(0, λ) = s(0, λ) = 0.

The existence of such solutions is ensured by Lemma 1.
By direct calculation it is easy to obtain these solutions explicitly:

c(x, λ) = cos (µ1x) , s(x, λ) =
1

µ2

sin (µ2x) , µ1 =

√
λ

1− ε
, µ2 =

√
λ

1 + ε
.
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It is also easy to verify that the chosen solutions have the following symmetry properties:

c(−x, λ) = c(x, λ), s(−x, λ) = −s(x, λ), −1 ≤ x ≤ 1. (11)

Thus, the general solution of equation (5) has the form:

y (x, λ) = C1c(x, λ) + C2s(x, λ) (12)

with arbitrary constants C1 and C2.

5 Eigenvalues of problem (5) to (6)

First of all, it is easy to see that λ = 0 is an eigenvalue of problem (5) to (6). The corresponding
eigenfunction has the form:

y0(x) = 1.

Consider a case λ 6= 0. Satisfying the general solution (12) of equation (5) to the boundary
conditions (6), we get the linear system{

C1U1 (c(x, λ)) + C2U1 (s(x, λ)) = 0,
C1U2 (c(x, λ)) + C2U2 (s(x, λ)) = 0.

(13)

Its determinant will be the characteristic determinant of the spectral problem (5) to (6):

4(λ) ≡
∣∣∣∣ U1 (c(x, λ)) U1 (s(x, λ))
U2 (c(x, λ)) U2 (s(x, λ))

∣∣∣∣ = 0.

Therefore, taking into account the symmetry conditions (11), we calculate

4(λ) ≡ 2(1− a)c′(1, λ)s(1, λ) = 0. (14)

First of all from (14) we get that for a = 1 each number λ is the eigenvalue of problem
(5) to (6), regardless of the value of ε. In this case system (13) has the form{

C2s
′(1, λ) = 0,

C2s(1, λ) = 0.

Since |s′(1, λ)|+ |s(1, λ)| > 0, then it follows that C2 = 0. Thus, it is proved
Lemma 2. For a = 1 each number λ is the eigenvalue of problem (5) to (6).

Corresponding eigenfunctions have the form

y (x, λ) = cos (µ1x) , µ1 =

√
λ

1− ε
. (15)

Now consider the case when a 6= 1. Then from (14) we obtain c′(1, λ)s(1, λ) = 0. Therefore,
taking into account the explicit form of fundamental solutions, we have

sin (µ1) sin (µ2) = 0.
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Thus, problem (5) to (6) has two series of the eigenvalues

λ
(1)
k = (1− ε)(kπ)2, k = 0, 1, 2, ...,

λ
(2)
n = (1 + ε)(nπ)2, n = 1, 2, ....

(16)

Lemma 3. Problem (5) to (6) has multiple eigenvalues if and only if the number r =√
(1− ε) / (1 + ε) is rational.
Proof. Indeed, suppose that any two eigenvalues from different series coincide:

λ
(1)
k = λ(2)n .

This is equivalent to the equality

(1− ε)(kπ)2 = (1 + ε)(nπ)2.

That is, the coincidence of eigenvalues is possible if and only if for some k0, n0 ∈ N r = n0/k0
holds. That is, only if the value r is rational.

6 Spectral problem for irrational numbers r

Let r be an irrational number. Then, by virtue of Lemma 3, all eigenvalues of problem (5)
to (6) are simple and are given by the formulas (16). By direct calculation from (13) we get
that

y
(1)
k (x) = cos(kπx),

y
(2)
n (x) = (1 + a)r cos(nπ) cos

(
nπx
r

)
+ (a− 1) sin

(
nπ
r

)
sin(nπx),

(17)

where k = 0, 1, 2, ... and n = 1, 2, ..., correspond to these eigenvalues.
Lemma 4. The system of functions (17) is complete and minimal in L2(−1, 1).
Proof Consider an arbitrary function f(x) orthogonal to system (17). Since it is

orthogonal to all functions y(1)k (x), k = 0, 1, 2, ..., then we have

0 =

∫ 1

−1
f(x) cos(kπx)dx =

∫ 1

0

{
f (x) + f (−x)

}
cos(kπx)dx.

But the system {cos(kπx), k = 0, 1, 2, ...} forms a basis in L2(0, 1). Therefore, f(x)+f(−x) =
0 holds almost everywhere on the interval (−1, 1). That is, this function is odd.

Therefore, from the orthogonality of f(x) to all functions y(2)n (x), n = 1, 2, ... we obtain

0 =

∫ 1

−1
f(x)y(2)n (x)dx = (a− 1) sin

(nπ
r

)∫ 1

−1
f(x) sin(nπx)dx.

Since a 6= 1 and the number r is irrational, then from this we have

0 =

∫ 1

−1
f(x) sin(nπx)dx =

∫ 1

0

{
f (x)− f (−x)

}
sin(nπx)dx.
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But the system {sin(nπx), n = 1, 2, ...} forms a basis in L2(0, 1). Therefore, f(x)−f(−x) = 0
holds almost everywhere on the interval (−1, 1). That is, this function is even.

Thus, the function f(x) turns out to be simultaneously even and odd almost everywhere
on the interval (−1, 1). Consequently, f(x) = 0 holds almost everywhere on the interval
(−1, 1). This proves the completeness of the system of functions (17) in L2(−1, 1).

Since the system under consideration (17) is a system of eigenfunctions of an linear
operator, then it has a biorthogonal system consisting of eigenfunctions of an adjoint operator.
We will not dwell here on a specific form of this system and the adjoint operator. But from
the existence of the biorthogonal system follows the minimality of the system of functions
(17) in L2(−1, 1). Lemma is proved.

Now let us show that despite the fact that the system of functions (17) is complete and
minimal in L2(−1, 1), it does not form an unconditional basis. For this, we use the necessary
condition for the basis property from [19].

Lemma 5. ( [19], Th. 3.135, s. 219) Let {uj} be a closed and minimal system in a Hilbert
space H. If the system {uj} is an unconditional basis in H, then the strict inequality holds

lim sup
j→∞

∣∣∣∣〈 uj
‖uj‖

,
uj+1

‖uj+1‖

〉∣∣∣∣ < 1, (18)

where 〈·, ·〉 is the inner products in H.
By virtue of this lemma, for the unconditional basis property in L2(−1, 1) of the system

of functions (17), it is necessary to satisfy the strict inequality

lim sup
j→∞

∣∣∣∣∣∣
〈

y
(1)
kj∥∥∥y(1)kj

∥∥∥ , y
(2)
nj∥∥∥y(2)nj

∥∥∥
〉∣∣∣∣∣∣ < 1 (19)

for all possible infinitely increasing subsequences kj and nj.
Calculating the norms of the eigenfunctions, we obtain∥∥∥y(1)k

∥∥∥ = 1,

∥∥y(2)n

∥∥2 = (1 + a)2r2
{

1 +
r

2nπ
sin

(
2nπ

r

)}
+ (1− a)2 sin2

(nπ
r

)
.

Therefore,∥∥y(2)n

∥∥2 = (1 + a)2r2 + (1− a)2 sin2
(nπ
r

)
+O

(
1

n

)
(20)

for n→∞.
Calculate the inner products in L2(−1, 1):∣∣∣〈y(1)k , y(2)n

〉∣∣∣ = |1 + a|r
∣∣∣∣∫ 1

−1
cos(kπx) cos

(nπx
r

)
dx

∣∣∣∣
= |1 + a|r

∣∣∣∣∣sin
(
k − n

r

)
π(

k − n
r

)
π

+O

(
1

k + n

)∣∣∣∣∣
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for k, n→∞.
According to the Dirichlet’s approximation theorem (see, example, [20], Th. 1A, p. 34),

for any irrational number α there exists an infinite set of irreducible fractions p
q
(where p and

q are integers) such that∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
.

Choosing here α = 1
r
, we get that there exist infinite subsequences of the natural numbers

kj and nj such that∣∣∣∣1r − kj
nj

∣∣∣∣ < 1

n2
j

.

For these subsequences we will have∣∣∣kj − nj
r

∣∣∣ < 1

nj
.

Therefore, there exists the limit

lim
j→∞

sin
(
kj − nj

r

)
π(

kj − nj
r

)
π

= 1.

From this we have that the limit exists

lim
j→∞

∣∣∣〈y(1)kj
, y(2)nj

〉∣∣∣ = |1 + a|r.

From (20) it is easily seen that the limit exists

lim
j→∞

∥∥∥y(2)nj

∥∥∥ = |1 + a|r.

Finally, substituting everything obtained in (21), we get

lim
j→∞

∣∣∣∣∣∣
〈

y
(1)
kj∥∥∥y(1)kj

∥∥∥ , y
(2)
nj∥∥∥y(2)nj

∥∥∥
〉∣∣∣∣∣∣ = 1 (21)

for our chosen (according to the Dirichlet’s approximation theorem) infinitely increasing
subsequences kj and nj. That is, the necessary condition of the unconditional basis property
(3.3) is not satisfied. Thus, the following lemma is proved.

Lemma 6. Let r be irrational. Then the system of eigenfunctions (3.2) of the spectral
problem (1.8), (1.9) is complete and minimal but does not form an infinite basis in L2(−1, 1).
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7 Spectral problem for rational numbers r

Now consider the case when r is a rational number. Then there exist natural numbers n0

and k0 such that r = n0

k0
. In this case, as follows from (16), problem (5) to (6) has an infinite

number of double eigenvalues

λ
(1)
k0j

= λ
(2)
n0j
, j ∈ N. (22)

As mentioned above, the spectral problems for Eq. (5) with periodic boundary conditions
(a = −1) were considered in [2], [3]. For periodic problems it was shown that root subspaces,
consisting of two eigenfunctions, correspond to the double eigenvalues. Here we consider the
case a 6= −1.

For a 6= −1, one eigenfunction and one associated function correspond to the double
eigenvalues (22).

By direct calculation it is easily shown that for the cases when n
k
6= n0

k0
, problem (5) to

(6) has the eigenfunctions

y
(1)
k (x) = cos(kπx),

y
(2)
n (x) = (1 + a)r cos(nπ) cos

(
nπx
r

)
+ (a− 1) sin

(
nπ
r

)
sin(nπx),

(23)

where k = 0, 1, 2, ... and n = 1, 2, ..., except the cases when k = k0j, n = n0j for some j.
And for those cases when n

k
= n0

k0
(that is, when k = k0j, n = n0j for some j), problem

(5) to (6) has the eigenfunctions y(1)k0j
(x) and the corresponding associated functions yn0j,1(x):

y
(1)
k0j

(x) = cos (k0jπx) ,

yn0j,1(x) = − 1
2k0jπ(1−ε)

{
x sin(k0jπx) + 1−a

1+a
1
r
(−1)(n0+k0)j sin (n0jπx)

}
.

(24)

Here we mean by the associated functions (according to M.V. Keldysh) solutions of the
inhomogeneous equation

Lyk,1 (x) ≡ −y′′k,1 (x) + εy′′k,1 (−x) = λ
(1)
k yk,1 (x) + y

(1)
k (x) , −1 < x < 1, (25)

satisfying the boundary conditions (6).
It is well known that the associated functions are not defined uniquely. Functions of the

form

ỹk0j,1(x) = yk0j,1(x) + Cjy
(1)
k0j

(x)

for any constants Cj are also associated functions of problem (5) to (6) corresponding to the
eigenvalues λ(1)k0j and the eigenfunctions y(1)k0j

(x). "Problem of choosing associated functions"
is also well known. This problem is related to the fact that with one choice of the constants
Cj the system can form a basis, and with other choice of these constants the system does
not form an unconditional basis. To avoid this problem, we fix such a choice of associated
functions by formula (24).
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Lemma 7. The system of eigen- and associated functions (23) to (24) of problem (5) to
(6) is complete and minimal in L2(−1, 1).

The proof is similar to the proof of Lemma 4. Consider an arbitrary function f(x)
orthogonal to the system of functions (23) to (24). Since it is orthogonal to all functions
y
(1)
k (x), k = 0, 1, 2, ..., then, as in the proof of Lemma 4, we have that f(x)+f(−x) = 0 (that
is, this function is even) holds almost everywhere on the interval (−1, 1).

Further, from the orthogonality of f(x) to all functions y(2)n (x) from (23) we get that∫ 1

−1
f(x) sin(nπx)dx = 0 (26)

for all n = 1, 2, ..., except the cases when n = n0j for some j.
It follows from the oddness of f(x) that it is orthogonal to the functions x sin(k0jπx).

Therefore, from the orthogonality of f(x) to all functions yk0j,1(x) from (24) we get that (26)
holds and for the cases when n = n0j for some j.

Since the system {sin(nπx), n = 1, 2, ...} forms the basis in L2(0, 1), then f(x)−f(−x) = 0
(that is, this function is even) holds almost everywhere on the interval (−1, 1).

Thus, the function f(x) turns out to be simultaneously even and odd almost everywhere
on the interval (−1, 1). Consequently, f(x) = 0 holds almost everywhere on the interval
(−1, 1). This proves the completeness of the system of functions (23) to (24) in L2(−1, 1).

Since the system under consideration (23) to (24) is the system of eigen- and associated
functions of a linear operator, then it has a biorthogonal system consisting of eigen- and
associated functions of an adjoint operator. We will not dwell here on a specific form of this
system and the adjoint operator. But from the existence of the biorthogonal system follows
the minimality of the system of functions (23) to (24) in L2(−1, 1). Lemma is proved.

Now let us prove that system (23) to (24) forms the unconditional basis in L2(−1, 1). For
this we need a biorthogonal system. It is a system of eigen- and associated functions of the
adjoint problem:

L∗v (x) ≡ −v′′ (x) + εv′′ (−x) = λv (x) , −1 < x < 1, (27){
V1 (v) ≡ v′ (−1)− v′ (1) = 0,
V2 (v) ≡ (a− ε)v (−1) + (1− aε)v (1) = 0.

(28)

Since the eigenvalues (16) of problem (5) to (6) are real, then they are also and the
eigenvalues of the adjoint problem (27) to (28). The system of eigen- and associated functions
of this problem can be constructed explicitly.

The eigenfunction

v0(x) =
1

2
− (1 + a)

2(1− a)
r2x (29)

corresponds to a zero eigenvalue.
By direct calculation it is easily shown that for those cases when n

k
6= n0

k0
, problem (27) to

(28) has the eigenfunctions

v
(1)
k (x) = cos(kπx)− 1+a

1−ar
2 (−1)k
sin(rkπ)

sin(rkπx),

v
(2)
n (x) = − 1

1−a
1

sin(nπr )
sin(nπx),

(30)
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corresponding to the eigenvalues λ(1)k and λ(2)n , where k = 0, 1, 2, ... and n = 1, 2, ..., except
the cases when k = k0j, n = n0j for some j.

And for the cases when n
k

= n0

k0
(that is, when k = k0j, n = n0j for some j), problem (27)

to (28) has the eigenfunctions v(2)n0j
(x) and the associated functions corresponding to them

vk0j,1(x):

v
(2)
n0j

(x) = −k0jπ(1− ε)1+a
1−ar(−1)(n0+k0)j sin (n0jπx) ,

vk0j,1(x) = −1+a
1−ar

2(−1)(n0+k0)jx cos(n0jπx) + cos (k0jπx) .

(31)

When constructing this system of eigen- and associated functions of the adjoint problem,
we have normalized the eigenfunctions so that the biorthogonality conditions〈

y
(1)
k , v

(1)
k

〉
= 1,

〈
y(2)n , v(2)n

〉
= 1,

hold for all k = 0, 1, 2, ... and n = 1, 2, ..., except the cases when k = k0j, n = n0j for some j.
And for the cases when n

k
= n0

k0
(that is, when k = k0j, n = n0j for some j), we have

required the fulfilment of the biorthogonality conditions〈
y
(1)
k0j
, vk0j,1

〉
= 1,

〈
yn0j,1, v

(2)
n0j

〉
= 1.

Here by 〈·, ·〉 we denote the inner product in L2(−1, 1).
For what follows, we need to estimate the norms of the constructed eigen- and associated

functions. By direct calculation we find∥∥∥y(1)k

∥∥∥ = 1;
∥∥y(2)n

∥∥2 = (1 + a)2r2
{

1 +
r

2nπ
sin

(
2nπ

r

)}
+ (1− a)2 sin2

(nπ
r

)
;

∥∥∥v(1)k

∥∥∥2 = 1 +

(
1 + a

1− a

)2
r2

sin2 (rkπ)
;
∥∥v(2)n

∥∥2 =
1

(1− a)2
1

sin2
(
nπ
r

) ;

∥∥∥y(1)n0j

∥∥∥ = 1; ‖yn0j,1‖
2 =

1

(2k0jπ(1− ε))2

{
1

3
− 1

2 (k0j)
2 +

(
1− a
1 + a

)2
1

r2

}
;

∥∥∥v(2)n0j

∥∥∥2 = (2k0jπ(1− ε))2
(

1 + a

1− a

)2

r2;

‖vk0j,1‖
2 = 1 +

(
1 + a

1− a

)2

r4
{

1

3
+

1

2 (k0j)
2

}
.

Analyzing these explicit formulas, we see that only the asymptotic behavior of multipliers
sin
(
nπ
r

)
and sin(rkπ) is not obvious. Let us show that these multipliers are strictly separated

from zero.
Lemma 8. If r is a rational number: r = n0

k0
, then for all values of the indices n and k,

when n 6= n0j and k 6= k0j, the inequalities hold∣∣∣sin(nπ
r

)∣∣∣ ≥ ∣∣∣∣sin( π

n0

)∣∣∣∣ , |sin (rkπ)| ≥
∣∣∣∣sin( πk0

)∣∣∣∣ . (32)
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The proof will be carried out by the method used in [7], [8], [9]. Since n 6= n0j, then the
representation n = n0j + i holds for some j, i ∈ N, 1 ≤ i ≤ n0 − 1. Therefore, n

r
= k0j + k0i

n0
.

Since n
k
6= n0

k0
, then this number n

r
= k0j + k0i

n0
is not an integer. Consequently, we have:∣∣∣sin(nπ

r

)∣∣∣ =
∣∣∣sin(π (n

r
− k0j

))∣∣∣ =

∣∣∣∣sin( π

n0

k0i

)∣∣∣∣ ≥ ∣∣∣∣sin( π

n0

)∣∣∣∣ .
The second inequality from (32) is proved similarly. Since k 6= k0j, then the representation

k = k0j + i holds for some j, i ∈ N, 1 ≤ i ≤ k0 − 1. Therefore, rk = n0j + n0i
k0
. Since n

k
6= n0

k0
,

then this number rk = n0j + n0i
k0

is not an integer. Hence we have:

|sin (rkπ)| = |sin (π (rk − n0j))| =
∣∣∣∣sin( πk0n0i

)∣∣∣∣ ≥ ∣∣∣∣sin( πk0
)∣∣∣∣ .

Lemma 9.If r is a rational number: r = n0

k0
, then each of the systems (23) to (24) and

(29) to (31), after the normalization in L2(−1, 1), satisfies a Bessel type inequality and hence
forms an unconditional basis in L2(−1, 1).

Note that the system {ϕj} has the Bessel property in a Hilbert space H, if there exists a
constant B > 0 such that the Bessel type inequality∑

j

|〈f, ϕj〉|2 ≤ B ‖f‖2

holds for all elements f ∈ H.
Proof By virtue of the above estimates of the eigen- and associated functions, to justify

the Bessel property, it suffices to prove the Bessel property of the following three type of
systems (j ∈ N):

cos(jπx), sin(jπx); (33)

cos

(
k0
n0

jπx

)
, sin

(
k0
n0

jπx

)
; (34)

x cos(jπx), x sin(jπx). (35)
System (33) is orthonormal in L2(−1, 1) and hence satisfies the Bessel type inequality

with constant B = 1. The Bessel property of system (35) follows from the Bessel property of
system (33), because the multiplier x is bounded. Finally, system (34) is a Bessel system by
virtue of the following assertion proved in [7], [8], [9].

Lemma 10. ( [7], [8], [9]) Let {γj} be a sequence of complex numbers such that

sup
j
|Im (γj) | <∞, sup

t≥1

∑
j:|Re(γj)−t|≤1

1 <∞. (36)

Then each of the systems {sin(γjx)} and {cos(γjx)} is a Bessel system in L2(−1, 1).
System (34) satisfies condition (36) because

Im (γj) = 0,
∑

j:|Re(γj)−t|≤1
1 ≤ 2m0 + 1.

The unconditional basis property of the systems (23) to (24) and (29) to (31) follows from
the well-known Bari theorem [21]. The proof of Lemma 9 is complete.
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8 Formulation of main result

Combining all the results, we formulate them together in the form of one theorem.
Theorem Let a 6= −1. Then the spectral problem (5) to (6) has the following properties.

? For a = 1 each number λ will be an eigenvalue of problem (5) to (6). Corresponding
eigenfunctions are of the form (15).
? Problem (5) to (6) has double eigenvalues if and only if the number r =

√
(1− ε) / (1 + ε)

is rational.
? If r is an irrational number, then all eigenvalues of problem (5) to (6) are simple, and its
system of eigenfunctions (17) is complete and minimal but does not form an unconditional
basis in L2(−1, 1).
? If r is a rational number, then there exists an infinite countable subsequence of eigenvalues
of problem (5) to (6) which are double. The rest of the eigenvalues of problem (5) to (6) (there
are also infinite countable number of them) are simple. One eigenfunction and one associated
function correspond to each double eigenvalue. The system of eigen- and associated functions
(23) to (24) of problem (5) to (6) is complete and minimal in L2(−1, 1). The associated
functions of problem (5) to (6) can be chosen in such a special way that this special system
of eigen- and associated functions forms an unconditional basis in L2(−1, 1).

9 Conclusions

Thus, in this paper, we consider one class of spectral problems for a nonlocal ordinary
differential operator (with involution in the main part) with nonlocal boundary conditions
of periodic type. The main result of the work is to study the questions of the unconditional
basis property of the system of root vectors of the given differential operator. We have proved
the criterion for the simplicity of the eigenvalues of the problem. In addition, it have been
proved that the system of root vectors forms an unconditional basis only in the case of multiple
eigenvalues. Therefore, (in the case of multiple eigenvalues) this system of root vectors can be
further used to solve problems of nonlocal heat conduction with nonlocal boundary conditions
of periodic type.
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