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MATHEMATICAL MODEL OF THE EPIDEMIC PROPAGATION WITH LIMITED TIME
SPENT IN EXPOSED AND INFECTED COMPARTMENTS

A discrete nonlinear mathematical model of the epidemic development is proposed. It involves
dividing the population into eight compartments (susceptible, exposed, asymptomatic, easily
sick, hospitalized, critically ill, recovered and deceased). At the same time, the time spent in
compartments of exposed and all forms of patients is considered limited. Thus, any person who
has been in contact with an infected person, after a while, either gets sick or does not, leaving
the exposed compartment, and any patient, over time, for sure, either goes to the group of more
severe patients, dies or recovers. This deterministic model is presented in a discrete form and
simulates the quantitative change of various groups by day during the spread of the epidemic.
It is a transformation of the SEIR model. The article also presents a numerical analysis of the
proposed model. The development of the COVID epidemic in Kazakhstan is considered as an
example. At the end, forecasts are given based on preliminary data from the first months of
quarantine. Various parameters of the model when starting numerical experiments were found
based on computational experiments. At the same time, for a given deterministic one, the effect
of wavelike changes in the number of infected is observed.

Key words: epidemic, mathematical model, COVID.
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SQIMAEMUAHBIH JAMYBIHBIH KOHTAKT 2KOHE 2KYKTBIPTAH TOIITAPJIA
HTIEKTEVYJII YAKBIT BOJIATBIH MATEMATUKAJIBIK MOJEJII

DUUJIEMUSIIIBIK, JTaMY/IbIH JUCKPETTI eMeC ChI3bIKTHIK, MaTeMaTHKAJIbIK MoJie i yebiabFan. Our xa-
JILIKTBI CEri3 TONmKa 0eJIyl KaMTuAbl (ce3iMTall, KaHACIAJbl, ACUMITOMATUKAJIBIK, YKEHLI aypy,
aypyxaHara TYCKEH, ayblp HAYKAC, aiflbIKKaH KoHe KaiTbic 6osran). COHbIMEH KaTap, HAyKaCTap-
IIbIH, 6apJIbIK, (hOpMaIaPbIHIA YKoHEe OANIAHBIC TYPJIEPiHIe OTKI3IIreH YaKbIT MeKTey i OOJIBII ca-
nasaapl. Ochliaiiina, Ke3-KeJireH aJlaM YKYKThIPFaH aJlaMMeH Dailjanbicra 6osraHHaH Keifin, 6ipa3
YaKbITTaH KeiliH HeMece aybIpajibl, HeMece OafiaHbIC TOOBIHAH IIBIKIIANIBI YKOHE Ke3-KeJIleH I1a-
[IMEHT YaKbIT ©Te Kejle HEerypJIbIM aybIp NAlleHTTep TOObIHA Oapajibl, KAlThic 60JIaJlbl HEMece
KaJIIbIHA, KeJielli. By rerepMuHUp/IeHreH MOJIE/Ib JUCKPETTI TYPJE YCHIHBLIFAH XKOHE SIUIEMUs-
HBIH TapaJIybl Ke3iHe op TYPJI TONTAP/IbIH CAHIBIK 3repyin mmuTtanusiiaiae. Bysn SEIR monerin
kaHapry. Makagaja yChIHBLUIFAH MOJENIBIIH CAHJBIK TaJdaybl j1a Kesaripiaren. Kazakcrammarst
COVID »s1uieMusiChIHBIH, JIAMYbBI MBICAJI PeTiHJie KapacThipbliabl. COHBIH/IA, KADAHTHHHIH, AJIFa-
KB ailJIapbIHIAFbl aJIbIH-a/Ia MOJIIMETTep HerisiHe GosrKaMIap »Kacajaibl. EcenTik ToxKipube-
Jiep Heri3iHge CaHIbIK IKCIIEPUMEHTTEPl bacTaraH Ke3e MOJENbIIH op TYpJi mapaMerpJiepi Ta-
OBLIIBI, OJT MapaMeTpJep HEri3iHEeH 9p YPJIi TONTap apachblHIA aIaMIap aJMacylbl, HAyKaCTapIbIH,
aypy KYKTBIPY KbUIIaMILIKTApbIH cunartaiinasl. ConbiMen Oipre, Oepiiren merepMUHUPJICHTEH
VIIiH, >KYKTBIPFAHIap CAHBIHBIH, TOJKBIH TOPI3/Ai e3repyiHin ocepi Oaitka/a bl

Tvyiiia ce3aep: suujgemusi, MaTeMaTUKAJIBIK Mojiesib, COVID.
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MATEMATNYECKA4A MOJEJIb PASBUTNA IINAEMUN C
OI'PAHNYEHHBIM BPEMEHEM IIPEBBIBAHNA B I'PVYIIITAX
KOHTAKTHBIX I THOPUITNPOBAHHBIX

[Ipennaraercst JuCKpeTHAsT HEJIMHEHHAST MaTeMaTHIeCKas MOJeJIb pa3BuTust snugemun. OHa mpe/i-
noslaraeT pasbreHne MOMYJIANMA Ha BOCEMb TPy (BOCHIPUMMYMBBIE, KOHTAKTHBIE, GECCAMIITOM-
HbIE, JIErKO OOJIbHBIE, NOCIHUTAJIU3NPOBAHHBIE, KPUTUYECKUE OOJIbHBIE, BBI3JIOPOBEBIINE U yMeEp-
mme). Ipu 9T0M Bpems npebblBaHus B IPYINAX KOHTAKTHLIX U BCeX (POPM GOJIBHBIX CUUTACTCSH
orpaHmYeHHBbIM. Takum 00pa3om, JIOOOI [UesIOBEK, OBIBIINII B KOHTAKTE C 3apaKeHHBIM, Uepe3
HEKOTOPOE BpeMs OO 3a00JIeBaET, TUOO HET, MOKNIasl TPYIITY KOHTAKTHBIX, a JII000i OOIBHOMN co
BPEMEHEM HaBEPHSKA, JIMOO [EPEXOIUT B IPYIILY OoJiee TSKeJIbIil OOIbHBIX, YMUPAET HJIM BBI3JIO-
paBiuBaet. JlaHHAs JIeTEPMUHUCTUYIECKAS MOJIEJb [IPEJICTABJIEHA B JUCKPETHOM BUJIE U MOJIEJIUPY-
€T KOJIMYEeCTBEHHOE U3MEHEHNe PA3INIHbIX IPYIII IO JHSAM BO BPEMsI PACIPOCTPAHEHUST SIIH I M.
Omna asnsierca mogepunsanueit SEIR momenn. Tax ke B cTaThe MpeacTaBIeH IPOBEICHHBIA YUCICH-
HBII aHAJN3 [PEJJIOYKEHHON Mojien. B KadecTBe mpuMepa pacCMATPUBAECTCH PA3BUTHUE SIIHAIEMUAN
COVID B Kazaxcrane. B KoHIle Jai0Tcsi MPOTHO3bI, OJYYE€HHbIE HA OCHOBE IPEBAPUTEIBHBIX
JIAHHBIX IIEPBBIX MECSAIEB KapaHTUHA. Pa3nyHble mapaMeTpbl MOJIEIN [IPU 3aIyCKaX YHCJIEHHBIX
9KCIIEPUMEHTOB HAaXOJIMJINCh Ha OCHOBE BBIUMC/IUTE/IBHBIX SKCIIEPUMEHTOB. [Ipu 3TOM JjIs JTaHHOIM
JIeTepPMUHUPOBAHHOM HabomaeTcs 3p@deKT BOJHOOOPA3HBIX M3MEHEHUN KOJINYECTBa WHQMUIIPO-
BAHHBIX.

KurouyeBbie cioBa: snuueMus, MaTeMaTudeckas moueab, COVID.

1 Introduction

Modern mathematical models of epidemiology originate from the SIR model developed by
W. Kermak and A. Mackendrick about a hundred years ago [1]. It involves dividing the entire
population under consideration into susceptible, infected and recovered compartments. The
mathematical model of the process is a system of differential or difference equations describing
the change in the size of each of the indicated population groups. Its simplest modifications
are the SIRD model, which adds a compartment of deceased (deceased) |2] and the SIS model
of a disease to which immunity is not produced [3]. We also note the SIRS model, in which
the recovered lose their immunity over time [4].

The disadvantage of the described models is the lack of an incubation period, i.e. the
assumption that a person who had contact with a sick person immediately falls ill. As a
result, the SEIR model was proposed, to which the exposed compartment was added, see,
for example, [5]. Thus, in the process of infection, a person susceptible to the disease first
becomes exposed and only then becomes infected.

2 Literature review

The overwhelming majority of mathematical models of the development of the epidemic
that are currently used are modifications of the SEIR model. In particular, the SEIS model
differs from it only in that immunity is not produced [6]. The SEIRD model additionally
includes a group of deceased |7,8|, the MSEIR model additionally includes a group of people
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who are maternally derived immunity [9,10], and the SEIRHCD model includes a group
of hospitalized and critical patients. |8, 11]. In a number of cases, models with a variable
frequency of contacts are also considered [12|, which take into account the spread of the
epidemic over a certain territory and are described by partial differential equations [13],
models that take into account vaccination [14], as well as stochastic models in which the
transition from one group to another is a random event [3]. A significant number of models
are also given in monographs [15-19| devoted to mathematical models of epidemiology.

In these models, one significant circumstance is not taken into account, namely, the limited
stay in a compartment of exposed and different groups of patients. In particular, any person
who has been in contact with a patient, after some time, will probably either get sick or not
get sick, which means that he will certainly leave the exposed compartment. Anyone sick after
some time will probably either recover or die, i.e. will definitely leave the group of infected.

In this paper, we propose a discrete dynamic model of the development of the epidemic,
which assumes the division of the entire population into eight groups and considers the
limited stay in groups of contact and various forms of patients. Based on this model, some
calculations are made on the spread of the COVID-19 epidemic in Kazakhstan.

3 Method: Description of the model

A certain isolated population under the conditions of an epidemic is considered. The entire
population is divided into the following compartments:

S: susceptible (healthy, but potentially sick);

E: exposed (healthy, in contact with sick);

A: asymptomatic (infected, asymptomatic);

I: easily sick (mild patients undergoing treatment at home);
H': hospitalized (seriously ill, hospitalized);

C' critically il (patients in critical condition);

R: recovered (recovered, who have no signs of illness);

D: deceased.

Further through Sy, F) etc. denotes, respectively, the number of susceptible, exposed, etc.
at time k. In this case k is understood as the k-th day from the moment of the start of the
study. We do not take into account the natural fertility and mortality of the population, i.e.
we consider the sum N of all the above mentioned compartments of the population constant.

As with the SEIR models, it is assumed that the susceptible person becomes infected
by going through the exposed compartment stage. At the same time, only asymptomatic
and easily sick people are sources of infection. In addition, it is assumed that all who have
recovered are immunized, i.e. are not susceptible to disease.

When building a model, the following intergroup transitions are taken into account:

e cs: the exposed person may not get sick and become susceptible again;
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e ca: the exposed person may become asymptomatic;
e ci: the exposed person can become easily sick;

e ch: the exposed person may become hospitalized;

e ar: asymptomatic can become recovered;

e ae: asymptomatic can become easily sick;

e th: easily sick patient can be hospitalized;

e ic: easily sick patient can become critically ill;

e i1: easily sick patient can become recovered;

e hc: the hospitalized person may become critically ill;
e hr: a hospitalized person can recover;

e cr: the critically ill can recover;

e cd: critically ill patient may die;

e se: susceptible can become exposed.

Moreover, let’s indicate the proportions of exposed (e), passing over time into compartments
of susceptible (s), asymptomatic patients (a), etc. d.s, deq ete. All these quantities lie between
zero and one, and the obvious equalities 0.5 + 0cq + de; + den, = 1, etc. are fulfilled, i.e. any
exposed will either not get sick at all, or get sick in one form or another.

The fundamental difference between the proposed model and the known ones is the
assumption about the limited presence of a person in compartments of exposed and any form
of patients. Further we indicate etc. the time (number of days) of being in the compartment
of exposed (e), asymptomatic (a), etc. as ne, n,, and indicate the number of exposed on j-th
day since contact, the number of asymptomatic j-th day since the start of the disease, etc.
at time k as ei, ai, etc. Moreover, the following obvious equalities hold:

Ne Ng g Nhp Ne
E=> e, A=Y da, L= i, Hi=> I, Ce=Y d, (1)
j=1 J=1 J=1 J=1 J=1

the number of exposed Ej, at the moment of time £ is the sum of the number of exposed of
the first day, the second day, ..., n. day at this moment of time, etc.

Note that the exposed of the j-th (previous) day at the previous moment of time becomes
exposed of the (j + 1)-th (subsequent) day at the subsequent moment of time, i.e.

estli=el,j=1,...,n.— 1. (2)

Following equalities have a similar meaning

J+l s Y = ot S B .
g =ay, j=1,...,na—1; i3\ =4y, j=1,...,n; — 1; (3)
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My=hl, j=1. =1 i =c, j=1,. . n.— 1 (4)

In accordance with the assumptions made earlier, the number of susceptible at the next
moment in time is equal to the number of susceptible at the previous moment of time minus
newly exposed at this moment of time plus the number of uninfected exposed of the last day
at the previous moment in time:

Sk41 = Sk — €1 T Oesi” (5)

The number of exposed at the next moment in time is equal to the number of exposed at
the previous moment in time plus the number of new exposed at this moment in time minus
the number of exposed on the last day at the previous moment in time, i.e. who have left the
exposed compartment at the moment:

Ek-i—l = Ek + eiﬂ — GZE. (6)

Similarly, we have the following equalities

Apsr = A + g — 4. (7)
Doy = I + ik, — i (8)
Hyyr = Hi + by — Iy (9)
Chr1 = Cr + jq — . (10)

Further, the number of recovered at the next time point is equal to the number of recovered
at the previous point in time plus all recovered patients of the last day of illness at this point
in time:

RkJrl = Rk + 5(17"@2& + 5'”“22‘1 + 5hrhzh + 507“0:0- (11>

Finally, the number of deaths at the next time point is the sum of the number of deaths at
the previous time point and the number of new deaths, i.e. critically ill of the last day of
illness at this point in time who died:

Dk+1 = D}, + dpqc + k™. (12)

It remains to indicate the formulas for calculating the number of exposed and various
patients on the first day at the next moment in time. In particular, the number of exposed
on the first day, i.e. newly exposed at a later point in time is determined by the formula

Sk

epr1 = (BaAr + Bily) N

(13)
where (3,, [;— positive constants characterizing the infectivity of asymptomatic and easily
sick. The number of asymptomatic first day, i.e. newly ill at the next time point is equal to
the number of those who left the exposed compartment at the previous time point who fell
ill in an asymptomatic form, i.e.

a,{:_’_l - 5€a626' (14)
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The number of easily sick on the first day, i.e. newly ill at the next time point is equal to the
number of those who left the exposed and asymptomatic compartments at the previous time
point and fell ill in a mild form, i.e.

7;11:—1—1 = (5eieze + (Sai(lza. (15)
The following formulas have a similar meaning
Bjiq = Oenepe + diniy’ (16)

Cha1 = Onchj + Sicip. (17)

Relations (1) — (17) with the corresponding initial conditions constitute a mathematical
model of the considered process.

4 Results and Analysis

As an example, we consider one variant of the COVID epidemic forecasting in Kazakhstan for
the period from August 1, 2020. The model parameters were selected partly on the basis of
official data from the Ministry of Health of the Republic of Kazakhstan, partly on the basis
of expert assessments of epidemiologists. The following figures show graphs of the change
over time in the total number of all cases, recovered and deaths, as well as daily increases in
these characteristics.
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Fig. 1: The total number of cases, recovered and deaths.

The obtained results of the numerical analysis are of a preliminary nature, since the
information used to determine the parameters of the model is insufficiently complete and
not accurate enough. Nevertheless, the established qualitative results indicate the sufficient
effectiveness of the proposed model. In particular, we see that initially the epidemic develops
exponentially. Then its growth slows down, reaches its maximum, declines and in the end the
epidemic ends. It is characteristic that the development of the epidemic is not monotonous,
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Fig. 2: Daily increase in the total number of cases, recovered and deaths.

but wavy, which is consistent with the known data on the development of the epidemic both
in Kazakhstan and in other countries. In addition, it was found that the introduction of a
stricter quarantine, which is associated with a decrease in infection rates g, and ; leads to
a shift in the time of the peak of the epidemic. Thus, the resulting model, subject to its
more accurate identification, can be used for long-term forecasting of the development of
epidemics.

5 Discussion and conclusion

The results of numerical analysis confirm the viability of the proposed model. In particular,
comparing the results obtained with the actual development of COVID-19 in Kazakhstan
in late summer and autumn 2020, a relatively high forecast accuracy can be noted. An
important circumstance is the wave-like development of the epidemic obtained as a result of
model calculations, which is not typical for most of the currently used mathematical models
of epidemiology.

The model can be refined by taking into account the random nature of its individual
parameters. This applies primarily to the time spent in the compartments. In addition, we
can remove the restriction on the isolation of the population, considering the course of the
epidemic in the system of regions, we can take into account the possibility of virus mutation,
the emergence of a vaccine, the spread of the epidemic over a certain territory, etc.
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