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MATHEMATICAL MODEL OF THE EPIDEMIC PROPAGATION WITH LIMITED TIME
SPENT IN EXPOSED AND INFECTED COMPARTMENTS

A discrete nonlinear mathematical model of the epidemic development is proposed. It involves
dividing the population into eight compartments (susceptible, exposed, asymptomatic, easily
sick, hospitalized, critically ill, recovered and deceased). At the same time, the time spent in
compartments of exposed and all forms of patients is considered limited. Thus, any person who
has been in contact with an infected person, after a while, either gets sick or does not, leaving
the exposed compartment, and any patient, over time, for sure, either goes to the group of more
severe patients, dies or recovers. This deterministic model is presented in a discrete form and
simulates the quantitative change of various groups by day during the spread of the epidemic.
It is a transformation of the SEIR model. The article also presents a numerical analysis of the
proposed model. The development of the COVID epidemic in Kazakhstan is considered as an
example. At the end, forecasts are given based on preliminary data from the first months of
quarantine. Various parameters of the model when starting numerical experiments were found
based on computational experiments. At the same time, for a given deterministic one, the effect
of wavelike changes in the number of infected is observed.
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ЭПИДЕМИЯНЫҢ ДАМУЫНЫҢ КОНТАКТ ЖӘНЕ ЖҰҚТЫРҒАН ТОПТАРДА

ШЕКТЕУЛI УАҚЫТ БОЛАТЫН МАТЕМАТИКАЛЫҚ МОДЕЛI

Эпидемиялық дамудың дискреттi емес сызықтық математикалық моделi ұсынылған. Ол ха-
лықты сегiз топқа бөлудi қамтиды (сезiмтал, жанаспалы, асимптоматикалық, жеңiл ауру,
ауруханаға түскен, ауыр науқас, айыққан және қайтыс болған). Сонымен қатар, науқастар-
дың барлық формаларында және байланыс түрлерiнде өткiзiлген уақыт шектеулi болып са-
налады. Осылайша, кез-келген адам жұқтырған адаммен байланыста болғаннан кейiн, бiраз
уақыттан кейiн немесе ауырады, немесе байланыс тобынан шықпайды және кез-келген па-
циент уақыт өте келе неғұрлым ауыр пациенттер тобына барады, қайтыс болады немесе
қалпына келедi. Бұл детерминирленген модель дискреттi түрде ұсынылған және эпидемия-
ның таралуы кезiнде әр түрлi топтардың сандық згеруiн имитациялайды. Бұл SEIR моделiн
жаңарту. Мақалада ұсынылған модельдiң сандық талдауы да келтiрiлген. Қазақстандағы
COVID эпидемиясының дамуы мысал ретiнде қарастырылады. Соңында, карантиннiң алға-
шқы айларындағы алдын-ала мәлiметтер негiзiнде болжамдар жасалады. Есептiк тәжiрибе-
лер негiзiнде сандық эксперименттердi бастаған кезде модельдiң әр түрлi параметрлерi та-
былды, ол параметрлер негiзiнен әр үрлi топтар арасында адамдар алмасуды, науқастардың
ауру жұқтыру жылдамдықтарын сипаттайды. Сонымен бiрге, берiлген детерминирленген
үшiн, жұқтырғандар санының толқын тәрiздi өзгеруiнiң әсерi байқалады.
Түйiн сөздер: эпидемия, математикалық модель, COVID.
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МАТЕМАТИЧЕСКАЯ МОДЕЛЬ РАЗВИТИЯ ЭПИДЕМИИ С
ОГРАНИЧЕННЫМ ВРЕМЕНЕМ ПРЕБЫВАНИЯ В ГРУППАХ

КОНТАКТНЫХ И ИНФИЦИРОВАННЫХ

Предлагается дискретная нелинейная математическая модель развития эпидемии. Она пред-
полагает разбиение популяции на восемь групп (восприимчивые, контактные, бессимптом-
ные, легко больные, госпитализированные, критические больные, выздоровевшие и умер-
шие). При этом время пребывания в группах контактных и всех форм больных считается
ограниченным. Таким образом, любой человек, бывший в контакте с зараженным, через
некоторое время либо заболевает, либо нет, покидая группу контактных, а любой больной со
временем наверняка, либо переходит в группу более тяжелый больных, умирает или выздо-
равливает. Данная детерминистическая модель представлена в дискретном виде и моделиру-
ет количественное изменение различных групп по дням во время распространения эпидемии.
Она является модернизацией SEIR модели. Так же в статье представлен проведенный числен-
ный анализ предложенной модели. В качестве примера рассматривается развитие эпидемии
COVID в Казахстане. В конце даются прогнозы, полученные на основе предварительных
данных первых месяцев карантина. Различные параметры модели при запусках численных
экспериментов находились на основе вычислительных экспериментов. При этом для данной
детерминированной наблюдается эффект волнообразных изменений количества инфициро-
ванных.
Ключевые слова: эпидемия, математическая модель, COVID.

1 Introduction

Modern mathematical models of epidemiology originate from the SIR model developed by
W. Kermak and A. Mackendrick about a hundred years ago [1]. It involves dividing the entire
population under consideration into susceptible, infected and recovered compartments. The
mathematical model of the process is a system of differential or difference equations describing
the change in the size of each of the indicated population groups. Its simplest modifications
are the SIRD model, which adds a compartment of deceased (deceased) [2] and the SIS model
of a disease to which immunity is not produced [3]. We also note the SIRS model, in which
the recovered lose their immunity over time [4].

The disadvantage of the described models is the lack of an incubation period, i.e. the
assumption that a person who had contact with a sick person immediately falls ill. As a
result, the SEIR model was proposed, to which the exposed compartment was added, see,
for example, [5]. Thus, in the process of infection, a person susceptible to the disease first
becomes exposed and only then becomes infected.

2 Literature review

The overwhelming majority of mathematical models of the development of the epidemic
that are currently used are modifications of the SEIR model. In particular, the SEIS model
differs from it only in that immunity is not produced [6]. The SEIRD model additionally
includes a group of deceased [7,8], the MSEIR model additionally includes a group of people
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who are maternally derived immunity [9, 10], and the SEIRHCD model includes a group
of hospitalized and critical patients. [8, 11]. In a number of cases, models with a variable
frequency of contacts are also considered [12], which take into account the spread of the
epidemic over a certain territory and are described by partial differential equations [13],
models that take into account vaccination [14], as well as stochastic models in which the
transition from one group to another is a random event [3]. A significant number of models
are also given in monographs [15–19] devoted to mathematical models of epidemiology.

In these models, one significant circumstance is not taken into account, namely, the limited
stay in a compartment of exposed and different groups of patients. In particular, any person
who has been in contact with a patient, after some time, will probably either get sick or not
get sick, which means that he will certainly leave the exposed compartment. Anyone sick after
some time will probably either recover or die, i.e. will definitely leave the group of infected.

In this paper, we propose a discrete dynamic model of the development of the epidemic,
which assumes the division of the entire population into eight groups and considers the
limited stay in groups of contact and various forms of patients. Based on this model, some
calculations are made on the spread of the COVID-19 epidemic in Kazakhstan.

3 Method: Description of the model

A certain isolated population under the conditions of an epidemic is considered. The entire
population is divided into the following compartments:

S: susceptible (healthy, but potentially sick);

E: exposed (healthy, in contact with sick);

A: asymptomatic (infected, asymptomatic);

I: easily sick (mild patients undergoing treatment at home);

H: hospitalized (seriously ill, hospitalized);

C: critically il (patients in critical condition);

R: recovered (recovered, who have no signs of illness);

D: deceased.

Further through Sk, Ek etc. denotes, respectively, the number of susceptible, exposed, etc.
at time k. In this case k is understood as the k-th day from the moment of the start of the
study. We do not take into account the natural fertility and mortality of the population, i.e.
we consider the sum N of all the above mentioned compartments of the population constant.

As with the SEIR models, it is assumed that the susceptible person becomes infected
by going through the exposed compartment stage. At the same time, only asymptomatic
and easily sick people are sources of infection. In addition, it is assumed that all who have
recovered are immunized, i.e. are not susceptible to disease.

When building a model, the following intergroup transitions are taken into account:

• es: the exposed person may not get sick and become susceptible again;
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• ea: the exposed person may become asymptomatic;

• ei: the exposed person can become easily sick;

• eh: the exposed person may become hospitalized;

• ar: asymptomatic can become recovered;

• ae: asymptomatic can become easily sick;

• ih: easily sick patient can be hospitalized;

• ic: easily sick patient can become critically ill;

• ir: easily sick patient can become recovered;

• hc: the hospitalized person may become critically ill;

• hr: a hospitalized person can recover;

• cr: the critically ill can recover;

• cd: critically ill patient may die;

• se: susceptible can become exposed.

Moreover, let’s indicate the proportions of exposed (e), passing over time into compartments
of susceptible (s), asymptomatic patients (a), etc. δes, δea etc. All these quantities lie between
zero and one, and the obvious equalities δes + δea + δei + δeh = 1, etc. are fulfilled, i.e. any
exposed will either not get sick at all, or get sick in one form or another.

The fundamental difference between the proposed model and the known ones is the
assumption about the limited presence of a person in compartments of exposed and any form
of patients. Further we indicate etc. the time (number of days) of being in the compartment
of exposed (e), asymptomatic (a), etc. as ne, na, and indicate the number of exposed on j-th
day since contact, the number of asymptomatic j-th day since the start of the disease, etc.
at time k as ejk, a

j
k, etc. Moreover, the following obvious equalities hold:

Ek =
ne∑
j=1

ejk, Ak =
na∑
j=1

ajk, Ik =

ni∑
j=1

ijk, Hk =

nh∑
j=1

hjk, Ck =
nc∑
j=1

cjk, (1)

the number of exposed Ek at the moment of time k is the sum of the number of exposed of
the first day, the second day, . . . , ne day at this moment of time, etc.

Note that the exposed of the j-th (previous) day at the previous moment of time becomes
exposed of the (j + 1)-th (subsequent) day at the subsequent moment of time, i.e.

ej+1
k+1 = ejk, j = 1, . . . , ne − 1. (2)

Following equalities have a similar meaning

aj+1
k+1 = ajk, j = 1, . . . , na − 1; ij+1

k+1 = ijk, j = 1, . . . , ni − 1; (3)
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hj+1
k+1 = hjk, j = 1, . . . , nh − 1; cj+1

k+1 = cjk, j = 1, . . . , nc − 1; (4)

In accordance with the assumptions made earlier, the number of susceptible at the next
moment in time is equal to the number of susceptible at the previous moment of time minus
newly exposed at this moment of time plus the number of uninfected exposed of the last day
at the previous moment in time:

Sk+1 = Sk − e1k+1 + δese
ne
k . (5)

The number of exposed at the next moment in time is equal to the number of exposed at
the previous moment in time plus the number of new exposed at this moment in time minus
the number of exposed on the last day at the previous moment in time, i.e. who have left the
exposed compartment at the moment:

Ek+1 = Ek + e1k+1 − ene
k . (6)

Similarly, we have the following equalities

Ak+1 = Ak + a1k+1 − ana
k . (7)

Ik+1 = Ik + i1k+1 − ini
k . (8)

Hk+1 = Hk + h1k+1 − hnh
k . (9)

Ck+1 = Ck + c1k+1 − cnc
k . (10)

Further, the number of recovered at the next time point is equal to the number of recovered
at the previous point in time plus all recovered patients of the last day of illness at this point
in time:

Rk+1 = Rk + δara
na
k + δiri

ni
k + δhrh

nh
k + δcrc

nc
k . (11)

Finally, the number of deaths at the next time point is the sum of the number of deaths at
the previous time point and the number of new deaths, i.e. critically ill of the last day of
illness at this point in time who died:

Dk+1 = Dk + δcdc+ knc . (12)

It remains to indicate the formulas for calculating the number of exposed and various
patients on the first day at the next moment in time. In particular, the number of exposed
on the first day, i.e. newly exposed at a later point in time is determined by the formula

e1k+1 = (βaAk + βiIk)
Sk

N
, (13)

where βa, βi– positive constants characterizing the infectivity of asymptomatic and easily
sick. The number of asymptomatic first day, i.e. newly ill at the next time point is equal to
the number of those who left the exposed compartment at the previous time point who fell
ill in an asymptomatic form, i.e.

a1k+1 = δeae
ne
k . (14)
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The number of easily sick on the first day, i.e. newly ill at the next time point is equal to the
number of those who left the exposed and asymptomatic compartments at the previous time
point and fell ill in a mild form, i.e.

i1k+1 = δeie
ne
k + δaia

na
k . (15)

The following formulas have a similar meaning

h1k+1 = δehe
ne
k + δihi

ni
k . (16)

c1k+1 = δhch
ne
k + δici

ni
k . (17)

Relations (1) – (17) with the corresponding initial conditions constitute a mathematical
model of the considered process.

4 Results and Analysis

As an example, we consider one variant of the COVID epidemic forecasting in Kazakhstan for
the period from August 1, 2020. The model parameters were selected partly on the basis of
official data from the Ministry of Health of the Republic of Kazakhstan, partly on the basis
of expert assessments of epidemiologists. The following figures show graphs of the change
over time in the total number of all cases, recovered and deaths, as well as daily increases in
these characteristics.

Fig. 1: The total number of cases, recovered and deaths.

The obtained results of the numerical analysis are of a preliminary nature, since the
information used to determine the parameters of the model is insufficiently complete and
not accurate enough. Nevertheless, the established qualitative results indicate the sufficient
effectiveness of the proposed model. In particular, we see that initially the epidemic develops
exponentially. Then its growth slows down, reaches its maximum, declines and in the end the
epidemic ends. It is characteristic that the development of the epidemic is not monotonous,
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Fig. 2: Daily increase in the total number of cases, recovered and deaths.

but wavy, which is consistent with the known data on the development of the epidemic both
in Kazakhstan and in other countries. In addition, it was found that the introduction of a
stricter quarantine, which is associated with a decrease in infection rates βa and βi leads to
a shift in the time of the peak of the epidemic. Thus, the resulting model, subject to its
more accurate identification, can be used for long-term forecasting of the development of
epidemics.

5 Discussion and conclusion

The results of numerical analysis confirm the viability of the proposed model. In particular,
comparing the results obtained with the actual development of COVID-19 in Kazakhstan
in late summer and autumn 2020, a relatively high forecast accuracy can be noted. An
important circumstance is the wave-like development of the epidemic obtained as a result of
model calculations, which is not typical for most of the currently used mathematical models
of epidemiology.

The model can be refined by taking into account the random nature of its individual
parameters. This applies primarily to the time spent in the compartments. In addition, we
can remove the restriction on the isolation of the population, considering the course of the
epidemic in the system of regions, we can take into account the possibility of virus mutation,
the emergence of a vaccine, the spread of the epidemic over a certain territory, etc.
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