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ON UNIVERSAL NUMBERINGS OF GENERALIZED
COMPUTABLE FAMILIES

The paper investigates the existence of universal generalized computable
numberings of different families of sets and total functions. It was known that for
every set A such that (' < A, a finite family S of A-c.e. sets has an A-computable
universal numbering if and only if S contains the least set under inclusion.
This criterion is not true for infinite families. For any set A there is an infinite
A-computable family of sets S without the least element under inclusion that has
an A-computable universal numbering; moreover, the family S consist pairwise
not intersect sets. If A is a hyperimmune set, then an A-computable family F of
total functions which contains at least two elements has no A-computable universal
numbering. And if deg;(A) is hyperimmune-free, then every A-computable finite
family of total functions has an A-computable universal numbering. In this paper
for a hyperimmune-free oracle A we show that any infinite effectively discrete family
of sets has an A-computable universal numbering. It is also proved that if family
S contains all co-finite sets and does not contain at least one co-c.e. set, then this
family has no ¥, '-computable universal numbering.

Key words: Rogers semilattice, Ershov hierarchy, computable numbering, universal
numbering, hyperimmune set.
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2KanmbutaHFaH ecenTeJaiMal yilipJjepaiH, yHuBepcaJ HeMipJieyJiepi

By sKyMbIcTa KUBIHIAD/IAH KOHE OapJIbIK, KepJie aHbIKTaIraH (bYHKIUIIap/IaH
KypaJiFaH op TYpJii YiipJIep/aiH YHUBepcaJI KaIlIblIaHFaH ecerTe/iM/I HoMipJeyepi
60/Iybl TypaJsibl cypakTap 3eprreiiefi. bypbinnan Oenrisii ke3 Kejiren A KUBIHDI
yIIIiH, OyJI 2Kep/ie 0 <r A, A-e.c. § akpipinl yitipinge A-ecemresiMi yHHBeEpCAJT
HOMipJIey 00JIaJIbl, COHJIAa TeK COHJIa FaHa S Yifipi iMKi KUBIH KATBIHACHI OOWBIHIIIA
€H KiIll 371eMeHTTI KaMTbhIca. DyJ1 Kpurepuit mekcis yitipJjep yIiH OpbIHIaJIMaiIbI.
Kes kenren A xkwubtabt yiiin A-ecenrestiMii yHUBepcas HeMipseyi 6ap imki *KublH
KATBIHACHI OOMBIHITA €H Killll JIEMEHTTI KAMTBIMAWTBIH KUBLIHIAP/IaH KYypaJraH
mekciz A-ecenresmimai S yitipi TaObLIa bl COHBIMEH KaTap S yifipiHae 6apJiblK 3J1e-
MEHTTED KYITHIK KUbLIbICTIai 6. Erep A— runmepumMyH/IBI KUBIH O0JICA, OHJTA KEM
JlereHjie eKi aeMeHTi 6ap OapJibIK Kepje aHbIKTaFaH (PYHKINAIApIaH KypaJraH
A-ecenrrennivi Fyitipiage A-ecenresiMji yHEBepcas HeMipJieyi OosmMaiiabr. At
erep degy(A) runepummynibI-60¢ 6oJica, OHJIA OPOIP GAPJIBIK Kep/ie AHBIKTAJFAH
dyHKIMATApIaH KypajraH yifipje A-ecemresiMiii yHUBEpcasa HOMIpJeyi 00JaJibl.
By xymbicra 6i3 A-TunepuMMyHJIBI-00C OpaKyJ/IbIMEH €CelTeeTiH YKUbIHIAPIaH
KypaJifaH Ke3 KejreH Iekci3 sddexkTunti auckperti yiiipiaepae A-ecemresimi
yHUBepcas HeMipeayi OonareiHbiH KepceTTik. Conjait-ak, erep S yifipi OapJbik
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TO.HbIKT&ybI AKbIPJIbL 2KUBIHIAPAbl KaMTBICa 2KoHE€ KEM JereHzue 61p TOHBIKTaYBI
PEKYPCHUB CaHAJBIM/IBI KUBIHBI KaMTbIMaca, OHJa Oys YHIp/AiH yHuBepcan 25 L
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O6 yHuUBepcaJbHBIX HyMepalusax O00OOIIEHHO BBLIYUCINMbBIX CEMENCTB

B pabore wucciejyercsd BONPOCHI CYIIECTBOBAHUA YHUBEPCAJLHBIX 0000IEHHO-
BBIYUCJIAMBIX HYMEPAIUA PA3JUYHBIX CEMEUTB MHOXKECTB U BCIOJY OIIPEJICJIEHHBIX
dyuknnit. Beuto W3BecTHO, YTO I JIIOOONO MHOXKECTBO A Takoro, 9to 0 <r A,
KOHEYHOE ceMeicTBO A -B.II. MHOXKECTB S mMeeT A -BBIYHCIUMYIO YHUBEPCAJIbHYIO
HyMepaIlio TOI/Ia ¥ TOJIBKO TOT/Ia, KOrjia S COAEPKUT HAUMEHbIIIee 110 BKIIOYUEHUTO
MHO>KecTBO. JlaHHBIIl KpuTepuii He BEpHO 10 OECKOHEUHBIX cemeiicTB. st ro6oro
MHOXKecTBa A cytecTByeT 6eckoHeuHOEe A-BBIUUCIIMOE CEMECTBO MHOXKECTB S 6e3
HAMMEHBIIIEr0 10 BKJIIOYEHHIO 3JIEMEHTa MO A-BBIIUCIUMYO YHIBEPCAIBHYIO
HyMepaluto, 6ojiee TOro B ceMeiictBe S BCe JIEMEHTHI TIONMAPHO HE EPECEKAIOTCS.
Ecim A — runepuMMyHHOE MHOXKECTBO, TOTjIa A-BbIaucauMoe ceMeiictBo F' BCromy
orpeie/IeHHbIX (DYHKIINI COJIEPKAINl He MeHee JIBYX 9JIEMEHTOB He UMeeT YHUBEP-
caynbHOll A-Boraucimumoii Hymeparnuu. A eciau degp(A) runepuMmyHHO-CBOGOHO,
TOr/Ia Kaxkji0e A-BBIYNCIIMOE KOHETHOE CeMENCTBO BCIO/LY OIpeIesIeHHbIX (DYHKIHIA
uMeeT A-BBIMMC/INMYIO YHHUBEpPCAJIbHYIO HyMepamnuio. B mgaHHOi pabore IMOKa3bl-
BaeTcsi, UTO JiIoboe OeckoHedHoe 3(P(MEKTUBHO IUCKPETHOE CEMEHCTBO MHOMKECTB
¢ TUIEPUMMYHHO-CBOOOJHBIM oOpakya1oM A mnmeer A-BBIUYUCINMYIO YHHBEPCAIH-
HyI0 HyMmepamumio. TakyKe TOKa3bIBAETCSI, UTO €CJAU CeMeficTBO S COIEpPXKUT BCe
KO-KOHEUHbIe MHOXKECTBa U HE COJIEPXKUT XOTAObI OJUH KO-B.II. MHOXKECTBO, TOIA
JIaHHOE CeMeNCTBO He MMeeT YHUBEPCAJIBHYIO X, 1—BbI‘{I/ICJH/IMyIO HyMEPAaIIo.

KiroueBble cioBa: nosypemérka Pomkpeca, nepapxusa Epiiosa, BeraucianMasd HyMe-
b b)
palysi, yHUBepCaJIbHasl HyMepallusi, TUIIePUMMYHHOE MHOXKECTBO.

1 Introduction

In this paper, we consider some issues, mainly related to universal numberings.
The interest in the study of such numberings is due to the fact that the
universal computable numbering of any family contains information about all
its computable numberings. Until now, various results have been obtained on
generalized computable numberings in the arithmetic hierarchy and in the Ershov
hierarchy. Most of the results in numbering theory are related to the study of
properties of Rogers semilattices. Recall some definitions of the theory of numberings
(see, for example, [1], 2| for details). Any surjective mapping « of the set w of
natural numbers onto a nonempty set S is called a numbering of S. Let o and S be
numberings of S. We say that a numbering « is reducible to a numbering 5 (written
a < ) if there exists a computable function f such that a(n) = (f(n)) for any
n € w. We say that the numberings o and J are equivalent (written o = ) if « < 8
and § < a.
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Let A be a set of natural numbers, and let S be a family of A-computably
enumerable (in Ershov hierarchy XY ;-c.e.) set. We say that a numbering o of S'is A-
computable (in Ershov hierarchy X9 -c.) if its universal set {< z,n > |z € a(n)} is
A-c.e. (in Ershov hierarchy X9 -c.e.). Let Com(S) be the set of all A-computable (in
Ershov hierarchy 39 41-¢.) numberings of the family S. The numbering reducibility
relation is a preorder on Com*(S), (in Ershov hierarchy Com,,(S)-c.) which in
the usual way induces some quotient structure R(S) (in Ershov hierarchy RY ,(S)),
which is an upper semilattice and is called the Rogers semilattice of A-computable
(in Ershov hierarchy X9 ,-c.) numberings of the family S.

An A-computable numbering of a family S is universal if any A-computable
numbering of S is reducible to that numbering. Denote by A<*> the set {y :<
z,y >€ A}. An A-c.e. set with Godel number e is denoted by WA.

A computable family S is called effectively discrete if there exists such a strongly
computable sequence of finite sets such that [3]:

(1) for any A € S there exists T; C A;;
(2) T Ty =T = Tj;
B)T; CAjeAand T, C A, € Athen A; = A,

A function f dominates a function ¢ if f(x) > g(z) for all z. A degree a is
hyperimmune if there is a function f <7 a which is not dominated by any recursive
function: otherwise a is hyperimmune-free [4].

The Ershov hierarchy consists of finite and infinite levels. The finite levels of the
hierarchy consists of the n-c.e. or X! sets for n € w.

A set Ais X! set, if either n = 0 and A = 0, or n > 0 and there are c.e. sets
Ry 2 Ry D .... 2 R, such that [5]

A= U (Ro; \ Ryi1) (Here if n is odd number then R,, # ()

1=0

The class of 37" sets coincide with the class c.e. sets, 25 sets can be written as
Ry \ Rz, where Ry D Ry c.e. sets, therefore they are also called d-c.e. sets.

The n-c.e. sets are exactly those sets constitute the level 3! of the Ershov
hierarchy.

2 Literature review

In [6] the theory of numbering was studied for the first time and the concepts
of computable numbering were proposed for constructive languages describing a
numbered family of objects that were called generalized computable. Also, in fact,
in [7] [also [8{10]] the work of Badaev and Goncharov was started to study the
numberings A-computable, where A is a given oracle. Hyperimmune-free degrees
have been studied extensively beginning with the work of Miller and Martin |11],
and Jockusch and Soare (12l Despite the abundance of work dedicated to the
generalized computable numberings, there are a number of open questions about
Rogers semilattice of generalized computable families.
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3 Material and methods

3.1 The formulation of the problem

Let us pass now to recalling the available results about the existence of A-
computable universal numberings. The following results about criteria for finite and
infinite families of A-c.e. sets with ()’ <; A were obtained in [7].

Theorem 1. [7 For every set A such that ) <p A, a finite family S of A-c.e.
sets has an A-computable universal numbering if and only if S contains the least set
under inclusion.

Proof. We will give a brief of the proof [13].
Let § = {Ay, Ag, ..., A, } be an A-computable family. Choose a family of finite sets
Fi, ..., F, with the following property: for all 1 <1, j < n, we have

Suppose that A; is a least element of S and F; = (. Let € be the set of all
chains, i.e. strictly increasing sequences F;, C ... C Fj, . There is a maximal chain
C = {ip < i1 < ... < ix} and denote by Ac the set of the family corresponding to
Fe (ie. Ac = A; if and only if Fe = F;). It is easy (see [14] for details) to build a
A-computable numbering « such that, for every e,

(1) We found maximal i with F;, C WA, Then, clearly, a(e) = A;;
(2) We found number i such that F;, C WA, If WA € (S) then WA = a(e).

r &
Assume now p(e) = WA. Thus, for any A-computable numbering 3 of the family
S, there exists a computable function f(z) such that 5(z) = p(f(z)) for all z. By
constructing A-computable numbering « implies that S(x) = p(f(z)) = a(f(z)),
and therefore, « is universal A-computable numbering of the family S.
Suppose that the family S has no least element. Let

S() =SU {@}
and by the above argument let ag be universal in Com?(Sp). Let us define a A-
computable function f :w — {z|ag(x) # 0}.
Then a = ag o f € Com?(S). Let now 8 € Com?(S), and define

0 if =0,
Bo = .
B(x —1) otherwise

and let A be a computable function such that 5y = agy o h. Hence, for every x

pBx) = bo(x +1) = ag(h(z +1)).
But h(z + 1) € range(f). Let

k(z) = py(f(y) = h(z +1)).
It follows that S(x) = ao(f(k(x))), i.e. B = a o k. Since k is A-computable, it
follows that 3 < «, hence « is A-universal in Com™(S). O

Badaev and Goncharov also showed that for i’ <; A the presence of the least set
under inclusion is neither necessary nor sufficient for an infinite family of A-c.e., sets
to have an A-computable universal numbering |[7].
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Corollary 1. |7/ For every set A, there is an A-computable family that contains
the least set under inclusion but has no A-computable universal numbering.

The following theorem gives a negative answer to the question of Podzorov in [15]:
Is it true that if the Rogers semilattice of a family of arithmetical sets has the greatest
element then the family itself has the least set under inclusion?

Theorem 2. |7/ For every set A, there is an infinite A-computable family S of
sets with pairwise disjoint elements such that S has an A-computable universal
numbering.

Also, in [7] the following questions were posed: Does the statement of Theorem
for finite families of sets remain valid if @ <7 A <7 0" or A is Turing incomparable
with (0’7

In [8H10], gives answers with hyperimmune and hyperimmune-free oracles. If () <1
A<r 0 or ) <p A, then degp(A) is hyperimmune.

Theorem 3. [§ Let A be a hyperimmune set. If A-computable family F of total
functions contains at least two elements, then F has no universal A-computable
numbering.

Theorem 4. [§] If deg(A) is hyperimmune-free. Then every A-computable finite
family of total functions has an A-computable universal numbering.

Theorem 5. |9/ Let deg(A) is hyperimmune-free. Then any finite family of A-c.e.
sets has a universal A-computable numbering.

Corollary 2. [9] For a set A the following conditions are equivalent.
(1) degr(A) is hyperimmune;
(2) there exists a finite family of A-c.e. sets which does not have universal A-
computable numberings;
(3) every finite family of A-c.e. sets without a least element under inclusion has
no universal A-computable numberings.

After these results, the unsolved question was whether there exists an infinite
family of total functions with a hyperimmune-free oracle that has an A-computable
universal numbering. In [10] gives a positive answer to this question and it is proved.

Theorem 6. [10] There exists an infinite A-computable family F of total functions,
where Turing degree of the set A is hyperimmune-free, such that F has an A-
computable universal numbering.

In [16], some generalization of this result was obtained for an infinite A-computable
effectively discrete family of total functions.

Theorem 7. [16] Let S be an infinite A-computable effectively discrete family of
total functions, where A—hyperimmune-free, then family S has an A-computable
universal numbering.

4 Main results

In this section, we have proved the results for a family of sets.

Theorem 8. Let § be an infinite A-computable effectively discrete family of
sets, where A—hyperimmune-free, then family S has an A-computable universal
numbering.
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Proof. The following proof is based on the ideas of [9,[10]. Let S be an infinite A-
computable effective discrete family of sets, say S = {4, }ic.,. Then it is possible to
find a strongly computable sequence of finite sets T;|i € w such that

(1) T; € Ay

(2) T,C Ty =T, = Ty;

B) T, CAjeAand T, C A, € Athen A; = A,

We define an A-computable numbering 5 as follows: for every e,

Ak if (Elk < S)[Tk - (Wejj{s><x>]7
Ay otherwise

f(<ex,s>)= {

It is clear that £ is a A-computable numbering of the family S. Now let o be an
arbitrary A-computable numbering of §. We need to show that o < 5. Fix an index
e for which a(z) = (W2,)<"> with any z.

Let g be A-computable function, and define

g(x) = ps[(3k < )T, € (W),

Since A is hyperimmune-free sets, it is follows that there exists a computable
function f such that g(z) < f(z) for all x. It means that for all e and x satisfy the
following

B <e,z, f(l') >= Ak = (Wef‘f(x)><m> = Oé(l')

Hence, 3 is A-computable universal numbering Com?(S) .

OJ

Theorem 9. Let A be a family of all co-finite sets. If S be a X5 *-computable family
such that A C S and there is co-c.e. set B that B ¢ S, then R, (S) has no universal
numbering.

Proof. Let v € R;*(S) be arbitrary numbering. We will construct a numbering
1 € Comy ' (S) which not reduced to v. Let u(22) = v(z) and u(2x + 1) defined as
following. In construction of p(2z + 1) we additional constructed function rs.
Stage 0. Put po(2x + 1) = w and ry = 1.
Stage s+1. We will consecutively implement the following stages:
(1) If ¢, 5(22 4+ 1) 1 then go to the next stage
(2) If pp (22 +1) l=y, and ps(2x + 1) [ rs = vs(y) | rs then rq =ry+ 1 and
psi1(2¢ + 1) [ rg = Bs | 1y
(3) It (,05,;73(227 + 1) \L: Y and ;LS(QZL’ + 1) [ Ts 7é Vs(y) f T's then /Ls+1(2x + 1) =
ps(2z + 1) and o = 7.

The description of the construction is over. Let

v(2r+1) = |2z + 1).

Lemma 1. If for x case (2) in construction is hold infinitely often then v(y) = B.

Proof. Let for x case (2) is hold infinitely often and v(y) # B, where y = ¢, (2z+1).
Consider two case
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(1) Let 3z, z € v(y) and z ¢ B.
Every stage when case (2) is hold the function 7 will be increasing. Then
we can find stage s* such that z € v (y) and re > z. Since z ¢ B then
z ¢ B, for every s € w. So for every s > s*, we have z & ps(2v +1) | ry
and z € v, (y). So the condition of case (2) is not hold for any s* > s*. It is
contradicted that case (2) is hold infinitely often.
(2) Let 3z, z ¢ v(y) and z € B.
Suppose that there is a step s* such that z ¢ ve(y), re+ > 2z and 2z ¢ B.
Let’s choose the smallest step s and Vs > s* and z ¢ py(2z + 1) [ ry. We
come to a contradiction with properties of the case (2) in construction, that
py(2x +1) [ ry # vy (y) such that z ¢ By [ ry.

0
Lemma 2. If ¢, (224 1) | then lim,(r,) exists and p(2z + 1) # v(p,(2z + 1)).

Proof. Since B ¢ S then from Lemma |1 there is stage s that for all s > s which
hold only condition of case (3). It means that the function r, has a limit and let it
will be . Then p(2x+1) [ r # v(y) | r. Consequently, p(2x+1) # v(p.(22+1)). O

Lemma 3. p is X5 '-computable numbering of family S.

Proof. 0, = {(x,y): y € p(x)}. Let Ay, Ay computable enumerable sets such that
0u = A1 \ AQ. Then

B, = {(QJI,y) (l‘,y) S Al} U {<2ZL‘ + 17y): T,y € w},

By ={(2z,y): (z,y) € A2} U{(2z + 1,y): 3s[y ¢ us(2z + 1)]}.

It is not difficult to see §, = By \ By and B;, B, are computably enumerable sets.
Consequently, 0, € 35 L

Now show that u(z) € S for all x. If © = 2k then p(2k) = v(k). So v(k) € S then
plx) € § . If v =2k+1 then p(2k+1) = w if px(2k+1) 1 and it is gives co-finite. If
¢r(2k+1) | by Lemma [2] there exists lim,(r,) and by constraction p(2k+ 1) contain
[limg(75), 00). Consequently, ;1(2k + 1) is co-finite. Since family A C S contain all
co-finite sets, it means that u(z) € S. O

If 4 < v then there exists computable function f such that p(z) = v(f(x))
for all z. Let f = ¢, for some e. Since f is total, ¢.(2¢ + 1) |. From Lemma
p(2e + 1) # v(pe(2e + 1)). It is contradiction. O

Corollary 3. If S is the family of all c.e. sets, then Ry (S) has no universal
numbering.

5 Conclusion

In conclusion, we proved that if an infinite A-computable effectively family of
sets, where A is a hyperimmune set, then the family has an A-computable universal
numbering. It was also proved that in R;'(S) has no universal numbering if A be
a family of all co-finite sets and if S be a ¥, '-computable family such that 4 C S
and there is co-c.e. set B that B ¢ S.
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