ISSN 1563-0277, eISSN 2617-4871 JMMCS. 2(114). 2022 https://bm.kaznu kz

4-6eJ1iM Paszgen 4 Section 4
Kongau6asbl Ilpuknanuasa Applied
MaTeMaTukKa MaTeMaTHuKa Mathematics
IRSTI 27.41.19 DOI: https://doi.org/10.26577/IMMCS.2022.v114.i2.010

D.R. Baigereyev!* =, N.B. Alimbekova! =~ , N.M. Oskorbin?
1S. Amanzholov East Kazakhstan University, Kazakhstan, Ust-Kamenogorsk
2Altai State University, Russia, Barnaul
*e-mail: dbaigereyev@gmail.com

ERROR ESTIMATES OF THE NUMERICAL METHOD FOR THE
FILTRATION PROBLEM WITH CAPUTO-FABRIZIO FRACTIONAL
DERIVATIVES

This paper investigates a model of fluid flow in a fractured porous medium under the assumption
of a uniform distribution of fractures throughout the volume. This model is based on the use of a
fractional differential analogue of Darcy’s law, as well as on the assumption that the properties of
rock and fluid depend on pressure and its fractional derivative. Unlike previous studies, this study
uses a fractional derivative in the Caputo-Fabrizio sense with a non-singular kernel. In this paper,
we propose a numerical method for solving this initial boundary value problem and theoretically
investigate the order of its convergence. The formulation of a fully discrete scheme is based on
application of the finite difference approximation for integer and fractional time derivatives, and
the Galerkin method in the spatial variable. A second-order formula is used to approximate both
integer derivative and the fractional derivative in the sense of Caputo-Fabrizio. A priori estimates
are obtained for both semi-discrete and fully discrete schemes, which imply their second-order
convergence in time and space variables. A number of computational experiments were carried
out on the example of a model problem to validate the accuracy of the scheme. The results of the
numerical tests fully confirm the outcome of the theoretical analysis.

Key words: Finite element method, fractional derivative of Caputo-Fabrizio, convergence,
filtration problem, fractured porous medium.
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Kamnyro-®abpuiino 6eJmneK TybIHABLIBI (pUabTparust ecebi yIimiH caHabIK 9AiCTiH KaTeJiriHn
Oarasay

By makamaia kapbIKInagapbl KeJjieMi OOMbIHIIA OIPTEKTI TapaIybl OOJIZKAMBIHJIA, KEYEKTI OpTaia
CYIBIKTBIKTBIH KO3FaJIbIC yirici 3eprreneni. Byn yari Hapcn 3aHbrabH Oestmek-nud depeHnnaibt
OaslaMachlH KOJIJaHyFa, COHBIMEH KATAp Tay YKBIHBICHI MEH CYIBIKTHIKTHIH KACHETTEPl KHICHIMHAH
JKOHE OHBIH, OOJIIIEK TYBIHIBICEIHAH TOYEJIIIIK OOI?KaMbIHA Heri3/esireH. AJJIBIHFBI 3epTTeyiepre
KaparaHia, OyJl MakaJaja CHHTYJISIPJIbIK eMec sijipockl 6ap KamyTo-Pabpuiino MarblHACHIHIAFBI
OeJIIIeK TYBIHIBI KOJIJAHBLIAIRI. BYJI Maka/ia a oChbl DACTAIKBI IIEKAPAJIBIK, €CEIIT] eIy iH CaH-
JIBIK, 9J1iCi YCHIHBLIFAH YKOHE OHBIH, KWHAKTBLIBIK, PETi TEOPUSJIBIK, TYPFBIIAH 3€PTTEIreH. TOJIbIK,
JIMCKPETTI CYI0aHBIH, KYPBUIybl YAKBIT OOMBIHINA OYTiH KoHE OOJIIeK TYBIHIbLIAPBIHA AKbIPJIbI
ANBIPBIMJIBIK, KYBIKTAY/IbI, aJl KEHICTIKTIK affHbIMAJbICHI OOWbIHIIA [ajJepKuH OiCiH KOJIaHyTa
Herizzenred. ByTin TybiHab! 2koHe KamyTo-Padbpuiino MarbIHACHIHIAFBI OOJIIIEK TYBIH/IBIHBI YK bI-
KTay VIIH eKiHl peTTi (hopMyia KOJIIaHbLIARL. ATTPHOPJIBIK Oarajiay KapThLiail JUCKPETTI KoHe
TOJIBIK, JIUCKPETTI cyabajap YIMH AJBIHIBI, OJapIaH YAKBIT YKOHE KEHICTIKTIK ailHbIMAJIBLIADBI
OOMBIHITA eKIHII PEeTTi KUHAKTHLIILIK, mbraabl. CyIOaHbIH AJIIrH TeKcepy VIMH YIITi eCenTiH,
MBbICaJIbIHIA OipKaTap ecenrey Toxkipubesepi »kyprizimg. Canablk ToKipuOesepain HOTHXKeJIepi
TEOPUSIBIK, TAJJIAY HOTUKEIEPIH TOJIBIK, PACTAIbI.
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OneHKY ITOrpenItHOCTH YUCJIEHHOTO MEeTOoJa AJid 3334y PMJIBTPAIUM C JPOOHBIMU
npousBoaubivMu Kamyro-®adbpumuo

B nanmoit crarbe m3ydaeTcss MOJETb JABUKEHHUS KUJIKOCTU B TPENIMHOBATOU IMOPUCTOH cpeje
B IPEIIOJOKEHIN PABHOMEDHOTO DPACIIPEJIeIeHns TPpemuH 1o oobemy. JlanHas MOJeab OCHO-
BaHA Ha WCIOJB30BAHUU IPOOHO-InddepeHImaabHOro anajora 3akona Jlapcw u mocTpoena
B IIPEJIIIOJIO’KEHNN, YTO CBOWCTBA IIOPOIBI U KUJKOCTH 3aBUCAT OT JABJIEHHS U €ro JIpPOOHON
pou3BOJIHON. B orTnmdme oT mpeabIaIyIux HUCCACTOBAHUN, B HACTOSIIECH CTATHE HUCIOJIb3YETCS
npobHast mpomsBogHasi B cMbicie KamyTo-Dabpuio ¢ HECHHTYJISIPHBIM siIpoM. B crarbe
npeajlaracTCsa YUCJACHHBIM METOJ, PeIleHMsl JTaHHOI HAaJaJIbHO-KPAeBON 3a/1a9M M TEOPETUYECKU
HCCIIEyeTCs MOPAI0K ero cxonumoctu. PopMyInpoBKa MOJIHOCTHIO AUCKPETHON CXEeMbI OCHOBAHA
Ha NIPUMEHEHHH KOHEYHO-PAa3HOCTHOM AIIPOKCHUMAIMH IS IEJIbIX U JPOOHBIX MPOM3BOIHBIX IIO
BpeMeHN W MeTojia [ajlepKuHa 1O MPOCTPAHCTBEHHOU mepeMeHHOi. st anmpokcuMarim 1eJio-
YUCJIEHHONM TTPOW3BOIHON ¥ JPOOHOM Tpou3BOmHON B cMbicie KamyTo-@abpuimo uCmosb3yercs
dopmysia Broporo mopsinka. [logydeHpl anmpuopHbIE ONEHKW KaK i [MOJIYIUCKPETHOW, TaK u
JUIS TIOJTHOCTBIO JUCKPETHOUW CXeM, M3 KOTOPBIX CJIEAYeT WX CXOJUMOCTBH CO BTODPBIM IOPAIKOM
10 BPEMEHHOI M IMPOCTPAHCTBEHHON IepeMeHHbIM. Ha mpumepe MojenbHOI 3a7a4du POBEIEH
PsJT BBIMUCTUTEIHHBIX KCIIEPUMEHTOB JIJIsI MIPOBEPKU TOYHOCTU CXEMBbI. Pe3ysibTaThbl IUCICHHDBIX
TECTOB IIOJIHOCTBIO IIOATBEPXKJAAIOT Pe3yAbTaThl TEOPETUYECKOI'0 aHAIN3A.

Kirouessbie cioBa: MeTos KOHEUHBIX 3JIEMEHTOB, ApobHast mpon3BoaHas Kamyro-Pabpurmo, cxo-
IUMOCTB, 3aja49a (PUIbTPAINN, TPEITNHOBATO-TIOPUCTAS CPEJIA.

1 Introduction

Fractional equations play an important role in modern science due to their extensive
applications in natural and technical sciences. Interest in these equations is primarily due
to their ability to describe power-law long-term memory and spatial nonlocality of complex
environments and processes. Many authors confirm that models containing equations with
fractional derivatives more adequately describe a particular physical process. Many studies
are devoted to the study of various equations of fractional order.

This paper discusses the initial boundary value problem for the fractional differential
equation

ou _ 0y 9Ftly Ny ~
E + C¢CX ata_i,-l + Cfﬁ 8t6+1 - at,y . - f07 t > 07 X E Q (1>
in a one-dimensional domain (2, where «,5 € (—1,0), v € (0,1), gTVV is the fractional

differentiation operator in the sense of the Caputo-Fabrizio definition [1]:

T [ (

o 1—v J, 00

1—v

(t—@))d@, O<v<l, t>0, (2)

where M = M (v) is a function such that M (0) = M (1) = 0. The important application
examples of equations of the form (1) include the processes of anomalous diffusion in
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heterogeneous media [2-4], the flow of multiphase fluid in fractured porous formations [5,6]. In
particular, in [6] an equation of the form (1) was derived to describe the pressure distribution
during the flow of a single-phase fluid in a fractured porous medium, provided that the
fractures are uniformly distributed over the volume. Unlike other known fluid flow models
with fractional derivatives |[7-9], the peculiarity of the model under consideration is that the
model retains the structure of classical integer order filtration equations when the fractional
differentiation order is replaced by an integer order.

Despite the fact that there are many analytical methods [10, 11] for solving problems
for fractional differential equations, such equations are difficult to solve using these methods
in many cases. Therefore the development of numerical methods based on the features of
fractional derivatives and fractional equations is relevant. There are many numerical methods
for solving fractional differential equations arising in fluid mechanics, and these methods differ
mainly in the approach in which integer and fractional derivatives are discretized. These
methods include the finite difference methods [12-14], compact difference scheme [15-17],
finite element methods [18-20], finite volume schemes [21], mixed finite element schemes [22]
and others. However, it is rather difficult to obtain a high-order approximation in time due
to the peculiarities of the fractional derivatives.

In |23, 24|, the authors considered the issues of the numerical solution of fractional
differential equations, to which the filtration equations are reduced, using the methods
of the theory of difference schemes, and they carried out a rigorous theoretical study
of the convergence order of the proposed schemes. In the previous work [25], two finite
element schemes of the convergence order O (727%), v = max {«, 3,7}, a, 3,7 € (0,1) were
constructed for solving the initial boundary value problem for an equation of the form (1)
with a fractional Caputo derivative. In this paper, we continue this endeavor, but unlike [25],
we use a fractional derivative in the sense of Caputo-Fabrizio and assume that its use provides
a more realistic description of the fluid flow process and helps to better capture the dynamic
behavior of real phenomena as discussed in works [26,27|. In addition, the use of the Caputo-
Fabrizio derivative eliminates the difficulty of a degenerate singular kernel, which makes
it difficult to apply approximate methods of its discretization. When constructing numerical
methods for solving fractional-order equations, approximation formulas are used. With regard
to the derivative in the sense of Caputo-Fabrizio, for example, the L1 formula of order O (72),
the L1 — 2 formula of order O (72) [28] are known, where 7 is a time step.

The purpose of this paper is to construct and study a finite element method for solving
an initial boundary value problem for the equation with a fractional derivative in the sense
of Caputo-Fabrizio, describing the pressure distribution during fluid flow through a fractured
porous medium with a uniform distribution of fractures over the volume [6]. The paper
defines a semi-discrete formulation of the problem with respect to time, obtained using
the approximation of the fractional order derivative, and a fully discrete formulation of the
problem. Theoretical a priori estimates are obtained for the convergence order of both semi-
discrete and fully discrete schemes. Finally, the results of numerical tests are presented to
verify the results of theoretical analysis.
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2 Materials and methods

2.1 Formulation of the problem

In Qr = Q x [0,T], where Q = (0,1), the following initial boundary value problem is
considered:

ou 0%l 98ty Ny _

a+c¢aat‘x+l —I—CfﬁatBJrl —( (at'y ))wzfo, 0<t<T, ze€, (3)
w(0,t) =u(l,t) =0, 0<t<T, (4)
w(r,0) =uo(z), z€9Q, (5)

where a, 3 € (=1,0),v € (0,1), Gsa , ¢, fo are some positive constants, and the fractional

differentiation operator %, 0 < v < 1is defined in (2). Let us assume that:

(A1) F is a differentiable function defined on € such that
F(u) = pu+ @ (2,1), (6)

where ¢ is a given function, and yu is a positive constant.
(A2) Suppose that the problem (3)-(5) has a unique solution that has sufficient number
of derivatives required for conducting the theoretical analysis.

Definition 1 A weak solution to the problem (3)-(5) is the function w € H' (0,T; Hg (Q)),
u(x,0) =g (z), satisfying the identity

ou [0y [0y Uy _
(E)U) +C¢a (W,U) +Cfﬁ (W,U> + (F ( 61&7 ) 7Uac) = (f(),?]) (7)

for any v € H} (), where a, B € (—1,0),v € (0,1).

2.2 Discretization of the problem

First, let us discretize the problem (3)-(5) with respect to the temporal variable. To this end,
we divide the time interval [0,7T] by points t,, = n7, n = 0,1,..., N;, Ny7 = T and let u”
denote the semi-discrete approximation of v with respect to the temporal variable. We use
the following approximation formula for the Caputo-Fabrizio fractional derivative.

v

otr

Lemma 1 The Caputo-Fabrizio fractional derivative of orderv, 0 <v<1latt=1, is

approzimated by [28]

o’u
ot

= A"u" + 1, (8)

t=tn
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where

&, =)

TV

(exp (=0, (t, — ts)) —exp (=0, (t, — ts_1))), o0, = v

and the following relation holds for the approximation error rk:

(1—-v)M (v) 0?*u
212 0<i<t, | Ot

2

lrr] < T,

It is easy to show that the coefficients dy , satisfy the following properties:
a) dy, , are strictly positive for all 1 < s < n;

b) The sequence {dryz,s}sﬂ
c) dy,, = O(1).

Approximate the first-order derivative at t = t,, in the following form:

is increasing;

ou

) ! (3u" — 4"t 4 u"_Q) + 0O (72) , n>2
E n

_ ! or
— (u'=u")+0(r), n=1.
-

Let us define a semi-discrete formulation of the problem (3)-(5):

Problem 1 Let v’ € H} (), i = 0,1,....,n — 1 be known, u° = vy (z). Find u" € H} (Q)
satisfying the identity:

a) when n =1:

L (= ,0) o (A 00,0) + 0 (AP0 (F (A) ) = (). O
b) when n > 2:

% (Bu™ — 4u™ '+ U 0) 4 G (AT ) + Epg (AP 0) +

+ (F (A"}) v) = (fo,v) (10)
for allv € H} (Q), where o, 8 € (—1,0), v € (0,1).

To formulate a fully discrete scheme, we define a discrete space Vj, C Hy:
v, = {vh € H (Q)nC° (Q) ‘ vh) e Pi(e), VeelCh},

where IC;, is a quasi-uniform domain triangulation in 2.
Define the projection operator Q, : Hy (€2) — Vj, satisfying

(Quu —u), ,upe) =0 Yu € Hy (), uy € Vi,
The projection operator has the following properties:
lu = Quully + hllu— Quull, < Ch? ||ull, Yu € Hy ()N H*(Q), (11)

where ||-[|, denotes the norm in H?(Q).
Let us define the fully discrete scheme for the problem (3)-(5) as follows.
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Problem 2 Let ui € Vj,, i =0,1,....,n — 1 be given, u) = Quug. Find u}} € V}, satisfying the
following identities:
a) when n = 1:

% (u,lZ —up, vh) +Cpa (Ao‘“u}l,vh) +Crp (A’B“u}b,vh) +(F (A”’u}w) ,vh@) = (fo, vh) , (12)

b) when n > 2:

1
7. (Bup — 4wy +up 2 vp) + Cpa (A upt, o) + s (AP up vp) +

+ (F (A, ) s vne) = (fo,0n) (13)
for any vy, € V3, where o, € (—1,0), v € (0,1).

2.3 Study of convergence of the discrete schemes

Lemma 2 Let {ui}ﬁv:to, ut € L? () be the sequence of functions. For any u™ € L? (), n > 1,

v, n n 1 v 2
(A"u™ u™) > @, — D, — §dn,1 || 0 (14)
1 - v ill2
where ®,, = §de Hu ’ o =1, $=0.
i=1
Proof. First, let us show that
v, m o, mn 1 v, n|2
(A ) > A (15)

1
Consider the difference A = (A"u",u") — QAV |u™||2. Using the definition of the discrete

analogue of the Caputo-Fabrizio fractional derivative (8), we obtain the chain of equalities
n n us + usfl
A= dv us — us—l’un - dv us — US_17 ) —
> )= o (vt
n 1 n
= dv s _ 81 = (s __ .81 + kE k-1 _
;M,(u u ,2(u uwh) Z(u w1

k=s+1
1 n n k—1
14 — 2 v — s—
ZEdeS ((us—us Y ,1) —i—Zdn’s (uk—uk Y (w - 1)) . (16)
s=1 k=2
Further, it is easy to show that

Ck_gk:—l
uF =2 = E=1,2,....n
dv ) 9 Sy eeey 1y
n,k
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k
where Z d  (uf —uf™") = ¢*. Then from (16) we get
s=1

1 1112 1 B2 k=112 _
A= g I 3 g (I - 117) =

_1 S 1 1 k|2 1 n||2
- 5; (dﬁ,k T ) HC Ho + 247 1"l = 0,

n,k+1

whence the validity of the inequality (15) follows.
Let us now prove the inequality (14). Transform the right-hand side of (15) using the
definition of a discrete analog of the derivative:

1 1 1
A a5 = 5 el = 5 D o [l g =
s=1 s=1
1
::@n-_‘infl__édilHuoni'

The lemma is proved.
Let us turn to the study of the question of the convergence of the method. Below we
sometimes use the notation u (t) = u (-, ).

Theorem 1 Under the assumptions (A1)-(A2) the solution u"™ of Problem 1 converges to
the solution of the problem (3)-(5) and the following inequality holds:

lu (tn) = u"llg + 7/ 2e0T [Ju () — u™|l, < C77,

where ¢y = min {Emdo‘“ Efﬁdﬁjl, MdZJ}-

n,l

Proof. Denote w" = u (t,) — u™. Consider the difference of identity (7) at ¢t = ¢, and
identities (9), (10) and choose v = w™:
a) when n = 1:

) 1_,,0 oo+l
(=) v (G -t o

_ 97 B+1,1 .. n O, Vol n
+Csp Ty (t1) — A us,w™ )| + | F 5 (t1) | = F (Auy) ,wl | =0; (17)

b) when n > 2:

ou 3u™ — 4wt w2 [0y il o
<E(tn)— 57 7w>+c¢a<W(tn)_A +1u7w)+

_ (0% I Ny o
+Crp (W (tn) — A ™ w > " <F ( ot <tn)) — F(A%uy) ,wx) =0. (18)
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Let us estimate the terms in (17) and (18):

du wt —u 1 1 T
(G- =) 2 - 5 ltll+ 5 (G ().

ou 3u” — 4t

(5 2T W ) -

> = (w3 + 2w — w2+ o — 20 4+ w22 -
1

(ol =) + T (G 6 )

aa+1
(@ta+1 n Aa—i—lun w ) > (Tz—l-l’wn) + ((I)z-i-l . @ifi) . 2d3+11 ” 0‘ (2)7

0" B+1, n g+1 , n B+1 B+1 B+1 [, 0]2
(G ) = %%} = (137 w) o (057 = 821) = Sy,

(7 (G ) = F a0 ) 2 ot 0 (8 - @) = a2

where

1 n 8a+1
potl = - Zdaﬂ Jw*|)2,  rotl = Y (tn) — A" (ty),

2 s=1 ! ata—H
1< 0FtHy
2 =52 it e = G () = A u (),

s=1

1 “ s112 87um
Q= DA lls, = T () = AT ().
s=1

and @ = 0. Taking into account the obtained estimates in (17) and (18), we arrive at the

following inequalities:
0%u
<w (C1) wl) +

+2TCpq |(r§‘+1, 1)! +27¢yp ‘ (rf“,uﬂ)‘ + 274 }(r?,w;})

||w1H(2) + 279, < Hw()”z + 27D, + 272

, (19)

™12+ [|20™ — w2 + 7@, + |Jw" — 20"t w22 <

’ (g;: (G

+areps [(ri T w™) |+ drp | (), wi)] (20)

where the notation

o e A 4780 | (T ") | +

Py, = Coa Py + g+ @)
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is used. By estimating the last four terms on the right-hand side of (20), applying the Cauchy
inequality, we obtain

207 — w2 4 < = 2 R

83 n (6 n
+§—&gw|mm+M%W“mmm+
g [ o el + 4 Iyl sl 1)

Sum the inequality (21) for n from 2 to n to get

[w™ |2 + 47®,, < 5 ||w!||} + 47®,+

+g(#p
€1

8 (|

1=

_ | o n |
—|—€37'22Hw2H§+6—2”7‘?”34—847'2 E ||w;H(2)
i=2 129 i—2

5 (G)

2
C
+TH@+WO+TW£“WJ terr [+ 7 193 el +

2,)

—|— C¢a HT atl HO + Cfﬁ

l

or

[w™ |2 + 47®,, < 5 ||w!||} + 47®,+

27 ((Gads! + s i) Il 3+ ey, ]2 +

n—1
+7'2 Z <<C¢adz 1+1 -+ Cfﬁd6+1> ||wll|§ + Mdzl ”w;H?J + 07_4'
=2

Considering that (éwdgjl + Ef5d§ﬁ1> [Jw™||2 + pdy [w!||o < ®,,, it follows that
n—1

[w"||2 4 27®,, < 5 leuz + 479 + 77 Z o, + Cr.
i=2

Applying the discrete Gronwall’s lemma, we obtain
"I + 27 @, < C (J[u[lg + 71 + 7). (22)

Let us now evaluate terms in (19):

o*u

[t ||+ 27@, < |[w°||; + 27® + 272 o ()

Hlo + 27 {173 Iy [l +

leno +2p [|r] Ho T Hwi” y
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or

2
5+ 471 < S}y ek 5+ O
Noticing that %/LdilT Hwi”é < @y, we get

||w1H§+3T<I)1 <ort (23)

By substituting (23) into (22), and applying elementary transformations, we arrive at the
assertion of the theorem.

Theorem 2 Under the assumptions (A1)-(A2) there exists o > 0 such that for all 7 < 1y

the solution u} of Problem 2 converges to the solution of Problem (3)-(5) and the following
wmequality holds:

o (ta) = gl + 273/ s (ta) — g, < C (7 + 12).

where ¢y = min {5¢ada+1 Efﬁdgjlv “dg,l}'

n,l

Proof. Let u" — u}l = (u" — Qpu™) + (Qpu™ — u}) = 9" +n".
Consider the difference of (10) and (13) and choose v, = n™:

5+ |20 =g = " g = 12"~ = =2lg + [l = 207~ ]|+
HATCho (AL 4 0p") ") + dreps (AT ") ") +

n __ n—1 n—2
P (P (AM) ) dr (F () o) +ar (222200 ) —o

Consider the term

A7Cpo (AT (" 4+ ") 0") = 47Cpa (A" ") + 4TCha (A", ") = K + K.
Using Lemma 2, we get:

Ky > 4704, (D0 — 02F1) — 2rag0dett 0|7,

Ky < 4760 || A0 10"y <

Z dzzl (195 _ 19571)
s=1

2

_ ni2
< drcg, +27 0"l =

0
n ts 2
= 4762(1/ (Z dgj;l/ 19td9> dz + 27 |2 <
Q s=1 ls—1

T
_ ad1N\2 n
<ATr (candi ) [ 1030+ 27 7
0
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where ®o = Z dott (|n® |2. Similarly,
drepg (APFH(O" +0) ") > drcps (‘1)5“ - @ﬁj}) —2725d0y" |00 -
2 [T 2 2
77 (epsd2f?)” [ 00l b~ 21
0
where &/ 1! = Z dot n? |2. Estimate the remaining terms as follows:

A (F (ATup),ny) — 47 (F (A%p ) nf) = 47 (A (95 4+ n3) nf) =
= 47p (CD — P ) — 27pd) an’

Y

39" — 4t 4 g2
K¢ =47 ( i ,17") <

2T
S 0,do — [} 0,do )
- ‘ e
0
1 tn tn—1
== (/ /ﬁfdxd@ +/ /ﬁ?dwd&) +27 " |ls =
2 tn—1 Q tn—2 Q

L[ 2 |2
5 [ 1o+ e .
tn

1 n
where @) = 5 Z dy s 7212, Then it follows from (24) that
s=1

"l + (120" == llg + [l = 207 2 + 47 <
T
< I 2t = 2 aru 4 AT (i) [ 0o
0

T t
_ 2 n [
HAT T (crpdy ) / [94llg d6 + 67 [ln"llg + 5 / 4]l 6, (25)
0 tn—2
where
D, = Coo @O 4 Cpp T 4 @Y.

Sum the inequality (25) for n from 2 to n to obtain

n—1
12 + 47, < 5 |02 + 47F, + 67 [ln"[)2 + 67 S ||n'][% + O,

1=2
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whence, for sufficiently small 7, we obtain

n—1
72+ 4, < 5 [}t | + 47y + 6 S ||| + Cht
=2

By applying the discrete Gronwall’s lemma, we get

"2 + 47, < C (H#Hi 4 b, + h4> .

(26)

Considering the difference of (9) and (12), choosing v, = n' and using a similar technique

for estimating the terms in the resulting identity, we arrive at
9t — ||

T

1 372
In'llg + 7@ < 7 [0 [g + 5 'l + 5

therefore,
2+ ey < O (4 ).

Combining (26) and (27), we obtain

In"llg +deor Y I°ll; < € (7 + 1),

s=1

whence the assertion of the theorem follows.

3 Results

(27)

To check the accuracy of the scheme, computational experiments were carried out using a

model problem as an example.

Example 1 In Q; = Q x [0, 1], where Q = (0, 1), consider the problem

ou  0Mu 9Pt Ouy,

— — =fo, O<t<l, z€Q,
ot "o g ap A0 ‘

fo () = —% exp (t(r = 1)/ (7 — 2)) — exp (£/2)) +

(28)

+x(z—1)

u(z,0)=z(l-2), z€Q,
u(0,t) =u(l,t)=0, 0<t<l,
where a, f € (—1,0), v € (0,1).

exp (at/ (a — 1)) —exp(t/2) exp(Bt/ (8 —1)) —exp(t/2)  exp(t/2)
a+1 B+1 2
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The exact solution to the problem is u (x,t) = z (1 — ) exp (t/2).

The first series of computational experiments was carried out to compare the convergence
order of the scheme with respect to the time step with a fixed value of the spatial step,
h = 1/20000. For this, the time step value was gradually halved from 1/10 to 1/640,
and the convergence order was evaluated as (In(Rg./R.))/In2, where R, is the L*-
error of the approximate solution calculated with the use of the time step 7. Tables 1-3
outline the results of the analysis for different values of the fractional derivative orders,
a=p¢e€{-09,-0.5—-0.1} and v € {0.1,0.5,0.9}. It can be clearly seen from the presented
values that the convergence order does not depend on the fractional derivative orders for all
considered cases, and its value approaches 2. This behavior agrees well with the theoretically
predicted order with respect to the time step obtained in Theorem 2.

Similarly, the second series of computational experiments was conducted in order to
compare the convergence order with respect to the spatial step with a fixed temporal step,
7 = 1/20000. The corresponding L?-errors and convergence orders are presented in Tables
4-6. As it follows from numerical experiments, the actual convergence order for all considered
cases is close to 2. Hence, the results obtained fully confirm the theoretically predicted order
obtained in Theorem 2.

Table 1: Error analysis with respect to the temporal step, v = 0.1

a=p8=-09 a=p3=-0.5 a=pF=-0.1
L*-error Order L?-error Order L?-error Order
1/10 1.5578 x 1074 - 1.9224 x 10~* - 3.2447 x 1073 -
1/20 3.7507 x 107° | 2.05 | 4.4459 x 10~° | 2.11 | 7.6783 x 10~™* | 2.08
1/40 | 9.1597 x 107 | 2.03 | 1.0491 x 10 | 2.08 | 1.8135 x 10~* | 2.08
1/80 | 2.2580 x 107 | 2.02 | 25154 x 1079 | 2.06 | 4.2878 x 10~° | 2.08
1/160 | 5.5077 x 107 | 2.01 | 6.1017 x 107 | 2.04 | 1.0106 x 105 | 2.07
1/320 | 1.3920 x 1077 | 2.01 | 1.4951 x 1077 | 2.03 |2.4359 x 107° | 2.07
1/640 | 3.4467 x 1078 | 2.01 |3.7320 x 107® | 2.00 | 5.9093 x 10~7 | 2.04

Table 2: Error analysis with respect to the temporal step, v = 0.5

a=pF=-09 a=p=-0.5 a=pF=-0.1
L?-error Order L?-error Order L?-error Order
1/10 | 3.1783 x 1074 - 3.4405 x 1074 - 3.2313 x 1073 -
1/20 | 6.7777 x 107> | 2.23 | 7.2527 x 107> | 2.25 | 7.6007 x 10~* | 2.09
1/40 | 1.4763 x 107° | 2.20 | 1.5600 x 107> | 2.22 | 1.7861 x 10~* | 2.09
1/80 | 3.2883 x 1075 | 2.17 | 3.4378 x 107° | 2.18 | 4.1985 x 107° | 2.09
1/160 | 7.4652 x 1077 | 2.14 | 7.7628 x 107" | 2.15 | 9.8740 x 107° | 2.09
1/320 | 1.7842 x 1077 | 2.06 | 1.7728 x 107" | 2.13 | 2.3550 x 107° | 2.07
1/640 | 4.2906 x 1078 | 2.06 | 4.1230 x 107% | 2.10 | 5.7194 x 10~" | 2.04
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Table 3: Error analysis with respect to the temporal step, v = 0.9

. a=p3=-09 a=p0=-05 a=pF=-0.1
L?*-error Order L?-error Order L’?-error Order
1/10 | 1.0618 x 1073 - 1.0576 x 1073 - 1.0644 x 1073 -
1/20 | 25121 x 107* | 2.08 | 2.4874 x 107* | 2.09 | 2.5491 x 10~* | 2.06
1/40 | 5.9316 x 107° | 2.08 | 5.8445 x 107> | 2.09 | 6.1094 x 107> | 2.06
1/80 | 1.4018 x 107° | 2.08 | 1.3736 x 107° | 2.09 | 1.4812x 10~> | 2.04
1/160 | 3.3405 x 107° | 2.07 | 3.2921 x 107° | 2.06 | 3.6240 x 107° | 2.03
1/320 | 7.9946 x 1077 | 2.06 | 7.8824 x 10~" | 2.06 | 8.9512 x 10~" | 2.02
1/640 | 1.9589 x 10=7 | 2.03 | 1.9291 x 107 | 2.03 | 2.2394 x 10=7 | 2.00

Table 4: Error analysis with respect to the spatial step, v = 0.1

L a=pF=-09 a=p=-0.5 a=p3=-0.1
L?-error Order L?-error Order L?-error Order
1/10 | 1.0955 x 10~ - 1.2410 x 1076 - 1.3720 x 107¢ -
1/20 | 2.7388 x 10=7 | 2.00 | 3.1026 x 1077 | 2.00 | 3.4538 x 10~7 | 1.99
1/40 | 6.8469 x 1078 | 2.00 | 7.7565 x 107° | 2.00 | 8.6946 x 1078 | 1.99
1/80 | 1.7117 x 1078 | 2.00 | 1.9257 x 107° | 2.01 | 2.1737 x 1078 | 2.00
1/160 | 4.2498 x 107 | 2.01 | 4.7810 x 107 | 2.01 | 5.4341 x 10 | 2.00
1/320 | 1.0551 x 107 | 2.01 | 1.1788 x 107 | 2.02 | 1.3491 x 107 | 2.01
1/640 | 2.6014 x 10710 | 2.02 | 2.9064 x 1071 | 2.02 | 3.3496 x 10~ | 2.01
Table 5: Error analysis with respect to the spatial step, v = 0.5
L a=p=-09 a=p=-05 a=p=-0.1
L?-error Order L?-error Order L?-error Order
1/10 | 9.3002 x 10~ - 1.0559 x 107° - 1.1687 x 107° -
1/20 | 2.3251 x 1077 | 2.00 | 2.6581 x 1077 | 1.99 | 2.9421 x 10~" | 1.99
1/40 | 5,8126 x 1078 | 2.00 | 6.6453 x 107® | 2.00 | 7.4065 x 107% | 1.99
1/80 | 1.4532 x 107% | 2.00 | 1.6499 x 107% | 2.01 | 1.8516 x 107° | 2.00
1/160 | 3.6078 x 1077 | 2.01 | 4.0961 x 1079 | 2.01 | 4.6291 x 107 | 2.00
1/320 | 8.9572 x 10719 | 2.01 | 1.0099 x 1079 | 2.02 | 1.1493 x 107 | 2.01
1/640 | 2.2085 x 10710 | 2.02 | 2.4901 x 1071 | 2.02 | 2.8533 x 10~ | 2.01
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Table 6: Error analysis with respect to the spatial step, v = 0.9

3 a=p=-09 a=p0=-05 a=p=-0.1
L%-error Order L?-error Order L?-error Order

1/10 | 7.7391 x 1077 8.8972 x 1077 1.0233 x 107°

1/20 | 1.9482 x 1077 | 1.99 | 2.2243 x 1077 | 2.00 | 2.5761 x 10~" | 1.99

1/40 | 4.8706 x 1078 | 2.00 | 5.5607 x 107° | 2.00 | 6.4849 x 1078 | 1.99

1/80 | 1.2176 x 1078 | 2.00 | 1.3806 x 107° | 2.01 | 1.6212 x 1078 | 2.00

1/160 | 3.0231 x 1077 | 2.01 | 3.4276 x 107 | 2.01 | 4.0531 x 107 | 2.00

1/320 | 7.5055 x 1071 | 2.01 | 8.4510 x 1071 | 2.02 | 1.0063 x 107 | 2.01

1/640 | 1.8505 x 1071° | 2.02 | 2.0837 x 10710 | 2.02 | 2.4983 x 107 | 2.01

4 Conclusion

Thus, the constructed numerical method allows obtaining an approximate solution to the
problem of fluid flow in a fractured porous medium with the second order in both time and
spatial variable. The results of computational experiments carried out for various orders of
fractional derivatives and grid configurations fully confirm the results of theoretical analysis.
The methods used and the conclusions drawn, described in the work, can be used to solve
other classes of fractional differential equations.
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