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RESONANT PHENOMENA IN NONLINEAR VERTICAL ROTOR
SYSTEMS

In this paper, the study of the dynamics of a rotor system mounted on an elastic foundation
rotating in rolling bearings is considered. To describe the bearing model, the Hertz theory was
used, linking radial loads acting on the bearing and deformation at the points of contact between
the movable foundation and the bearing rings. In the bearing model, it is assumed that there are
no types of sliding of bodies and rolling surfaces. The obtained differential equations of the rotor
and the foundation do not have a common solution. Therefore, the study was conducted using
numerical methods. In order to simplify the problem and increase the accuracy in solving the
obtained differential equations, dimensionless quantities were used. With the increase and decrease
of dimensionless quantities, the amplitudes of the rotor and the foundation are constructed. As
a result, two resonances were formed: the main resonance and the second resonance. The work is
connected with the physical meaning of the process considered in the problem the results obtained
are the basis for the application of this mathematical model in the design of a rotary system
rotating in rolling bearings.
Key words: Hertz theory, rolling bearings, numerical methods, "rotor-foundation" system,
nonlinear rotary system.
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Бейсызық роторлық жүйелердеги резонанстық құбылыстар

Бұл жұмыста домалау мойынтiректерiнде айналатын серпiмдi негiзге орнатылған ротор жүй-
есiнiң динамикасын зерттеу қарастырылады. Мойынтiрек моделiн сипаттау үшiн Герцтi мой-
ынтiрекке әсер ететiн радиалды жүктемелердi байланыстыратын теориясы және жылжы-
малы негiз мен мойынтiрек сақиналары арасындағы байланыс нүктелерiндегi деформация
қолданылды. Мойынтiрек моделiнде жылжымалы денелер мен жылжымалы беттер жоқ деп
болжанады. Алынған ротор мен фундаменттiң дифференциалдық теңдеулерiнде ортақ ше-
шiм жоқ. Сондықтан зерттеу сандық әдiстердi қолдану арқылы жүргiзiлдi. Есептi жеңiлде-
ту және алынған дифференциалдық теңдеулердi шешудiң дәлдiгiн арттыру үшiн өлшемсiз
шамалар қолданылды. Өлшемсiз шамалардың ұлғаюымен және азаюымен қозғалтқыш пен
фундаменттiң амплитудасы құрылады. Нәтижесiнде екi резонанс пайда болды: бас резонанс
және екiншi резонанс. Жұмыс тапсырмада қарастырылған процестiң физикалық мағына-
сымен байланысты. Алынған нәтижелер осы математикалық модельдi домалау мойынтiрек-
терiнде айналатын роторлы жүйенi жобалау кезiнде қолдануға негiз болып табылады.
Түйiн сөздер: Герц теориясы, домалау мойынтiректерi, сандық әдiстер, "ротор-фундамент"
жүйесi, бейсызық роторлық жүйе.
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В данной работе рассматривается исследование динамики роторной системы, установленной
на упругом основании, вращающемся в подшипниках качения. Для описания модели под-
шипника использовалась теория Герца, связывающая радиальные нагрузки, действующие
на подшипник, и деформацию в точках контакта между подвижным основанием и кольцами
подшипника. В модели подшипника предполагается, что не существует типов скольжения
тел и поверхностей качения. Полученные дифференциальные уравнения ротора и фунда-
мента не имеют общего решения. Поэтому исследование проводилось с использованием
численных методов. Для упрощения задачи и повышения точности решения полученных
дифференциальных уравнений использовались безразмерные величины. С увеличением
и уменьшением безразмерных величин строятся амплитуды двигателя и фундамента. В
результате образовались два резонанса: главный резонанс и второй резонанс. Работа связана
с физическим смыслом рассматриваемого в задаче процесса. Полученные результаты
являются основой для применения данной математической модели при проектировании
вращающейся системы, вращающейся в подшипниках качения.

Ключевые слова: теория Герца, подшипники качения, численные методы, система "ротор-
фундамент" , нелинейная роторная система.

1 Introduction

Currently, most of the rotary machines used in industry, manufacturing and mechanical
engineering rotate in rolling bearings [1]. As a mathematical model of rolling bearings, it
is important to choose models that most fully reflect the features of rolling bearings, in
particular, such as the number of holes, the influence of geometric errors, as well as the
properties of nonlinear stiffness; the influence of centrifugal forces, mutual displacement and
mismatch of bearing rings; gyroscopic phenomena [2].

In the proposed work, the nonlinear dynamics of a rotor system mounted on an elastic
foundation rotating in rolling bearings is investigated. Due to the increased requirements for
the accuracy of rotation and an increase in the speed of rotation of the rotors, it becomes
necessary to take into account the elastic nonlinear properties of rolling bearings.

2 Review

Currently, rotating machines, widely used in industry, mainly work with rolling bearings [3]
and [4]. The use of rolling bearings as supports for high-speed rotors is limited by their speed
and strength, therefore, sliding bearings are widely used to ensure reliable rotation of the
rotor in a wide range of speeds and loads. These bearings have smaller dimensions in the
radial direction, greater rigidity, low sensitivity to shocks and temporary loads, unlike rolling
bearings, which makes them suitable for use in high-speed turbomachines.

According to the number of rotor supports, the turbomachine layout schemes used can
be two- and three-support. Three-support rotor schemes are used in rare cases when a two-
support scheme leads to an unacceptably large decrease in the bending stiffness of the rotor.
The use of a three-support circuit makes the rotor statically indeterminate, which makes it
difficult to assemble the turbomachine due to the difficulty of ensuring an accurate fit of the
rotor in the foundation on three surfaces [5].

Also, for the most complete description of the process, it is important to take into account
the influence of factors such as imbalance, asymmetry of the rotor installation on the shaft,
external friction, changes in inertial parameters and positional forces of various kinds [6]- [8].
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Such complications of the model in the analysis of dynamics make it possible to investigate the
effect of the gap size, rotation frequency on the frequency spectra and amplitude-frequency
characteristics for any rotary system on rolling bearings.

Mathematical models of bearings that take into account non-linearity factors are
distinguished by complexity and, first of all, by the loads they take into account. In our
case, the Hertz contact theory is used to describe the bearing model, which relates radial
loads acting on the bearing and deformation at the points of contact between the rolling
body and the bearing rings [9]. When describing the bearing model, it is assumed that there
are no any types of slippage of rolling bodies and surfaces. Damping is considered in the
formulation of equivalent viscous and linear friction.

3 Problem statement and equation of motion

Consider a vertical rotary system (Fig. 1). The damping foundation on elastic supports moves
in a horizontal plane. The rotor has a static imbalance. The rotor performs a plane-parallel
motion, and rotation around the coordinate axes does not occur. The motion of the rotor
and the foundation is considered relative to the fixed coordinate system of the Oxy. The
nonlinear regenerative force of the bearing is described as (1) in accordance with the Hertz
contact theory.

FC = Cbδ
3
2
r (1)

where FC is a component of the restoring force in the radial direction (N), δr is the
deformation in the radial direction (m), Cb is the stiffness coefficient (N

m

3
2 ).

In order to solve the equations of motion of the system and qualitative analysis, the
restoring force of a bearing of type (1) can be approximated by a degree series of type (2) in
accordance with [10], [13]:

FC = c0δr + c1δ
3
r (2)

where c0 and c1 are stiffness coefficients for the linear and cubic terms, respectively. This
expansion for δr < 1000µm with a sufficient degree of accuracy is in agreement with the
experiments [13].

The geometric coordinates of the rotor center are denoted by O1(x1, y1), and its center of
mass is denoted by Os(x, y). The center of mass of the foundation is O2(x2, y2) (Fig.1).

The kinetic energy of the system is defined as (3) :

U =
m

2
(x′2 + y′2) +

J

2
Ω2

0 +
M

2
(x′21 + y′21 ) (3)

where m is the mass of the rotor, J is the moment of polar inertia of the rotor, and M is the
mass of the foundation.

Considering that the potential energy of the isotropic elastic nonlinear field of rolling
bearings depends on the radially directed deformation of rolling bearings, that is

δ2r = (x1 − x2)2 + (y1 − y2)2 (4)



60 Resonant phenomena in nonlinear vertical rotor . . .

Where is the potential energy of rolling bearings and elastic supports:

W =
c2
2

(x22 + y22)2 +
c0
2

((x1 − x2)2 + (y1 − y2)2) +
c1
4

((x1 − x2)4 + (y1 − y2)4)) + ... (5)

Accordingly, the dissipation function:

R =
χ

2
(x′2 + y′2) +

χ0

2
(x′22 + y′22 ) (6)

The center of mass of the rotor relative to a fixed coordinate system is determined as
follows:

x = x1 + e cos Ω0t, y = y1 + e sin Ω0t. (7)

where e is the magnitude of the deviation of the center of mass of the rotor from the geometric
center.

The equation of motion of the system has the form (8)

md2x1
dt2

+ c0(x1 − x2) + c1(x1 − x2)3 + χdx1
dt

= meΩ2
0 cos Ω0t,

md2y1
dt2

+ c0(y1 − y2) + c1(y1 − y2)3 + χdy1
dt

= meΩ2
0 sin Ω0t,

M d2x2
dt2

+ c2x2 − c0(x1 − x2)− c1(x1 − x2)3 + χ0
dx2
dt

= 0,

M d2y2
dt2

+ c2y2 − c0(y1 − y2)− c1(y1 − y2)3 + χ0
dy2
dt

= 0,

x1(0) = e, x2(0) = 0.1e, y1(0) = 0, y2(0) = 0,
dx1
dt
|t=0 = 0, dx2

dt
|t=0 = 0, dy1

dt
|t=0 = 0, dy2

dt
|t=0 = 0,

(8)

(8) – a system of equations describes the movement of the rotor and the foundation on
unbalanced, nonlinear supports.

We reduce the system of equations (8) to a system of dimensionless equations of the form
(9), i.e

d2f1
dτ2

+ 2ζ1
df1
dτ

+ (f1 − f2) + ε(f1 − f2)3 = η2 cos(ητ),
d2ν1
dτ2

+ 2ζ1
dν1
dτ

+ (ν1 − ν2) + ε(ν1 − ν2)3 = η2 sin(ητ),
d2f2
dτ2

+ 2µζ2
df2
dτ
− µ(f1 − f2)− µε(f1 − f2)3 + µλf2 = 0,

d2ν2
dτ2

+ 2µζ2
dν2
dτ
− µ(ν1 − ν2)− µε(ν1 − ν2)3 + µλν2 = 0,

(9)

where,
x1 = ef1, x2 = ef2, y1 = eν1, y2 = eν2,

µ =
m

M
,ω2

1 =
c0
m
,ω2

2 =
c2
m
, τ = ω1t,Ω0 = ω1η,

ζ1 =
χ

2mω1

, ζ2 =
χ0

2mω1

, ε =
c1e

2

mω2
1

, λ =
ω2
2

ω2
1

.

We introduce complex variables in the form (10)

z1 = f1 + iν1, z2 = f2 + iν2. (10)
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Figure 1: Vertical rotor system.

Then, given (10) from (9), we write the equation of motion in the complex plane in the form
(11). {

z′′1 + (z1 − z2) + ε(z1 − z2)3 + 2ζ1z
′
1 = η2eiητ ,

z′′2 + µλz2 − µ(z1 − z2)− µε(z1 − z2)3 + 2µζ2z
′
2 = 0.

(11)

The approximated solution of the system of equations (11) can be searched analytically.

z1 = A1e
−iητ +B1e

−2iητ + ..., (12)

z2 = A2e
−iητ +B2e

−2iητ + .... (13)

Studies in this direction can be found in the works [11], [12]. The parametric analysis of
a given rotor system in the presented work is based on the results of numerical methods.

4 Results and discussion

In Figure 2, there is one resonance and one autotherm zone. In the case of a head resonance,
i.e., at η = 1.49, f1 = 1.789523788 is equal to when the rotor amplitude µ = 10. For the
rotor, the autothermic zone is generally observed in the range of 0.01 < η < 0.99. In this case,
f1 = 0.364555924, when the maximum amplitude of the rotor is µ = 10. With a decrease in
the mass of the foundation, the value of the amplitudes of the rotor and the autotherm of the
foundation decreases to 35-50%. With an increase in µ, there is a shift of the head resonance
to the right in the direction of frequency growth and an increase in the autothermic zone. A
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decrease in the mass of the foundation and the movement of the rotor and the foundation in
the reverse phase in this interval leads to the disconnection of the autotherms.

In Figure 3, the region of bass resonance and autotherms is observed at low frequencies
and occurs in a wide range of ?. In the case of a general resonance, i.e. at η = 1.13, f2 =
0.809546423 is equal to when the amplitude of the base µ = 5 at µ = 10, there is a shift
of the head resonance to the right in the direction of frequency growth. If the mass of the
foundation decreases, i.e. the value µ increases, then the amplitude of the rotor increases
during the head resonance, and vice versa, if the value µ decreases, the area of autotherms
and leads to the attenuation of the head resonance.

In Figure 4, two resonances occur. At the head nonlinear resonance, i.e. η = 1.13, the
rotor amplitude is equal to f1 = 1.382985602 for ε = 1. The second (left) resonance is
observed in the range of 0.01 < η < 0.32. In this case, the rotor amplitude at all values of ε
is f1 = 0.080489253. When the rigidity of the rotor decreases, the value of the left resonant
amplitudes of the rotor and the foundation becomes the same. At ε = 50, the amplitude of
the rotor reaches f1 = 2.146287817, at η = 1.77, there is a break in the amplitudes, and at
η > 1.77, the amplitude values decrease sharply. At ε = 100, the rotor amplitude is equal to
f1 = 3.372849069, and there is a shift of the head resonance to the right in the direction of
frequency growth. If the rigidity of the rotor decreases, i.e. the value of ε decreases, then the
value of the resonant amplitudes on the left will have the same value, and vice versa, if the
value of ε increases, the amplitude of the rotor at the head resonance will increase.

In Figure 5, there is a general resonance. At the main resonance, i.e. η = 1.21, f2 =
0.130031134, when the amplitude of the base is ε = 2. At ε = 50, the amplitude of the
foundation is equal to f2 = 0.182760123. At ε = 50, the amplitude of the foundation reaches
f2 = 0.19322489, at η = 1.73, there is a break in the amplitudes, and at η > 1.73, the
amplitude values decrease sharply. At ε = 100, the amplitude of the base is equal to f2 =
0.343379276, and there is a shift of the head resonance to the right in the direction of frequency
growth. If the value ε increases during the head resonance, then the rotor amplitude increases
and there is a shift of the head resonance to the right in the direction of frequency increase.

In Figure 6, two resonances occur. At the head resonance, i.e. η = 1.2, the rotor amplitude
λ = 1 is equal to f1 = 1.38132898. The second (left) resonance is observed in the range of
0.01 < η < 0.52. In this case, the value f1 = 0.201216136 when the rotor amplitude is
λ = 10. With a decrease in the rigidity of the foundation, the value of the left resonant
amplitudes of the rotor and the foundation decreases to 15-20%, but at λ = 0.1, the left
resonant amplitude is equal to f1 = 0.231227653. If the rigidity of the foundation decreases,
i.e. the value λ decreases, then the value of the resonant amplitudes on the left decreases,
and vice versa, if the value λ increases, then the amplitude of the rotor at the head resonance
will have the same value.

In Figure 7, one resonance occurs. The second (left) resonance is observed in the range
of 0.01 < η < 0.35. In this case, when the amplitude of the foundation is λ = 10, f2 =
0.203282867. With a decrease in the rigidity of the Foundation, the value of the left resonant
amplitudes of the rotor and the foundation decreases to 10-37%, but at λ = 0.1, the left
resonant amplitude is equal to f2 = 0.243458891. If the hardness of the foundation decreases,
i.e. the value λ decreases (except λ = 0.1), then the value of the left resonance amplitudes
decreases, and vice versa, if the value λ increases, this leads to a head resonance shutdown.

In Figure 8, two resonances occur. At the head resonance, i.e. η = 1.26, f1 = 9.182929085
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is equal to when the rotor amplitude is ζ1 = 0.1. The second (left) resonance is observed
in the range of 0.01 < η < 0.15. In this case, f1 = 0.306469753 is equal to when the rotor
amplitude is ζ1 = 0.2. With a decrease in the internal coefficient of friction, the value of
the left resonant amplitudes of the rotor and the foundation increases to 30-45%. With an
increase in the coefficient of internal friction, i.e. when ζ1 > 2, the zone of autotherms and
leads to the deactivation of the head resonance. If the internal coefficient of friction decreases,
i.e. the value of ζ1 increases, then this leads to a shutdown of the left and head resonance,
and vice versa, if the value of ζ1 decreases, the amplitude of the rotor at the head resonance
increases.

In Figure 9, two resonances occur. At the main resonance, i.e. η = 1.26, f2 = 1.022983788,
when the amplitude of the base is ζ1 = 0.1. The second (left) resonance is observed in the
range of 0.01 < η < 0.35. In this case, at ζ1 = 0.1, the amplitude of the foundation is equal
to f2 = 0.53389977. With a decrease in the internal coefficient of friction, the value of the
left resonant amplitudes of the rotor and the foundation increases to 40-60% at ζ1 < 1. With
an increase in the coefficient of internal friction, i.e. when ζ1 > 2, it leads to the attenuation
of the head resonance. If the internal coefficient of friction decreases, i.e. the value of ζ1
increases, then this leads to a shutdown of the head resonance, and vice versa, if the value of
ζ1 decreases, the amplitude of the rotor at the head resonance increases.

If the external coefficient of friction ζ2 decreases or increases, then the value of the
amplitudes of the rotor and the foundation at the head resonance will have the same value.

Figure 2: The amplitude of the rotor at different values of the ratio of the mass of the rotor
and the foundation – µ.
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Figure 3: The amplitude of the foundation at different values of the ratio of the mass of the
rotor and the foundation – µ.

Figure 4: The amplitude of the rotor at different values of the stiffness of the rotor – ε.
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Figure 5: The amplitude of the foundation at different values of the stiffness of the rotor – ε.

Figure 6: The amplitude of the rotor at different values of the rigidity of the foundation – λ.
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Figure 7: The amplitude of the foundation at different values of the rigidity of the foundation
– λ.

Figure 8: The amplitude of the rotor at different values of the coefficient of internal friction
– ζ.
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Figure 9: The amplitude of the foundation at different values of the coefficient of internal
friction – ζ.

5 Conclusion

In this paper, a generalized dynamic model of the "rotor-foundation" system on elastic
supports has been developed, the description of which is nonlinear. A method for determining
the amplitude of forced oscillations of the system has been developed. The resonant
frequencies are determined, as well as the frequency range in which the answering machines
occur. The features of the coupled "rotor-foundation" system are shown when taking into
account the movement of the foundation. The values of the coefficients of imbalance,
foundation mass, stiffness and damping, providing optimal values of amplitudes, are
determined. The results of the work performed prove the physical meaning of the task,
and this, in turn, can serve as the basis for the introduction and application of this
mathematical model in production. Disabling dangerous rotor vibrations by selecting system
parameters is cost-effective and technically easy. The results of the work make it possible
to conduct engineering and computational experiments with minimal costs, give qualitative
and quantitative characteristics and reduce the design time of new vertical rotary machines,
improve the quality and safety of their work.
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