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A BRIEF OVERVIEW OF MODERN RESEARCH OF THE PROCESSES
DYNAMICS IN UNSTEADY WATER FLOWS USING THE SHALLOW

WATER EQUATION

In hydrodynamics (hydraulics), there are numerous approaches to solving the problem of water flow
dynamics control in river beds and channels, while the results of each methods differ, and estimates
of their reliability do not always exist. The shallow water equation (or Saint-Venant’s equations in
one-dimensional form) is often used by hydraulic engineers in their practice. Its apparent simplicity
and ability to describe well enough the behavior of rivers and flows make it a useful tool for many
applications, such as the regulation of navigable rivers and irrigation networks in agriculture. The
main direction of research in the field of numeric problems described by Saint-Venant equations is
the development of numerical methods of computation implemented on super-powerful computers.
Development of numerical models of surface water dynamics in the shallow water approximation
is actively advancing during the recent years.
The article is devoted to a review of mathematical studies of the dynamics of processes in unsteady
water flows using differential equations, as well as an assessment of these approaches from the point
of view of the model’s reflection of real processes.
The work is aimed at analyzing different approaches to modeling the dynamics of processes in non-
stationary water flows. The objectives of the study include the analysis of scientific publications
with different approaches to modeling the shallow water equation, taking into account factors,
parameters, and modeling methods.
Key words: Saint-Venant equations, dynamics of unsteady river currents, numerical methods, a
system of hyperbolic differential equations, high-performance computing.
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Таяз су теңдеуiн қолдана отырып, тұрақсыз су ағындарындағы процестердiң
динамикасы туралы қазiргi заманғы зерттеулерге қысқаша шолу

Гидродинамикада (гидравликада) өзен арналары мен арналардағы су ағынының динамика-
сын басқару мәселесiн шешудiң көптеген тәсiлдерi бар, әр әдiстiң нәтижелерi әр түрлi және
олардың сенiмдiлiгiн бағалау әрдайым бола бермейдi. Таяз су теңдеуiн (немесе Сен-Венан
теңдеулерiн бiр өлшемдi түрде) гидротехниктер өз тәжiрибесiнде жиi қолданады. Оның
айқын қарапайымдылығы мен өзендер мен ағындардың мiнез-құлқын жақсы сипаттау
қабiлетi оны көптеген қосымшалар үшiн пайдалы құралға айналдырады, мысалы, өзендердi
тасымалдау және ауыл шаруашылығындағы суару желiлерiн реттеу. Сен-Венан теңде-
улерiмен сипатталған Сандық есептер саласындағы зерттеулердiң негiзгi бағыты ауыр
компьютерлерде жүзеге асырылатын сандық есептеу әдiстерiн жасау болып табылады.
Соңғы жылдары таяз суға жақындағанда жер үстi суларының динамикасының сандық
модельдерiн жасау белсендi түрде дамып келедi.
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Мақалада дифференциалдық теңдеулердi қолдана отырып, стационарлық емес су ағын-
дарындағы процестердiң динамикасын математикалық зерттеулерге шолу, сонымен қатар
нақты процестер моделiнде шағылысу тұрғысынан осы тәсiлдердi бағалау қарастырылған.
Жұмыс стационарлық емес су ағындарындағы процестердiң динамикасын модельдеудiң
әртүрлi тәсiлдерiн талдауға бағытталған. Зерттеу мiндеттерiне факторларды, параметрлердi
және модельдеу әдiстерiн ескере отырып, таяз су теңдеуiн модельдеудiң әртүрлi тәсiлдерi
бар ғылыми жарияланымдарды талдау кiредi.

Түйiн сөздер: Сен-Венан теңдеулерi, тұрақты емес өзен ағыстарының динамикасы, сандық
әдiстер, гиперболалық дифференциалдық теңдеулер жүйесi, жоғары өнiмдi есептеулер
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Краткий обзор современных исследований динамики процессов в неустановившихся

течениях воды с помощью уравнения мелкой воды

В гидродинамике (гидравлике) сосуществуют многочисленные подходы к решению про-
блемы управления динамикой водных потоков в руслах рек и каналов, причем результаты
по различным методам различаются, а оценки их достоверности не всегда существу-
ют. Уравнение мелкой воды (или уравнения Сен-Венана в одномерной форме) часто
используется инженер-гидротехниками в своей практике. Их кажущаяся простота и их
способность достаточно хорошо описывать поведение рек и водотоков делают их полезным
инструментом для многих приложений, таких как, например, регулирование судоходных
рек и ирригационных сетей в сельском хозяйстве. Основным направлением исследований в
области расчета задач, описанных уравнениями Сен-Венана, является разработка численных
методов расчета, реализуемых с помощью использования сверхмощных вычислительных
компьютеров. Разработки численных моделей динамики поверхностных вод в приближении
мелкой воды, активно развиваются в последние годы усилиями исследователей.
Статья посвящена к обзору математических исследований динамики процессов в неустано-
вившихся течениях воды с помощью дифференциальных уравнений, а также оценке этих
подходов с точки зрения отражения моделью реальных процессов.
Целью исследования является анализ различных подходов к моделированию динамики
процессов в неустановившихся течениях воды. К задачам исследования относится анализ
научных публикаций с различными подходами к моделированию уравнения мелкой воды
учтенных факторов, параметров и методов моделирования.

Ключевые слова: Уравнения Сен-Венана, динамика неустановившихся течений реки, чис-
ленные методы, система гиперболических дифференциальных уравнений, высокопроизводи-
тельные вычисления.

1 Introduction

Shallow water equations are widely used to model water flow in rivers or lakes. The equations
of shallow water, the Saint-Venant equation was proposed in 1871 and the numerical solution
of problems for these equations is an urgent problem in computational mathematics. The
flows under the surface of the fluid are described by the Saint-Venant equations, which are
a system of hyperbolic partial differential equations. This problem includes such important
tasks as the problem of floods on rivers, the problem of daily and weekly regulation of
productivity, and problems of the outflowing wave upon a dam break. For practical purposes,
it is very important to have more accurate methods for solving this problem. Many problems
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require methods for calculating the flow of water taking into account various physical factors.
For example, floods in the coastal zone by storm surge, flooding in rivers, the study of the
interfluve problem. Application of the shallow water equation makes it possible to simplify
the algorithm, as well as optimize the use of computational resources, which are considered
to be a very important factor in solving applied problems and developing software systems.

2 Material and methods

2.1 The formulation of the problem

Two-dimensional Saint-Venant equations are used to control surface flow. These equations
are derived from the continuity and momentum equations by depth averaging. The main
assumptions used in the derivation of two-dimensional Saint-Venant equations are the
distribution of hydrostatic pressure and a small channel slope. The defining equations for
the surface flow are obtained as follows:
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Here h(x, y, t) is the height of the liquid level above the bottom profile S(x, y), ux and uy
are velocity components, g is gravity, fx and fy are external force components. For flows over
a flat surface in the absence of external forces, the system of equations (1) – (3) is called the
Saint-Venant equations.

There are a huge number of different methods for solving the shallow Saint-Venant
equation. Among them, one can single out such methods as the method of difference schemes,
the finite element method, the finite volume method, and others. Until now, the development
of new approximation methods for solving such problems continues. This is due to the
relevance of the tasks being considered. The main difficulty here consists in obtaining a
stable difference solution to the problem. Such problems require special quality requirements
for the numerical methods used.

In this paper, we give a brief overview of modern research on the properties of unsteady
flows in open flows described by the system of Saint-Venant equations.

3 Literature review

In [1], an implicit difference grid scheme was developed for solving one-dimensional equations
of unsteady motion in open rivers, which allows calculations with a large time step. This
was especially important for the calculation of floods in large rivers when the duration of
the computation process took a long time. The compiled program was widely used at the



A.S. Berdyshev, Zh.A. Abdiramanov et al. 173

State Hydrological Institute of the USSR for numerical experiments and calculations of real
objects. However, there is no description of the algorithm and no substantiation of the finite
difference method itself.

In [2], a new and simpler mathematical statement of the problem of the wave motion along
a dry channel was proposed. In this work, it is assumed that the Saint-Venant equations are
valid for the entire flow region, and the boundary conditions at the wavefront are obtained by
equating the front propagation speed and the flow velocity near the wave head. A difference
scheme is also proposed, which allows to make calculations of unsteady motion in complex
channel systems.

In [3], a method was developed for calculating the motion of discontinuous waves in non-
prismatic channels with allowance for friction. The numerical method of calculation was based
on the representation of Saint-Venant’s equations in the so-called form of conservation laws
and the use of a difference scheme with recalculation (on the motion of a discontinuous wave
without isolating a discontinuity). To calculate the propagation of the discontinuous wave
with the separation of the discontinuity, a movable grid was used, which is constructed in
the course of the calculation. The application of this method showed satisfactory agreement
with the experimental results.

Since 1970, grid methods have begun to appear for numerically solving Saint-Venant’s
equations. The disadvantage of the method was that the calculation required a large amount
of computer time, although the computers of that time worked much slower than modern
computers.

The work [4] is devoted to the problem of exponential stability of the solution of nonlinear
Saint-Venant equations in differential form. The paper considers the general case when the
system includes both arbitrary friction and a slope that changes in space, which leads to
non-uniform steady states. An explicit quadratic Lyapunov function is constructed and local
exponential stability is proved.

The monograph [5] is devoted to studying mixed problems for one-dimensional hyperbolic
systems in canonical form. Lyapunov stability has been established in various functional
spaces, in particular, numerous practical models have been considered. The issues of numerical
solutions of mixed problems are not considered.

In [6], a discrete Lyapunov function was constructed for the telegraph equation, and its
decrease was proved. The use of this approach for the San Venant equation is associated with
difficulties that require additional research.

For hyperbolic equations with dissipative boundary conditions the exponential stability
of the solution is established by the Lyapunov function method in [7].

In [8], algebraic conditions for the exponential stability of the solution of mixed problems
of the linear Saint-Venant equations were obtained. The issue of the numerical solution is not
considered.

For one-dimensional quasilinear hyperbolic systems, the problems with dissipative
boundary conditions that guarantee the exponential stability of classical solutions are
considered in [9]. There is no research on numerical calculations.

In [10], using the Volterra transform of the second kind and the invertible Fredholm
transform, optimal control problems for general linear hyperbolic Qsystems are investigated.

We note that the papers [4], [5], [7]- [10] study questions related to the theoretical aspects
of the solvability and stability of mixed problems for hyperbolic systems and do not consider
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the issues of constructing numerical solutions and the stability of difference schemes. In the
numerical calculation of mixed problems for hyperbolic systems, the reason for the above is
that the dimension of the system of linear algebraic equations increases with the size of the
considered region. This leads to an unreasonably large volume of computations and requires
the involvement of high-performance computing technology.

In [11], the authors propose a class of difference schemes for hyperbolic systems of
equations that have several notation forms. The stability of the proposed difference schemes
is investigated using the energy integrals technique. However, their application for the study
of exponential stability is a rather difficult task.

The work [12] is devoted to the study of initial-boundary value problems for a class
of quasilinear hyperbolic systems. An a priori estimate is obtained for the solution of the
problem by the method of the integral of energy. The issues of the numerical solution and its
stability are not studied.

In [13], a linear initial-boundary value problem of the dynamics of fluid-saturated porous
media, described by three elastic parameters in a reversible hydrodynamic approximation,
was numerically solved. The adequacy of the computational model remains open.

The book [14] is devoted to methods for solving high-order algebraic systems arising from
the application of the grid method to problems of mathematical physics. Along with the
iterative methods, which are most widely used in computational practice for solving these
problems, direct methods are also presented.

Much progress has been made in the study of general properties and patterns of modeling
shallow water in systems with open channels and reservoirs. However, the study of specific
hydrological objects is important. Modelling river systems and reservoirs seem to be the most
difficult. As positive examples of constructing multidimensional models for this kind of object,
let us point out the lower course of the river Bureya beyond the Bureyskaya hydroelectric
power station [15], as well as others.

Formally, Saint-Venant’s equations are valid for the case when the height of the liquid
level is much less than the characteristic dimensions of the problem, and the bottom shape
is a sufficiently smooth function. The problem with a discontinuous bottom profile is being
intensively studied in the framework of the Saint-Venant approximation. The construction
of analytical solutions for such problems is rather laborious even for plane one-dimensional
flows, and there is extensive literature on these issues [16]- [17]. In [18], the author constructed
analytical solutions of the Saint-Venant equations for five characteristic problems of the decay
of a discontinuity over a step and bottom step. Analytical solutions are used both to assess
situations that arise in several practical cases and to test numerical algorithms aimed at
calculating such flows. Such currents include, in particular, currents on the thresholds of
sluices, currents when sluice gates are destroyed or when overflowing through the crest of a
dam, currents in narrow sea straits with a complex bottom shape, and some other problems.

Difficulties in the numerical simulation of such flows are caused by the appearance of
a complex configuration of discontinuities in the solution, caused both by the nonlinearity
of the equations themselves and by the discontinuous profile of the underlying surface. In
[19], methods are proposed to overcome these problems by isolating the discontinuity line
associated with the position of the boundary of a step or step and modifying the system of
Saint Venant equations. Using this approach makes the numerical algorithm more accurate,
but deprives it of homogeneity. The latter is not always convenient when calculating practical
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problems. Another way to solve this problem is to use two-layer shallow water equations [20].
The construction of a homogeneous numerical algorithm for solving problems with bottom
discontinuities also seems to be relevant.

In [21], based on the laws of conservation of momentum and mass of a liquid, a derivation
of the hypothetical equations of Saint-Venant from the Navier-Stokes equations is given.
When deriving the Saint-Venant equations, the authors used assumptions (the length of the
watercourse is much greater than its depth and width, the channel is elongated in a straight
line, the bottom slope is small, etc.).

In [22], a central-upwind difference scheme was proposed using the two-dimensional central
approach developed in [23]. The simplest semi-discrete schemes in the center upstream were
obtained in [24]- [26].

In the monograph [27], effective algorithms for the numerical solution of shallow water
equations are presented, of which, first of all, it is necessary to single out the method of decay
of an arbitrary discontinuity taking into account the discontinuous bottom, which ensures
the existence and uniqueness of the solution for any initial data, as well as an algorithm
for the equations of viscous shallow water and non-negative ”algorithm for equations in the
diffusion approximation. Thoroughly performed testing demonstrates the high accuracy and
reliability of the proposed methods.

In [28], explicit schemes of the Lax-Wendroff and McCormack type of the second order of
approximation were used for the numerical solution of the shallow water equations.

A numerical algorithm for solving problems of regulated shallow water equations on
unstructured grids is described in [29]. In the above equations of shallow water, a small
value of τ is introduced, which is called the regularization parameter or temporal smoothing
and has the dimension of time. The terms with the coefficient τ are the regulating additives to
the shallow water equations. The algorithm was tested and it was shown that the constructed
solution is in good agreement with the calculation results by known numerical methods.

In [30], [31], a new numerical method for solving the shallow water equation was proposed
and tested, based on the smoothing of the classical equations over some small time intervals.
This procedure leads to the appearance of regulatory additives that ensure the stability of the
numerical solution of the problem in a wide range of Froude numbers. This makes it possible
to use the non-difference grid approximation and apply the flow form of equations without
linearizing the original equations, which ensures strict observance of the laws of conservation
of mass and momentum in the absence of external forces. This algorithm is universal for
solving a wide class of problems; it allows us to calculate flows with moving areas of a dry
bottom. Moreover, it is easy to parallelize and generalize to unstructured mesh design.

For the numerical solution of the shallow water equation, the regularization method, that
is, the averaging of the equations over a certain short time interval was used in [32].

In [33], the long-range transport of impurities along the length of the Novosibirsk reservoir
is investigated. The computational algorithm is constructed using a different scheme of
increased accuracy for modeling the long-range transport of an impurity. It should be taken
into account that a formal increase in the order of approximation of the advective terms of the
equations leads to oscillating numerical solutions in the аеаs of sharp changes in gradients.
This led to the development of numerical algorithms adaptive to the solution, which ensure
the preservation of the monotonicity of the numerical solution and a high order of numerical
schemes.
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In [34], using the Lax-Wendroff scheme as an example, it is shown that the main reason
for the reduction inaccuracy to the first order and below in TVD schemes in the calculation is
that monotonicity in them is achieved by using various minimax procedures, which reduce the
smoothness of the difference operators of flows. It is shown theoretically and numerically that
the Lax-Wendroff scheme, in contrast to its TVD modifications, approximates the ε-Hugoniot
conditions with the second-order at the fronts of non-stationary shock waves. At the same
time, the Lax-Wendroff scheme reduces the order of convergence to the first one in the vicinity
of the gradient catastrophe point, in which the discontinuous wave is formed. This decrease
in convergence happens because this scheme, in contrast to compact schemes with artificial
viscosities of a higher order of divergence, has only the first order of weak approximation on
discontinuous solutions. In [35], 2D models of the Saint-Venant equation are considered and
devoted to surface flows to study the behavior of flood waves. Open channel water runoff in
drains and rivers is considered taking into account the fact that such streams are a source
of flash floods. To predict and simulate flood behavior, a mathematical model is established
with initial and boundary conditions using Saint-Venant 2D PDEs. The corresponding model
is then discretized using an explicit finite difference method and implemented in MATLAB.
For testing and implementation, a simple rectangular flow channel is considered.

4 Results and discussion

The first computer algorithms are associated with the processing of techniques and methods
used in manual calculations. The method of explicit difference schemes and the method
of characteristics require too much computation, especially when modeling river flows in
channels with a complex form for calculations, which makes them ineffective. We should note
that the shortcomings in the computations of riverbeds with complex shapes were associated
with significant difficulties and led to an unjustifiably large amount of calculations.

The transition to the study of unsteady currents in rivers in the presence of discontinuities
(discontinuous waves) naturally brings about new difficulties. Therefore, the first works in
this direction were associated with several very serious simplifying assumptions.

Despite the successes achieved in this area, several problems remain unresolved here,
and little attention is paid to some areas of research. Thus, in essence, there are no reliable
methods for calculating the movement of the flood flow when the water leaves the floodplain.
Methods for calculating the propagation of discontinuous waves in channels with a complex
outline, especially natural ones, need further improvement.

However, the simulation results are useful for understanding and predicting flood behavior
at various locations in the flow channel at specific time intervals and can be useful in early
warning systems for floods. It is also suggested that combining an underground flow with a
surface flow may provide an even better approximation for flood circulation.

5 Conclusion

It can be said that the problem of unsteady movement in open channels has been and is
being given great attention, as evidenced by several reports and scientific works. But, the
theory of unsteady flows in eroded channels is being developed relatively poorly. The issues
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of exponential stability of numerical solutions to the shallow water equation, etc., have not
been investigated.

In conclusion, we note that this review does not claim to be complete and deals mainly
with the computational aspects of various problems for the Saint-Venant equation.
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