ISSN 1563 — 0277
eISSN 2617 — 4871

OJI-OAPABU arsingaret KASAK YJ/ITTBIK VHUBEPCUTETI

XABAPIIIBI

MaTeMaTI/IKa, MeEXaHUKa, I/IH(bOpMaTI/IKa CEPUsACHI

KABAXCKNI HAIIMOHAJILHBIN YHUBEPCUTET umenn AJIb-OAPABU

BECTHHUK

Cepust MmaTeMaTnKa, MeXaHuKa, HHpOPMATHKA,

AL-FARABI KAZAKH NATIONAL UNIVERSITY

Journal of Mathematics, Mechanics
and Computer Science

Ne2 (126)

AmaTer
«Kazak ynuepcureri»
2025



Bapeesucmpuposar 6 Munucmepcemee un@opmayuy u Kommyrukayut Pecnybauxu Kasaxcman,
ceudemenvcmeo Ne16508-2K om 04.05.2017 2. (Bpems u momep nepeuwHolt noCmano8ky Ha YHwem
Ne766 om 22.04.1992 2.). Sszwx uszdanusa: aneautickuti. Buxodum 4 paza 6 200.

Temamuueckasn HANPABAEHHOCTMD: MEOPEMUMECKAA U npmc/m@naﬂ mamemamura, MerarHuxra, uHﬁopMa'muna.

PeﬂaK].lI/IOHHaSI KoJiJierms
Hay4HBbIN pemakTop — b.E. Kaneyowcun, 0.¢p.-m.n., npopeccop, KasHY um. arv-Dapadbu,
3aMeCTUTEJIb HAYYHOr'0 peaakTopa — /I[.U. bBopucos, 0.¢.-m.1., npogeccop, Uncmumym mamemamury ¢
BLLUUCAUMENLHDBIM UeHMPoMm YPumckozo naywnozo yenmpa PAH, Bawxupckui 2ocydapemsentvii nedazo2useckut
yrusepcumem um. M. Axmyasv,, Poccus
orBeTcTBeHHbIN pemakTop — A.1. lloxip, PhD, KasHY um. asrv-Dapabu

Tueu Istiman (CLIA); Moxanpadsc Mypyeecan (Hndua); Savbas Hopazum Moxammed Aby Javmazd (Eeunem);
Kabanuxurn C.H. (Poccus); Matinke M. (Tepmanua); Maswwrur B.D. (Poccus); Paxuwesa 3.B. (Kasaxeman);
Pyorcancrkui M. (Beaveus); Cazumos C.M. (Ilseyus); Cykowes @.A. (Ascmpanun); Tatimanos H.A. (Poccus);
Temasnxos B.H. (CIIA); Hlunuwu Haxacyxa (Snowus); Moxanpadoe Mypyzecan (Anodus); Dueu Hetimar (CIIA);
Japubaes Beumbemn Cepurosuy (Kazaxcman); Hmankyaos Tumyp Caxenosuy (Kazaxcman); Cepeeti Topaay (Tep-
manus); Tpuzo Iayao (ITopmyeanus); Muncy Xan (FOorcnas Kopes); Dorcunauensan Ioa Jesadoce (Beaurobpuma-

nua); Kanmownu Bupdocunuo (Mmanus); Peppetipa Xopre (Bpasusus); Morammed Ommar (Manatizus); Aavbep-
mo Kabada (Hcenanus)

WNnpekcupyercss 1 yd4acTBYeT:

-
d DIGITAL ‘ Crossref

o o Content
TR AN Registration

HommTeT mo ofeCneseHaD KaNeCTRS
n chepe ofipa SOBIHHA H HAYDA
MOH PK

POCEHMACHIR HHIEKNT e S
FUAYYHOND LJHT MPORAHER A DIRECTORY OF

) . 1 ) DPEN ACCESS
Science Index RaAD e .;:_m_-...CII:EFaCtDT' | J LA SoiRmas

2 Clarivate’

EBSCO "f::-’\ WorldCat Webof Science’

Hayunoe uzdarue
Becruuk KasHY. Cepus “Maremaruka, Mexanuka, nadopmaruka’, Ne 2 (126) 2025.
Penakrop — A.F. Ilokip. Komnbiorepuas sepcrka — A.F. [lokip

B N 15711
Dopmat 60 x 84 1/8. Bymara odcernas. Ileuars nudposas. O6bem 13,7 m.a1.

Baka3 N 290. Uznarenbckuii qom “Kazak ynusepcureri”
Kaszaxckoro nanmonasbHoro ynusepcurera uM. ajib-Papabu. 050040, r. Anmarsl, np.aus-Papabu, 71, KazHY.
Ornevyarano B Tunorpaduu usgareabckoro goma “Kazak yHusepcureri”.

© KasHY uwm. anb-Papabu, 2025



ISSN 1563-0277, eISSN 2617-4871 JMMCS. Ne2(126). 2025 https://bm.kaznu kz

1-6eim Pazgen 1 Section 1
MaremaTuka Maremaruka Mathematics
IRSTI 27.31.21; 27.31.55 DOI: https://doi.org/10.26577/JIMMCS2025126201

G.F. Azhmoldaev'~— K.A. Bekmaganbetov?>®>— G.A. Chechkin*®
V.V. Chepyzhov®

I'L.N. Gumilyov Eurasian national university, Astana, Kazakhstan
2 Kazakhstan branch of M.V. Lomonosov Moscow state university, Astana, Kazakhstan
3 Institute of mathematics and mathematical modelling, Almaty, Kazakhstan
4 M.V. Lomonosov Moscow state university, Russia, Moscow
% Institute of mathematics with computing center subdivision of the Ufa Federal research center,
Ufa, Rassia
6 Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
*e-mail: azhmoldaevgf@gmail.com

HOMOGENIZATION OF ATTRACTORS TO THE REACTION-DIFFUSION
SYSTEM IN A DOMAIN WITH ROUGH BOUNDARY

In this paper, we consider the homogenization problem in a micro inhomogeneous domain with a
rapidly oscillating boundary. It is assumed that a system of nonlinear reaction—diffusion equations
with rapidly oscillating terms and dissipation is considered in the domain. On the locally periodic
oscillating part of the boundary, the third boundary condition with rapidly oscillating coefficients
and a small parameter characterizing the oscillation of the boundary to some degree is imposed.
Depending on the degree of the small parameter in the boundary condition, various homogenized
(limit) problems are obtained and the convergence of the trajectory attractors of the given system
to the attractors of the homogenized system is proved. Critical, subcritical and supercritical cases
of attractor behavior as the small parameter tends to zero are carefully studied. The paper also
considers problems in a domain with a random rapidly oscillating boundary. In this case, a
homogenized system of reaction—diffusion equations with deterministic coefficients is obtained
in the case of a statistically homogeneous random structure of the boundary. A theorem on
the convergence of random trajectory attractors of the initial given system of reaction-diffusion
equations to a deterministic attractor of the homogenized (limit) system of reaction—diffusion
equations is also proved. The paper also proves the convergence of global attractors in the case
of uniqueness of solutions, which in turn is proved for nonlinearity in a system of equations of a
special type.

Key words: attractors, homogenization, reaction-diffusion equations, non-linear equations, weak
convergence, rapidly oscillating boundary.
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Te3 Tepbenmesi niekapachl 6ap aliMmakTap/arbl peakiusi-audysus TeHaeyIepiniy,
aTTPAKTOPJIAPBIHBIH, OPTAIIAJIAY bI

Byn xxymbicTa mekapachkl Te3 TepbesieTiH MUKPO OIpTEKTI emec aifiMakTa OpTalmajiay Moceseci
KapacThIpbLIabl. AfiMakTa YKbLUIIAM TepOeaeTiH MyIiegepi MeH JMCCHIAIUACH] 0ap ChI3BIKTHI
eMmec peaxknus-auddy3usa TeHgeyaep Kyieci 3eprreminred. [llekapaHbiH JTOKAIbIBI TepOeIMeti
besiriange KburmaMm TepbenMesi KoadduimenTTepi 6ap YHIHIN IEeKapasblK IMapT >KOHE IeKa-
pasbIH Oesrijii 6ip gopexKeme TepOesriciH cumaTTaiiThiH IafblH Hapamerp Oesrinenemi. ITlekTik
JKarmaigarsl Kinn mapaMeTp Jopexkecine GaillaHbICThl 9pTYpJIi opTamaianran (IMIEKTIK) ecernrep
AJIBIH/IBI JKOHE OACTANKBI YKYHEeHIH TPAEKTOPHUSJIBIK, ATTPAKTOPJIADPBIHBIH, OPTAIlIAJIAHFaH KYeHIH
aTTPAKTOPJIAPBIHA YKUHAKTAIYBI JpJieanenai. Kiml mapamerp Hejire YMTBUIFAH Ke3/e ATTPaK-
TOPJIAPJIBIH €PeKNIeTiKTepl KPUTUKAJIBIK, CYOKPUTUKAJIBIK 2KOHE CYIePKPUTUKAJIBIK, 2Kariaiiia-
PBl MYKHAT 3epTTestingi. Makajiajga COHbBIMEH KaTap Ke3JeHCOK, YKbLIJaM TepOeIeTiH IeKapachl
Gap aiiMakTarbl Mocejejep KapacThIPbLIaIbl. ByJl Karmaiia IIeKapaHblH CTATUCTUKAJIBIK Oip-
TEKTI Ke3IefCOK KYPBLIbIMbI *KAFIANBIHIA JIeTepPMUHUPJIEHTeH KO3(hdUIMeHTTepi 6ap peakiusi-
muddysus TeHAeyIepiniy opTramasanral Kyieci anbragpl. Peaknus-anddysus TeHeyepiHin
GacTankbl KyiieciHiH Ke37efCOoK TPAeKTOPHUSJIBIK ATTPAKTOPJIAPBIHBIH OpTAIlajaHraH (IIeKTIiK)
peaktus-auddy3ust TeHaeyIep KyHeciHin ke3eiicok, emec ecebiniH, aTTPaKTOPbIHA, KUHAKTAJIY bI
TypaJibl TEOPEMACHI JpJjiejeHreH. 2K yMbIC coHaii-aK, bipereil memiMaep Kar ailblHaa TI06a1/bl
ATTPAKTOPJIAPIBIH, KIMHAKTAIYBIH JIDJIEJIIEHI], OYJI KaFaail ChI3BIKTHIK, eMeC MYIIeIepre KOChIMIIIA
mrapT KOWBLIFaH Ke3je maiiaa 6oIabt.

Tyiiin cesnep: arTpakTop/ap, opramiaJiay, peakims-andy3ust TeHIeyaepi, ChI3bIKTHIK eMeC TeH-
JIeyJIep, 9JICI3 KUHAKTBLIBIK, T€3 TepOeIMeli mekapa.
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O6 ycpeaHeHUUW aTTPAKTOPOB ypaBHeHUil peaknun-andy3un B o6JIacTU ¢ HIEpOXOBATOM
rpaHuiei

B nammoit pabote paccMaTpuBaeTCs 3a/1a4a YCPEIHEeHNs B MUKPO HEOTHOPOIHOM 001acTH ¢ OBICTPO
ocnmLupyioieit rpanuneit. Ilpenmonaraercs, ¥To B 001acTH 33/1aHa CUCTEMA HEJNHEHHBIX yPaB-
HeHuil peaknun—auddy3un ¢ OBICTPO OCIUIUPYIOMUME 4ieHaMu U guccumnanueit. Ha jiokaabao
MIEPUOINIECKON OCIIIINPYIOIIEl YacTU T'PAHUIBI BHICTABIIEHO TPETbEe KPAeBOE YCJIOBHE C OBICT-
PO OCIIMILIAPYIOMIMHU KOI(DMUITUEHTAMEI U MAJIBIM IaPAMETPOM, XaPAKTEPUIYIONUM OCIIHJIJISIIIIO
TPaHUIIBI, B HEKOTOPOIt cTerienn. B 3aBUCHMOCTH OT CTeIeHN MAJIOTO ITapaMeTpa B KPAeBOM YCJIOBHIH
[IOJIyYeHbl PA3JIMYIHble yCPeJIHEHHbIE (IIpe/iesIbHbIe) 3a/1aUi U J0Ka3aHa CXOAUMOCTh TPAEKTOPHBIX
ATTPAKTOPOB UCXOMHON CUCTEMBI K aTTPAKTOPaM YCPEIHEHHON CHCTeMBbl. AKKYPaTHO HUCCJIeI0Ba-
HBl KPUTHYECKWil, CYOKPUTUIECKUIT U CYINMEPKPUTHIECKUIT CJIyIarW IOBEJEHUsI ATTPAKTOPOB IIPHU
CTPEMJIEHAU MAJIOTO MapaMeTpa K HyJ0. B crarbe paccCMOTPEHBI TaKXKe 33/a9u B 00JIACTH CO
cayvaiiHoi 6uICTPO ocrmIupyIomieil rpanuneit. [Ipu sToM mosryveHa ycpeHEHHAsT CUCTEMA yPaB-
HEeHUH peaknuu—auddy3un ¢ TeTepMUHAPOBAHHBIMU KOI(MDMUITUEHTAMA B CJIyYae CTATHCTUIECKH
OJHOPOJTHOM CJIyYaiHOW CTPYKTYpOll rpaHuiibl. TakxKe JIOKa3zaHa TeOpeMa O CXOIUMOCTHU CJIydaii-
HBIX TPAEKTOPHBIX ATTPAKTOPOB UCXOMHOI CUCTEMbI ypaBHEHU peakuu—nudy3un K JeTepMUHI-
POBAHHOMY ATTPAKTOPY yCPEJHEHHOMN (IIpejiesibHOM) cucreMbl ypaBHenuil peakimn—auddysuun.B
paboTe Tak»Ke JO0Ka3aHa CXOIUMOCTD U IVIODAJILHBIX ATTPAKTOPOB B CJIyYae €IMHCTBEHHOCTH Dellre-
HUIl, KOTOpasd B CBOIO o4epe/ib JoKa3aHa [JIs HeJIMHEHHOCTU B CUCTeMe YPaBHEHHIl ClieluajIbHOIO
BHJIA.
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KuiroueBbie cjioBa: arTpakTOpbI, YCPEIHEHWEe, ypaBHEHUs peaknuu-audys3un, HeJuHeiHbIe
ypaBHEHUSI, ¢j1abasi CXOIUMOCTh, OBICTPO OCIUJLIMPYIONAs I'PAHUIIA.

1 Introduction

In this paper, we present a review of results on homogenization of initial-boundary value
problems for a system of reaction—diffusion equations in domains with a rapidly oscillating
boundary (for detailed geometric formulations, see [3| and [40]). We consider nonlinear
systems of reaction—diffusion equations in such a domain with a locally periodic and random
rapidly oscillating boundary, and investigate the case of dissipative coefficients in the
equations. We prove the existence of trajectory attractors, construct a limit (homogenized)
system of reaction—diffusion equations both in the case of a locally periodic and in the case
of a statistically homogeneous random boundary, and prove the convergence of the attractors
of the original system as the small parameter characterizing the boundary oscillation, tends
to zero, i.e. prove the Hausdorff convergence of the attractors of the original system to
the attractors of the homogenized (limit) system as the small parameter tends to zero. In
many purely mathematical works one can find asymptotic analysis of problems in domains
with oscillating (rough) boundaries (see, for example, [I1H10]). We also mention here the
fundamental works on this topic |11-14], where one can find a detailed bibliography. A special
feature of the second part of the work is the random geometry of the domain (see some
examples in [37H39]). It is assumed that the random structure is statistically homogeneous.
This fact allows us to obtain a deterministic limit problem (see [40]), which does not depend
on the choice of an element of the probability space. Theoretical results on attractor averaging
can be found, for example, in |15-17|, and see references therein. Attractor averaging was
also studied in |17-20] (see also [21-24]).

In this paper, we establish weak convergence (in the sense of “almost surely” in the
probabilistic case, i.e. with probability one) of the trajectory attractor 2. of reaction—diffusion
systems in domains with an oscillating boundary, for ¢ — 0, to the trajectory attractors
A of homogenized systems in some natural functional space. Here the small parameter e
characterizes the period and amplitude of the oscillations. The parameter ¢ also appears
to some power in the third boundary condition on a part of the locally periodic boundary,
and in the limit in the locally periodic case we obtain 3 different homogenized problems
(critical, subcritical and supercritical cases) depending on the ratio between the powers of
the small parameter. In the random formulation of the problem e also characterizes the
microinhomogeneity on the boundary.

In the second section of the paper one can find the main preliminary results on attractors
and random sets, the third section is devoted to homogenization in the locally periodic case.
In the fourth section we present the results of homogenization when the boundary has a
random structure.

2 Preliminary information.

2.1 Trajectory attractors of evolution equations

This section is devoted to the construction of trajectory attractors to autonomous evolution
equations (see details in [17]).
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Consider an autonomous evolution equation of the form for ¢ > 0

ou
o = Alw). (1)

Here A(-) : By — Ej is a nonlinear operator, E, E, are Banach spaces and E; C Ej. As an
example one can consider A(u) = AAu — a(-) f(u) + h(-).

We study weak solutions u(t) to as functions ¢t € R as a whole. The set of solutions
of is said to be a trajectory space K+ of equation . Now, we describe the trajectory
space KT in detail.

Consider solutions wu(t) of (1)) defined on [t1,%3] C R. We consider solutions to problem
in a Banach space JFy, ;,. The space Fy, 4, is a set f(s),s € [t1,to] satisfying f(t) € E for
almost all t € [t1, 5], where F is a Banach space, satisfying £y C E C FEy.

For instance, F;, ., can be considered as the intersection spaces C([t1,to]; E), or
Ly(t1,to; E), for p € [1,00]. Suppose that Il ;,Fr,r, © Fpyp and [l 4, fll7,,, <
C(ty, to, 7, ) fll7, ., Vf € Friry. Here [ty,t0] € [1y, 7] and II;, 4, denotes the restriction
operator onto [tq,ts], constant C(ty,ta, 71, 72) does not depend on f.

Denote by S(7) for 7 € R the translation operator S(7)f(t) = f(7 +t). It is easy to see,
that if the argument ¢ of f(-) belongs to the segment [t;,t5], then the argument ¢ of S(7)f(+)
belongs to [t; — 7,to — 7] for 7 € R. Suppose that the mapping S(7) is an isomorphism from
Fity t0 By gy and |S(7) fll7, 11y r = IfllFt100 Y € Fiypy- It is easy to see that this
assumption is natural.

Suppose that if f(t) € Fi,4,, then A(f(t)) € Dy +,, where Dy, 4, is a Banach space,
which is larger, F, +, € Dy, 4,. The derivative %it) is a distribution with values in FEj, % €
D'((t1,t2); Ep) and we suppose that Dy, ;, € D'((t1,t2); Eo) for all (¢1,t2) C R. A function
u(t) € Fiy 1, 18 & solution of , if 2¢(t) = A(u(t)) in the sense of D'((ty,t2); Ep).

Let us define the space 77 = {f(t), t € Ry | I, 1, f(t) € Fipo, V [t1,t2] C Ry} For
instance, if 7,4, = C([t1,t2); E), then Fi¢ = C(Ry; E) and if Fy, 4, = Ly(t1,to; E), then
Floe = Li*(Ry; E).

A function u(t) € F°¢ is a solution of , if T1;, 4, u(t) € Fi, 4, and u(t) is a solution of
for every [t1,ts] C R;.

Let Kt be a set of solutions to from ]—"ﬁroc. Note, that KT in general is not the set of
all solutions from ffc. The set K consists on elements, which are trajectories and the set
KT is the trajectory space of the equation ([1)).

Suppose that the trajectory space K is translation invariant, i.e., if u(t) € KT, then
u(t +t) € Kt for every 7 > 0.

Consider the translation operators S(7) in Fi¢ : S(7) f(t) = f(7-+t), 7 > 0. It is easy to see
that the map {S(7),7 > 0} forms a semigroup in F2¢ : S(71)S(r2) = S(m1+7) for 7,72 >0
and in addition S(0) is the identity operator. The translation semigroup {S(7),7 > 0} maps
the trajectory space KV to itself: S(7)K+ C KT for all 7 > 0.

We investigate attracting properties of the translation semigroup {S(7)} acting on the
trajectory space KT C ij’c. Next step is to define a topology in the space ]—"_lfc.

Let some metrics py, 4, (-, -) be defined on Fy, 4, for every [t1, 3] C R. Suppose that

Pty ,ta (chtzf’ chtzg) S D(tla t2,7’1, 72)P7—1,7—2 (fa g) ‘V’f,g € f’rl,m) [tht?] g [7_17 TZ]a
pt1—7'7t2—7'(5(7—>f7 S(T)g) = pt1,t2(f7 g) vfag € Ft1,t2a [tla t2] - R? T €R.
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Now, we denote by O, ;, metric spaces on F;, ;,. For instance, p;, 4, is metric associated with
the norm || - ||z, ,, of 4, 4. On the other hand, in application p;, +, generates the topology
Oy, +, that is weaker than the strong one of the F, 4,.

The projective limit of the spaces Oy ;, defines the topology ©%¢ in F'¢ that is,
by definition, a sequence {fy(t)} C F° tends to f(t) € F' as k — oo in O if
Prots Mty 20 fi, Iy 1, f) — 0 as k — oo for all [ty,t5] C Ry. It is possible to show that
the topology @l_fc is metrizable. For this aim we use, for example, the Frechet metric

—m Po,m(f1,f2)
L+ pom(fi, f2)

p+(f1, f2) = Z 2

meN

(2)

The translation semigroup {S(7)} is continuous in ©'%. This statement follows from the
definition of ©°.

We also define the following Banach space F2 := {f(t) € Flo | [fll7 < 4oc}, where
the norm [|f{|z := sup ¢ [[Hoaf (T +1)l|7,,-

We remember that fi C @ﬂfc. We need from our Banach space ]-"fL only one fact that
it should define bounded subsets in the trajectory space Kt. For constructing a trajectory
attractor in KT, instead of considering the corresponding uniform convergence topology of
the Banach space fﬁ’r, we use much weaker topology, i.e. the local convergence topology @lfc.

Assume that K+ C F2, that is, every trajectory u(t) € K* of equation has a finite
norm. We define an attracting set and a trajectory attractor of the translation semigroup

{S(7)} acting on K.

Definition 1 A set P C ©° is called an attracting set of the semigroup {S(7)} acting on
KT in the topology @{ﬁc if for any bounded in Fi set B C KT the set P attracts S(7)B as
T — +00 in the topology ©'%, i.e., for any e-neighbourhood O.(P) in ©Y° there exists 71 > 0
such that S(7)B C O(P) for all 7> 7.

It is easy to see that the attracting property of P can be formulated equivalently: we have
diSt@O’M (H()’MS(T)B, H(),M,P) — 0 (7’ — ‘l‘OO),

where disty(X,Y) = sup,cxdistym(z,Y) = sup,exinfyey pm(x,y) is the Hausdorff
semidistance from a set X to a set Y in a metric space M. We remember that the Hausdorff
semidistance is not symmetric, for any B C Kt bounded in .Fi and for each M > 0.

Definition 2 ([17]) A set A C KT is called the trajectory attractor of the translation
semigroup {S(7)} on KT in the topology ©'°, if

(i) A is bounded in F° and compact in O,

(71) the set A is strictly invariant with respect to the semigroup: S(1)A = A for all 7 > 0,

(i) A is an attracting set for {S(7)} on Kt in the topology ©', that is, for each M > 0
we have diste, ,, (Io.aS(7)B, o uA) — 0 (7 — +00).

Let us formulate the main assertion on the trajectory attractor for equation (/).

Theorem 1 ([16,(17]) Assume that the trajectory space Kt corresponding to equation (1) is
contained in ]-“i. Suppose that the translation semigroup {S(t)} has an attracting set P CK+



8 Homogenezation of attractors to the reaction-diffusion system ...

which is bounded in F5 and compact in ©%°. Then the translation semigroup {S(),7 > 0}
acting on KT has the trajectory attractor 20 C P. The set 2 is bounded in Fi and compact
m @lﬁc.

Let us describe in detail, i.e., in terms of complete trajectories of the equation, the
structure of the trajectory attractor 2l to equation . We study the equation on the
time axis,i.e. t € R.

Note that the trajectory space Kt of equation on R, have been defined. We need this
notion on the entire R. If a function f(¢), s € R, is defined on the entire time axis, then the
translations S(7)f(t) = f(7 + t) are also defined for negative 7. A function u(t),t € R is a
complete trajectory of equation (1)) if [T, u(7+¢) € KT for all 7 € R. Here II = Il o denotes

the restriction operator to R .
We have }"_lfc, .Ff’r, and @lfc. Let us define spaces F°¢, 7, and ©'° in the same way:

Fo={f(t),t € R [Ty, f(5) € Frpy ¥ [t te] CRY; F2i= {f(t) € F | | fll 0 < o0},

where

[ fll 7 := sup |[Ho 1 f(T +1)|| 7, (3)
heR

The topological space ©"¢ coincides (as a set) with F¢ and, by definition, fy(t) —
f(t) (k= 00) in ©%¢ if Ty, 4, fe(t) — Ty, 4, f(t) (kK — 00) in Oy, 4, for each [t1,t5] C R. Tt is
easy to see that ©'° is a metric space as well as ©'%.

Definition 3 The kernel K in the space F° of equation s the union of all complete
trajectories u(t),t € R, of equation that are bounded in the space F° with respect to the
norm , i.e. o u(r +1)||7, <C, VT eR.

Theorem 2 Assume that the hypotheses of Theorem[I] holds. Then 2 = I1 K, the set K is
compact in ©'°¢ and bounded in F°.

To prove this assertion one can use the approach from [17].
In this paper we investigate evolution equations and their trajectory attractors depending
on a small parameter € > 0.

Definition 4 We say that the trajectory atiractors 21 converge to the trajectory attractor
2 as ¢ — 0 in the topological space @l_fc if for any neighbourhood O(2A) in @lfr’c there
is an €1 > 0 such that 2. C O®) for any e < e, that is, for each M > 0 we have
diStQO’M (H07MQ[5, HO,MQL) —0 (8 — 0)

2.2 The probabilistic framework and main assumptions

Throughout the paper, we assume that all the random fields and random variables are defined
on a probability space (€2, A, ). The random fields considered in the paper are statistically
homogeneous.

Definition 5 A family of measurable maps T, : @ — Q, z = (21,...,74) € RY, is called a
d-dynamical system if the following properties hold true:



G.F. Azhmoldaev et. al. 9

e Group property:

Tory =TT, Yo,y € RY, Ty = Id (Id is the identical mapping);

e [sometry property:

TUc A w(TU) = pld), Yo eRY, YU € A;

e Measurability: for any measurable functions ¢(w) on €2, the function ¢(T,w) is
measurable on © x R?, where the space R? is equipped with the Borel o-algebra B.

Definition 6 Let ¢(w) be a measurable function (i.e. a random variable) on €. The function
d(Tyw) of z € R? and w € Q is called statistically homogeneous random field, and, for fixed
w € Q, ¢p(T,w) is called the realization of the random field ¢.

Let L,(£2) (¢ > 1) be the space of measurable functions and integrable in the power ¢
with respect to the measure p. The following assertion holds, see [14] and [13] for the proof.

Proposition 1 Assume that ¢ € L,(2). Then almost all realizations ¢(T,w) belong to
Llec(RY). If the sequence {¢r} C Lg(Q) converges in Ly(Q) to the function ¢, then there
exists a subsequence {¢p} such that almost all realizations ¢p/(Tyw) converge in L°(R?) to
the realization ¢(T,w).

Definition 7 A measurable function ¢(w) on € is called invariant if, for any r € R
o(Tyw) = ¢(w) almost surely.

Definition 8 A d-dynamical system 7, is said to be ergodic if all its invariant functions are
almost surely constant.

Definition 9 Let 6 € LY(R?). We say that the function 6 has a spatial average if the limit

M) = lim — [ 6 (f) dz

exists for any bounded Borel set B € B with |B| > 0, and moreover this limit does not
depend on the choice of B. The quantity M () is called the spatial average of the function 6.

The following results are proved in [14].

Proposition 2 Let P be a measurable subset of R containing a neighbourhood of the origin.
Let ¢ > 1 or q¢ = oo. Suppose that a measurable function 0(x,€), x € P, £ € R, has a space
mean value M(0)(x) in RE (that is, with respect to the variable &) for every x € P and the

family {Q(x, f), 0 <e <1}z €K, is bounded in Ly(K), where K is an arbitrary bounded
subset in P containing a neighbourhood of the origin.

Then M(0)(-) € Li“(P) and, for ¢ > 1, we have 0 (x,%) — M(0)(x) weakly in LY°(P)
as e — 0,

while, for ¢ = oo, we have 0 (x,%) — M(0)(x) *-weakly in L°(P) as ¢ — 0.
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From now on we use the following notation z = (x1,...,24_1). For a given group T,,x €
RY, we also consider its subgroup 75 : @ = Q, T = (21,...,24-1) € R, Th = Tiz0).

Let T, be a d-dynamical system in . Wa assume that 7% is also a (d — 1)-dynamical
system in  (see Definition |5 with the number d replaced with (d — 1)).

All the above Definitions and Propositions hold true for the (d — 1)-dynamical system T%
with evident modifications. In particular, we have the following

Definition 10 A random field ((Z,w) (7 € R*!, w € Q) is called statistically homogeneous
if the following representation holds ((7,w) = ((Tsw), where ( is a random variable on
(Q, A, p) and T3 is a (d — 1)-dynamical system on 2.

All along the article, we make use of the Birkhoff ergodic theorem in the following
particular form (see, for instance, [14] and [13] for more details).

Theorem 3 (Birkhoff ergodic theorem) Let T,, z € R%, be a d-dynamical system and
let Y(w) € Ly(9Q, ,u) Then, for almost all w € Q, the realization ¥(T,w) has the space mean
value M (¢(Tyw)) in RL. Moreover, M (1 (T,w)) is an invariant function and

/¢ ) dp = /M T,w)) dp,

where E(¢) is the mathematical expectation of 1. In particular, if T, is ergodic then, for
almost all w € Q, we have the identity

E(y) = M(¢(Tow)).
We shall also apply Birkhoff ergodic theorem to the ergodic (d—1)-dynamical system 7%, T €
R-1,
We are now ready to make assumptions on the random fields F’ (5, w), p(fA, w) and q(g, w)
which we use in the definition of the stochastic geometry and coefficients in the Fourier

boundary condition. First, we assume that these random fields are statistically homogeneous,
that is

F(&w) =F(Trw), pl&w)=p(Trw), q&w)=o(Trw), YEeR™,
where F, p and p are random variables on (92, A, i), and 7% is an ergodic (d — 1)-dynamical
system on (2.
Moreover, we assume that F has, almost surely, continuously differentiable or locally
Lipschitz realizations. We denote

O F(w) = 0, F(Trw 0.F(w) = VF(Trw)| -

13 3 =0

We have VI (E, w) = 9,F(Tzw) (see, for instance, [13]). Finally, we make the following
assumptions on the functions F, p and o:

hl) Fe Lo(Q), Flw)<0as;
) 0.F € (La())" Y

h3) p € Lo(Q), plw) >0as., pu{w: p(w) >0} >0.
) 0€ Ly(Q), 0d,F € (La(Q)"

)‘5207

(
(h2
(
(

h4
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3 Homogenezation of attractors to the reaction-diffusion system in a domain
with locally periodic oscillating boundary

3.1 Statement of the problem

Let D be a bounded domain in R?, d > 2, with smooth boundary D = I'; U T, where D
lies in a half-space 24 > 0 and I'y C {z: xg = 0}. Given smooth nonpositive 1-periodic in
the € function F(z, f) T = (T1,.., Tg—1), £ = (&1, ..,€4-1), define the domain D, as follows:
0D. = T'5 Uy, where we set I'§ = {x = (2,24) : (2,0) € 1,24 =*F(2,2/e)}, 0 < < 1,
ie. we add thin oscillating layer II. = {z = (2,24) : (2,0) € I'1,z4 € [0,e*F(Z,2/¢))} to
the domain D. Usually, we assume F/(&,€) to be compactly supported on I'y uniformly in .
Consider the following boundary-value problem:

a“E—AAus—a(JJ )f(u5)+h( 2), z €D, t>0,

Qe 1 Pp(2, Lyu. = 51_0‘9(37, 1), x = (&,1q) €T5,t>0, (1)
ue = 0, x €l9,t>0,
Ue = (l‘), r € D, t=0,

where u. = u.(x,t) = (u!,...,u")" is an unknown vector function, the nonlinear function

="~ .., M isgiven, h = (h',...,h™)" is the known right-hand side function, and \ is
an n X n-matrix with constant coefficients, having a positive symmetrical part: %()\ +AT) >

wl (where I is the unit matrix with dimension n). We assume that 5§ > 0,p <a§,é> =

diag{p',...,p"}, ¢ (:i",é) = (g*,...,g™)" are continuous, 1-periodic in ¢ and p' <£,é), i =
du. [ Ou} ou”
o \ov'' ov

1,...n, are positive. Here ) is the normal derivative of the vector

ZZA”(‘) ENk,z—l ,n and

=1 k=1
N = (Ny, ..., Ny) is the unit outer normal to the boundary of the domain.

Function a(z,€) € C(D. x R?) such that 0 < ay < a(z,£) < A with some coefficient
ag, Ap. Assuming that function a.(z) = a (z,%) has average a(z) when ¢ — 0+ in space
Lo «w(D), that is

/ (. 2) el - / Ddz (e — 04) (5)

D

function wu,

for any function ¢ € Ly(D).

Denote by DT such a domain that D, C D™ for any . For the vector function h (& €),
assume that for any £ > 0 the function hi(z) = h' (z,%) € Ly(D™) and has the average h’(x)
in the space Lo(D™) for e — 0+, that is

X <m, E) — hi(x) (¢ — 0+) weakly in Ly(DV),
€
or

/ h’( 2)dz — / Ri(2)p(a)de (e — 0+) (6)

D+



12 Homogenezation of attractors to the reaction-diffusion system . ..

for any function ¢ € Ly(D*) and for alli =1,...,n.

From the condition (6)) it follows that the norm of the function hi(z) are bounded
uniformly in €, in the space Lo(D,), i.e. [|hi(2)| L,p.) < Mo, Ve € (0,1].

It is assumed that the vector function f(v) € C'(R™;R") satisfies the following inequalities

Z ‘fz(v) Bif(pi=1) S CO (Z ’Ui P + 1) ) 2 S P S s S Pn—1 S Pn, (7>
i=1 i=1

Z'yi|vi|pi -C< Zfi(v)vi, Vv € R”, (8)
i=1 i=1

for vy > 0 for any ¢ = 1,...,n. The inequality is due to the fact that in real
reaction-diffusion systems, the functions f?(u) are polynomials with possibly different degrees.
Inequality calls dissipativity condition for the reaction-diffusion system . In a simple
model case p; = p for any ¢ = 1,...,n, condition @ and reduce to the following
inequalities

F@I < Co (o +1), Aol = C < fw)o, YweR™

Note that the fulfillment of the Lipschitz condition for the function f(v) relative to the
variable v not expected.

Remark 1 Using the methods presented, it is also possible to study systems in which

nonlinear terms have the form Y a; (:L', f) fi(u), where a; are matrices whose elements allow
j=1

averaging and f;(u) polynomial vectors of u, which satisfy conditions of the form @f. For

brevity, we study the case m =1 and a, (:13, f) =a (a:, f) I, where I is the identity matriz.

Denote

G(#) = / VeF (2, 6) g2, €) d, (9)
[071)d—1

P = [\ IVeFG&Paa.) dé (10)
[071)d71

and we have the following convergences (see [3]):

gl—a/gi <x f) v (i,s”‘F (x f)) ds — /Gi (&) v (z) ds
£ S
FE

1 1
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for any v € HY(D.) by € = 0, i = 1,...,n. Here ds is the element of (d — 1)-dimensional
measure on the hypersurface.

Let us introduce the following notation for the spaces H := [Ly(D)]", H. := [Lo(D.)]",
V :=[HYD,Ty)|", V. := [H'(D.;T5)|". Here, H'(D,T5) (respectively H'(D,,T)), denotes
the space of functions from the Sobolev space H'(D) (respectively H'(D.)) with zero trace
on I'y. The norms in these spaces are determined as follows

ol = [ 3l e, ol o= [ 3 oo,
D 1=1 i=1

De

/Zl Vv () [2dz.

D:.

n
o2 = / SOV (@) Pz, o], =
D =1

We denote by V' the dual space to the space V, and by V. the dual space to the space V..
Let ¢; = p;i/(p; —1) for any ¢ = 1,...,n. We will use the following vector notation
p=(p1,...,pn) and q = (q1,- .-, qn), and also define spaces

L, =L, (D)x...xL, (D), Ly, := L, (D.) x ... x L, (D.),
Lp(Ry; Lp) := Ly, (Ry; Ly, (D)) X ... X Ly, (Ry; Ly, (D)),
Lp(Ry; Lpe) = Ly, (Ry; Ly, (De)) x ... x Ly, (Rys Ly, (D).

As in [17,26] we study weak solutions of the initial boundary value problem , that is,
functions

ue(z,t) € LY(Ry; H) NLY(Ry; Vo) NLE (R L )

which satisfy the equation (4]) in the distributional sense (the sense of generalized functions),
that is, the integral identity holds

- / (T % dxdt + / AVu, - Vip dxdt + / ac(x) f(ue) - ¢ daedt+

ot
D xRy D xRy De xRy
) z
+¢P / P <£, f) U - P dsdt = / he(x) -4 dodt + &' / g (& —) 1) dsdt
5 €
IS xR, D-xR; IS xR,

for any function ) € C(Ry; V. NLy.). Here y; - y2 means scalar product of vectors yy, ys €
R™.

If uc(z,t) € Lyp(0,M;Lp.), then from the condition (7)) it follows that f(u(z,?))
L(0,M;Ly.). At the same time, if uc(x,t) € Ly(0, M;V.), then Au.(x,t) + he (x)
L, (0, M; V7). Therefore, for an arbitrary weak solution u.(z, s) to problem (), satisfies

S
S

Ouc(x,t)

ot
From the Sobolev embedding theorem follows that Lg(0,M;Lg.) + Lo(0,M;V.) C
Ly (0, M;HT), where space H.* :== H" (D) x...x H ™ (D,.), r = (r1,...,r,) and indexes

€ Lqy(0, M; L) + Lo(0, M; V7).
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r; = max{1,d(1/q; —1/2)} by i = 1,...,n. Here H"(D.) denotes the space conjugate to
the Sobolev space WJ(D,.) with index r > 0 in the domain D..

Therefore, for any weak solution u.(x,t) to problem it’s time derivative % belongs
to Ly (0, M;HC™) .

Remark 2 FEzistence of a weak solution u(x,t) to problem for any initial data U € H,
and fized €, can be proved in the standard way (see, for example, |16|, |26]). This solution
may not be unique, since the function f(v) satisfies only the conditions @, and it is not
assumed that the Lipschitz condition is satisfied with respect to v.

The following Lemma is proved in a similar way to the proposition XV.3.1 from [17].

Lemma 1 Let u.(x,t) € LY°(Ry; Vo) NLE(Ry; L) be a weak solution of problem ().
Then

(i) u. € C(R,;H,);

(ii) function ||uc(-,t)||* is absolutely continuous on R, , and moreover

1d
§%|lua(-,t)|]2+/)\Vu£(a:,t)-Vug(as,t)d:v+/aa(x)f(ua(x,t))-ug(a?,t)dx+ (11)
D, D,
+5f8/p (f,g) us(z,t)us(x,t)ds = /ha(a:)-ug(x,t)dm+€1_a/g (:ﬁ, g)-ug(x,t) ds,
I De re

for almost all t € R,

To define the trajectory space KT for , we use the general approaches of Section
and for every [t1,ts] € R we have the Banach spaces

ov
‘Ftl,tg = Lp(tl,tg; Lp) N Lg(tl,tQ;V) N Loo(tl,tg; H) M {U ’ E - Lq (tl’tQ;HT)}

(sometimes we omit the parameter ¢ for brevity) with the following norm:

ov
1oll7y ey = MVl rtaize) + 10lleav) + 1ollwoarmm + || 5 :
Lq(t1,t2;H7"')

Setting Dy, 1, = Lq (t1,t2; H™") we obtain Fy, 4, € Dy, 4, and for u(t) € Fy, 4, we have
A(u(t)) € Dy, 1,- One considers now weak solutions to (ED as solutions of an equation in the
general scheme of Section [2.1]

Consider the spaces

ocC ocC ocC ocC av ocC —-r
P LR L) N LR V) LR )0 {0 | 5 € Lt },
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Flot = LR, Ly..) N LY (R, V.) N L (R, HL) 0 { i

81} oc -r
o5 € qu (R—O—;He )} :

We introduce the following notation. Let K be the set of all weak solutions to (4)). For any
U € H there exists at least one trajectory u(-) € K such that u(0) = U(z). Consequently,
the space KT to is not empty and is sufficiently large.

We define metrics py, 4, (-, -) in the spaces Fi, 1, by means of the norms from Ly (¢4, to; H).
We get

1/2

Pty 2 (U, V) /||U — o(t)||fadt Vu(-),v(:) € Fipy-

The topology @lfc in fﬁfc is generated by these metrics. Let us recall that {v,} C fffc
converges to v € F as k — oo in O if [Jvg(-) — v()||Lsrtemy — 0 (K — o0) for all
[t1,t2] C R,. The topology @l"c is metrizable. We consider this topology in the trajectory
space KT of (4 I} Similarly, we deﬁne the topology @l"i in ]-"éoj

Denote by S(7) the translation semigroup, i.e. S(7)u(t) = u(t + 7). The translation
semigroup S(7) acting on K, is continuous in the topology @lsoi It is easy to see that
K c Fl° and the space K is translation invariant, i.e. S(7)KF € K for all 7 > 0.

Using the scheme of Section , one can define bounded sets in the space K by means
of the Banach space ]_—g +- We naturally get

Flp=Ly(Ry;Lp o) NL5(R4; Vo) N Lo (R4 H) { )a € L%(Ry; H )}

and the space F? ', is a subspace of fé"j

Suppose that K. is the kernel to , that consists of all weak complete solutions u(t),t €
R, to our system, bounded in

ff:LIF’,(R;LM)HLS(R;VE)OLOO(R;HE)H{v g” LY (R; H )}

In analogous way we define the topology ©°¢ in F?.

Proposition 3 Problem @ has the trajectory attractors 2. in the topological space @“’C
The set . is bounded in .7-"1’Jr and compact in @l;’fr Moreover, A. = 11, IC., the kernel ICE 18
non-empty and bounded in .Ff and compact in @l"c

To prove this proposition we use the approach of the proof from |17]. To prove the existence

of an absorbing set (bounded in F?, and compact in ©!°}) one can use Lemma (1] similar
to [17].
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3.2 Homogenized reaction-diffusion system and convergence of attractors in the critical
case (f=1-—a)

Now we study the behaviour of the problem as € — 0 in the critical case § =1 — a. We
have the following “formal” limit problem with inhomogeneous Fourier boundary condition

0 — N\Aug —a(z) f(ug) + h(x), € D,t>0,

ot

%u  P(3)ug = G(2), r=(£,0) €Ty t >0, 12
UOIO, QJEFQ,t>O,

uo = U(x), z€D,t=0,

Here @(x) and h(x) are defined in and (0), respectively, G(#) and P(&) were defined in

@ and .

As before, we consider weak solutions of the problem , that is, functions
uo(e,1) € LI (R H) N L (Ry: V) NLE (Ry5Ly),
which satisfy the following integral identity:

— / (e ?‘9_2? dxdt + / AVuy - Vo dzdt + / a(x)f(up) - ¢ dedt+

DXR+ DXR+ DXR+

—l—/P(a?)uo-wdsdt:/h(m)-wdxdt—i-/G(:ﬁ)-iﬂdsdt

' XR+ DX]R+ I XR+

(13)

for any function ¢ € C°(Ry;V NLy). For any weak solution u(z,t) to problem (12)), we
have that auoa—(f’t) € Ly (0,M;H™) (see Section . Recall, that the “limit” domain D in
and is independent of € and it boundary contains the plain part I'y.

Similar to , for any initial data U € H, the problem has at least one weak solution
(see Remark. Lemma also holds true for the problem with replacing the e-depending
coefficients a, h, p and g by the corresponding averaged coefficients a(z), h(x), P(z), and G(Z).

As usual, let K be the the trajectory space for (the set of all weak solutions), that
belong to the corresponding spaces F'°¢ and F% (see Section . Recall that K C F loc and
the space K is translation invariant with respect to translation semigroup {S(7)}, that is,
S (T)KJr C K" for all 7 > 0. We now construct the trajectory attractor in the topology @l_fc

for the problem (see Sections and .

Similar to Proposition [3] we have

Proposition 4 Homogenized problem has the trajectory attmctor_ﬁ in the topological space
@ljr’c. The set A is bounded in }"ﬁ and compact in @lfc. Moreover, A =11 IC, the kernel IC of
the homogenized problem is non-empty and bounded in F°.

Here we formulate the main result concerning the limit behaviour of the trajectory
attractors 20, of the reaction-diffusion systems as € — 0 in the critical case § =1 — «.

Theorem 4 The following limit holds in the topological space @lfr"’

A —A ase —0+.
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Moreover,
K.—>Kase— 0+ in O

Finally, we consider the reaction—diffusion systems for which the uniqueness theorem is
true for the Cauchy problem. It suffices to assume that the nonlinear term f(u) in (4] satisfies
the condition

(f(v1) = f(v2),v1 — v2) = =Clvy — vo|* for any vy, vp € R™. (14)

(see [17,26]). In [26] it was proved that if is true, then () and generate dynamical
semigroups in H, possessing global attractors A, and A are bounded in V (see also [16], [15]).
Moreover

A = {u(0) | ue A}, A= {u(0) | ueA}
Corollary 1 Under the assumption of Theorem[d] the limit formula takes place
distg—s (A:, A) = 0 (¢ — 04).
3.3 Homogenized reaction-diffusion system and convergence of attractors in the
subcritical case (8 > 1— «)

In the next sections, we study the behaviour of the problem as € — 0 in the subcritical
case 8 > 1 — a. We have the following “formal” limit problem with inhomogeneous Fourier
boundary condition

o — N\Aug —a(z) f(ug) + h(x), =€ D,t>0,

ot
%:G(aj), x=(2,0) € I'1,t >0, (15)
ug = 0, x €Tyt >0,
uy = Ulx), re D, t=0,
Here a(z) and h(z) are defined in (f]) and (6)), respectively, G(2) was defined in (EI)
As before, we consider weak solutions of the problem , that is, functions
u(z,t) € LRy H) N LY (R V) NLEY° (Ry; Ly)
which satisfy the following integral identity:
0
—/u : a—qfdxdt—i—/ AVu - Vzﬁdazdt—i—/ a(z)f(u) - dedt =
DxR4 DxR4 DxR4 (16)
:/ﬁ(m) -¢dxdt+/G(£) - dsdt
DXR+ Iy XR+

for any function ¢ € CF(R4; V N Ly). For any weak solution u(x,t) to problem (15]), we
have that % € Ly (0, M;H™) (see Section. Recall, that the “limit” domain D in
and is independent of € and it boundary contains the plain part I';.

For homogenized problem holds Proposition @r

For trajectory attractors 2. of the reaction-diffusion systems @ as € — 0 in the subcritical
case > 1 — « holds Theorem 4] and Corollary [I}
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3.4 Homogenized reaction-diffusion system and convergence of attractors in the
supercritical case (8 <1 — «)

In the next sections, we study the behaviour of the problem @ as € — 0 in the supercritical
case 8 < 1 — a. We have the following “formal” limit problem with inhomogeneous Fourier
boundary condition

%o — \Auy —a () fug) + h(z), =€ D,t>0,
up =0, z € 0D,t >0, (17)
ug = Ul(x), reD,t=0,

Here @(x) and h(z) are defined in (F]) and (@), respectively.
We note that, in the supercritical case, the influence of the boundary layer on the part of

the boundary I'y completely disappears (compare with critical case [44] and subcritical case

mentioned in Subsection [3.3)).
As before, we consider weak solutions of the problem , that is, functions

ug(z,t) € LI (Ry; H) NLy°(Ry; V) NLY° (Ry; L)

which satisfy the following integral identity:

— /uo : (Z_zf dxdt + / AVug - Vi dxdt + / a(x) f(ug) - ¢ dedt = /h(az) ) dxdt (18)

DXR+ DXR+ DXR+ DXR+

for any function ¢» € C°(R4;V N Ly). For any weak solution u(x,t) to problem , we
have that Moa—(f’t) € Ly (0, M;H™) (see Section . Recall, that the “limit” domain D in
and is independent of € and it boundary contains the plain part I';.

For homogenized problem holds Proposition E|

For trajectory attractors 2. of the reaction-diffusion systems as ¢ — 0 in the
supercritical case § < 1 — a holds Theorem [4] and Corollary

4 Homogenezation of attractors to the reaction-diffusion system in a domain
with randomly oscillating boundary

4.1 Statement of the problem

Let D ¢ RN {x|xy > 0}, d > 2, be a smooth bounded domain whose boundary has a
nontrivial flat part I'y = 0D N {x|z4 = 0} with a nonempty (d — 1)-dimensional interior
I'i. We perturb the flat part of the boundary in such a way that the perturbed domain
has an oscillating boundary. To this end, we define a smooth nonnegative function ¢(7),
T = (x1,...,24_1), such that suppg(z) C Ty € Io‘l, and, given a statistically homogeneous
non-positive random function F'(§,w), £ = (&,...,&:-1), which has smooth realizations and
is defined on a standard probability space (€2, A, ), we set, for ¢ > 0,

~

I.={rcR? : 7Ty, eg(2)F (g,w) < xq <0}
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and, finally, introduce the desired domain with random boundary as follows: D, = D U II..
For more detailed definitions of randomness we refer to the next section. According to the

above construction, the boundary 0D, consists of the parts I'y and I'] = {:c € 0D, : (z,0) €
[y, xqg =eg9(@)F (%, w) } forming together the domain boundary.
We consider the boundary-value problem:

Qe = NAu. —a (z,%,w) flue) +r(z,2,w), z€D.,t>0,

8“5 +g(2)p (2 w) us = g()q (f,w) , r=(%,xq) €T5,t>0, (19)
ug—(), x eyt >0,
UEIU(.I), re D, t=0,
where u. = u.(x,t) = (u',...,u")" is an unknown vector function, the nonlinear function
=Y., fHTisgiven, r = (r!,...,r") 7" is the known right-hand side function, and X is an

n X n-matrix with constant coefficients, having a positive symmetrical part: %()\ + A1) > @l
(where [ is the unit matrix with dimension n and w > 0). We assume that p (%\,w) =
diag {p D) g (8, ) = (¢%,...,¢")" are random statistically homogeneous functions
and p' ( w), i =1,...n, are positive.

We assume that the random functions a.(z,w) = a(x, z w) and 7. (z,w) = r(x £ w) are
statistically homogeneous, that is a(x, &, w) = A(z, Trw), r(z,§,w) = R(z, Tew), where
A:DxQ—Rand R: D x ) — R" are measurable.

We also assume that A(z,w) € Cy(D) for almost all w € Q and 0 < oy < A(z,w) <
a, |R(z,w)| < ¢(x), V€ D, where ¢(z) is a positive function such that ¢ € Lo(D).

Birkhoff ergodic theorem implies that the functions a (z,&,w) and r(z,£,w) have the
space mean value

for every € D. Note that the functions a(x) and 7(x) also satisfy the inequality oy < a@(z) <
ay, |F(z)| < o(z), Va e D. It follows from Proposition [2, that almost surely in w €

/ (z, da:—>/ z)dr (e = 0+) VYo e Li(D), (20)
/ : (o dH/ 2)dz (e = 04) Vo € (D), i=1....n. (g

Here D7 is such a domain that D, C D" for any e.
We assume that the vector function f(v) € C(R™;R") satisfies inequalities (7)) and ().
From it follows that the norms of ri(x,w) are almost surely uniformly bounded
|7ill Loy < My, Ve € (0,1] in the space Lo(D).
Denote

P@) = () 1+ 6@OFWF) . Q@) =5 (o) 1+ 0@ 0Pw)).
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(22)

and, due to Birkhoff ergodic theorem and Proposition [, we have almost surely the following
convergence (see [40]):

oot (L) v (eo@r (20)) as o [a@@ @) o) as

rs N1
and
(T . T PR T i
/g(a:)pZ (g,w) u <x,5g(:ﬁ)F (g,w)) v (x,eg(x)F (;w)) ds — /g(az)PZ (2) u(z)v () ds
re I
for any u,v € H'(D.) as e — 0,7 =1,...,n. Here ds is the element of (d — 1)-dimensional

measure on the hypersurface.

As in [17,26] we study weak solutions of the initial boundary value problem , that is,
functions

u5<CL’, t) € LZZ;C(R—F; HE) n LIZOC(R-I—; Va) N Llr?c (R+; Lp,e)

which satisfy the equation in the distributional sense (the sense of generalized functions),
that is, the integral identity holds

- / Ue - % dxdt + / AVu, - Vi dxdt + / a:(z,w) f(ue) - ¢ dedt+

ot
DexRy DexRy DexRy
+ / g(Z)p (z,w) U - Y dsdt = / re(z,w) - dadt + / 9(2)q (g,w) ~p dsdt
€ €
e xR, D xR, s xR,

for any function ¢ € C5°(Ry; V. NLy ). Here y; - yo means scalar product of vectors yy,y2 €
R™.

For any weak solution u.(x,t) to problem the time derivative BUE(I el q (0, M;H.T)
(see Section

Remark 3 FEuzistence of a weak solution u(x,t) to problem for any initial data U € H,
and fized €, can be proved in the standard way (see, for example, |16, |26]). This solution may
not be unique, since the function f(v) satisfies only the conditions and it is not assumed
that the Lipschitz condition is satisfied with respect to v.

Proposition 5 Under the hypotheses (7)) and . the system ({19 . has the trajectory attractors
2. in the topological space @i"i The set A, is w-almost surely bounded in .7-"bJr and compact
m @fffr Moreover, . = I, K., the kernel K. is non-empty, bounded in F° and compact in

l 13
oc
lec,
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4.2 Homogenized reaction-diffusion system and convergence of attractors

In the next sections, we study the behaviour of the problem as ¢ — 0. We have the
following “formal” limit problem with inhomogeneous Fourier boundary condition

%0 — \Aug —a () f(ug) +7(x), x€D,t>0,
G0+ g(2)P(2)ug = g(2)Q(2), x=(&0)el,t>0,
ug = 0, x €Tyt >0,
UO:U(z), xGD’tZO’

(23)

Here @(x) and 7(z) were defined in and (21), respectively, Q(#) and P(z) were defined
in .
As before, we consider weak solutions of the problem , that is, functions
uo(z,t) € LiZ (R H) NLY°(Ry; V) NLY* (Ry; L)

which satisfy the following integral identity:

— / Ug - % dxdt + / AVuy - Vo dxdt + / a(x) f(ug) - ¢ dedt+

ot
DxRy DxRy DxRy (24)
+ / 9(Z)P (z) ug - ¢ dsdt = / 7(z) - ¢ dedt + / 9(2)Q (z) - Y dsdt
'y xRy DxRy ' xRy

for any function ¢ € CF(R;V NLy). For any weak solution u(z,t) to problem (23)), we
have that %Oa—(f’t) € Lq(0,M;H™) (see Section . Recall, that the “limit” domain D in
and is independent of € and it boundary contains the plain part I';.

For homogenized problem holds Proposition @

Under assumptions (hl)-(h4), for trajectory attractors 2. of the reaction-diffusion
systems as € — 0, w-almost surely holds Theorem || and Corollary

5 Conclusion

In the paper we consider reaction—diffusion systems with rapidly oscillating terms in equations
and in boundary conditions in domains with locally periodic or randomly oscillating boundary
(rough surface) depending on a small parameter. We define the trajectory attractors of these
systems and express that they converge (almost surely) in a weak sense to the trajectory
attractors of the limit (homogenized) reaction—diffusion systems in domain independent of
the small parameter.
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THE MULTIPLICATIVE INTEGRAL AND THE EVOLUTION OF THE
MAGNETIC FIELD IN THE MARKOV LINEAR MODEL

The paper is devoted to the probabilistic asymptotic analysis of the magnetic field and magnetic
energy in a Markov linear model of an incompressible fluid. Firstly, the paper introduces a
brief history of the problem under consideration and presents the main results of the previous
studies, which ultimately lead to the study of the product of independent random matrices with
an increasing number of multiplicands. After that, the description of the Markov linear model
considered in the paper is given, the so-called Lyapunov (generally speaking, random) bases for
the multiplicative (stochastic) integral contained in the integral representation of the magnetic field
are constructed. In conclusion, by decomposing the multiplicative integral over the constructed
Lyapunov basis and relying on the properties of the basis, the main results - theorems on the
asymptotic behavior of the magnetic field and magnetic energy - have been proven.

Key words: Multiplicative integral, Markov linear model, magnetic field, Lyapunov exponent,
Lyapunov basis.

H. Akanb6aii, 3.11. Cyneiimenosa®, C.K. TameeBa
osi-Qapabu arsbinjgars Kasak yarTeik yausepcureri, Anmarsr, Kazakcran
*e-mail: Suleymenova2474@gmail.com
MyAabTUIIIMKATUBTI MHTErpaJjl >KoHEe MAPKOBTBIK, ChI3BIKTBIK, MO/IeJIIeri MariuT epiciHin
9BOJIIOLUSCHI

2KyMBIC CBIFBLIMAITBIH CYMBIKTHIK, MAPKOBTBIH ChI3BIKTHIK, MOJIEJIIHETT MATHUT ©Pici MEH MArHUT-
TiK SHEPTUAHBIH, BIKTUMAJIBIKTHIK - ACHMITOTUKAJIBIK, TAJIJaybIHA apHaJIrad. 2ZKyMbICTa aJJIbIMeH
KapaCTBIPBLIBIIT OTBHIPFaH €CeITiH OyraH Jfeitin 6acka aBTOpJIap KAPACTBIPFaH, aKbIP COHBIHIA KO-
OefTKIMmTepiHiH caHbl 6Cce OEPeTiH TOyeJICi3 Ke3/IeiCOK, MAaTPUTIATAPILIH KOOeHTIH Tiaepin 3epTTeyre
KeJITiplIeTin, KyMbBICTap/IblH KbICKAITa Tapuxbl OasHgarad. COChIH KYMBICTa, KAPACTHIPHLIATHIH
MAapKOBTBIH, CHI3BIKTBIK, MOJIC/Ib/IIH, CUIIATTaMAChl OepireH, MAarHUTTIK OPIiCTiH MHTErpaJIIbIK 2Ka-
3BLIBIMBIHA Haii1a 60JaThIH MyIBTUNIMKATUBTIK (CTOXACTUKAJIBIK) MHTErPaJl YIIiH JISIIly HOBTHIK,
JIell aTajiaThiH (PKAJIIBl aJiFania, Ke3/1eiicoK) 6asuc KypacThIpbUIraH. KH COHBIHJIA, MYJIbTUIIIU-
KATUBTIK MHTErPAJIbI KYPACTHIPBIIFaH JIAMIyHOBTHIK 0A3UC apKBLIbI YKIKTeIl KoHe OyJ1 0a3ucTiK
KacueTTepiHe cyileHe OTBIPBINI, HETi3Il HOTHUKEeJIEp - MAarHUT Opici MeH MATrHUTTIK SHEPTUSHBIH
aCHMIITOTUKAJIBIK, OETAJIBICTAPBI TYPAJIbl TEOPEMAJIap JRJIEIEHTeH.

Tyitin ce3mep: My bTUIIMKATUBTIK UHTErPaJi, MAPKOBTHIK, ChI3BIKTHIK MOJIEJIb, MAarHUT ©pici,
JIAIyHOB KOpCeTKilll, JISIIyHOBTBIK OasucTep.

H. Akan6aii, 3.11. Cyneiimenosa®, C.K. Tamneesa Kaszaxckuit HaImoHaAILHDIH yHABEPCATET UMEHH
anb-Papabu, Anmarer, Kazaxcran
*e-mail: Suleymenova2474@gmail.com
MyabTUNIMKaTUBHBIN MHTETPAJI U 9BOJIIONUS MATrHUTHOTO MOJISI B MAapKOBCKOM JIMHENHOM
MO

B pabore cHauasia m3noxKeHa KpaTKas UCTOPHUS PACCMATPUBAEMON 3aJ[avu, [IPUBEIEHBI OCHOBHBIE
Pe3yabTaThl IPEABIIYIINAX,CBOAAIMNNXCA B KOHEYHOM UTOre K M3yYeHUIO IIPOU3BE/ICHAS HE3aBUCH-
MBIX CJIy9alHBIX MATPHUIL IPU BO3PACTAHUU 4HCJIa cOMHOXKHUTENeH, pabor. Ilocie mamo onmcanme
paccMaTpuBaeMoii B paboTe MapKOBCKUiT TMHEHHOI MOJIEN, IIOCTPOEHDBI TAK Ha3bIBaeMbI€ JISIITy HOB-
ckue (BOOOIIE TOBODs, CilydaiiHble) Ga3UChl JJIsl COAEPIKAIIETOCs] B HHTETPAIBHOM TIPEJICTABICHNN
MArHUTHOTO TI0JIS MYJIbTUILIMKATABHOTO (CTOXACTHYECKOrO) HHTErPAJIA.
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B saksrouenue, passarast MyJIbTUILIMKATUBHBIN HHTEIPAJI IO IOCTPOEHHOMY JISIIIy HOBCKOMY Oa3uCy
¥ ONMPAasiCh Ha CBOMCTBA 3TUX 0OA3UCOB, JI0KA3aHBI OCHOBHBIE PE3YJILTATHI - TEOPEMbI 00 ACUMIITO-
TUYECKUX TOBEMIEHUSIX MATHUTHOTO MOJIS U MAarHUTHOW SHEPTHH.

KimtoueBsbie cioBa: My IbTUILIMKATHBHBIN MHTErPAJI, MAPKOBCKAs JTUHEHAST MOIE/b, MArHUTHOE
11oJie, oKa3aresib JIAmyHoBa, JsyHOBCKIe OAa3UCHI.

1 Introduction

The problem of the evolution of a magnetic field in a random turbulent flow of a conducting
fluid is one of the most important in many physical applications. First of all, astrophysical
applications can be mentioned here: stars, planets, and galaxies have magnetic fields that
can vary greatly in time and space. A huge number of works have been devoted to various
physical and mathematical aspects of this problem (see, for example, the monographs [1], |2],
and the recent work [3]). One of the central and actual issues in this area is the study of
asymptotic properties (completely non-trivial from the mathematical point of view) of the
solution of the Cauchy problem for the induction equation. In this paper, the problem of the
evolution of the magnetic field is considered in a kinematic formulation: this means that the
statistical characteristics of a given random velocity field do not change with time, although
the statistical characteristics of the magnetic field, generally speaking, change. In other words,
the reverse effect of the magnetic field on the velocity field is not taken into account. The
kinematic formulation allows one to remain within the linear approximation (i.e., for a given
fluid velocity field), while the problem of the joint evolution of the velocity field and magnetic
field requires the study of a nonlinear system of equations in six dimensions. We note that
the asymptotic behavior of solutions at very large Reynolds numbers is related to the famous
(until now unsolved) problem of the hydromagnetic dynamo (see [4] and the bibliography
cited there).

2 Literature review and problem statement.

While for a given fluid flow the process of magnetic field transfer is fundamentally clear,
the very problem of describing a turbulent fluid flow is known to be extremely complex.
Therefore, one or another method of modeling the motion of a fluid is usually resorted to.
In [5]- |6], the question of the evolution of the magnetic field was studied in the so-called
linear model with updating, and ultimately the problem under consideration was reduced to
studying the product of independent random matrices with increasing number of factors. Our
present work is a generalization of works [5]- [6] in the sense that we study the asymptotic
behavior of the solution of the Cauchy problem for the magnetic induction equation in a more
general (than the updated model) model - a given Markov linear model (for a description of
the model, see below, in Section at long times. We will also consider a similar question for
the total magnetic energy. In this case, we will essentially use the main result of works |7]-
[8] - the Ferstenberg- type theorem (the theorem that establishes the existence of a strictly
positive Lyapunov exponent associated with the introduced Markov model of a multiplicative
stochastic integral of a special form). It should be noted that this Ferstenberg- type theorem
for the multiplicative stochastic integral is, in a certain sense, a generalization of similar
results for the product of unimodular random matrices |9], in particular, the product of
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independent [10] or random matrices forming a Markov sequence [11] (see also the survey
article [12]).

3 Purpose and objectives of the study

The purpose and objectives of our work are to study the asymptotic properties of the solution
of the Cauchy problem for the equation of magnetohydrodynamics and to generalize and
extend the main results of [5]- [6] to the case of a Markov linear model of a given velocity
field. In this case, special attention will be paid to the problem of finding the asymptotic
form of the magnetic field and total magnetic energy present in the integral representations
and determined by the introduced Markov linear model of a multiplicative stochastic integral
of a special kind.

4 Materials and methods.

In the work, some well-known results and methods of the theory of magnetic fields in random
media, the theory of matrices and multiplicative integral, partial differential equations and
stochastic analysis will be used and refined in cases necessary for our purposes.

5 Mean result.

5.1 Model of a Markov linear velocity field.

Let b(t),t > 0 is a Brownian motion on a compact Riemannian manifold K, dimK =
v > 3, with metric form ds? having the form in local coordinates z!,...,2¥ on K
ds* = 37 > gijda’da? do = \/detgdr—Riemannian volume element. The infinitesimal

operator of the process b(s), s > 0, is the Beltrami - Laplace operator %A, where

Let C(-) : K — SL(v,R), where SL(v, R) is the linear space of square v x v matrices
with zero trace (I'rC' = 0). Functions g;;(x), ¢;j(z) are functions of the class C*°(K). Then
the Markov linear model of the velocity field is the velocity field of the form

—

V(t,x) = C(by)z, (1)

where the process b, = b(t), the manifold and the matrix C(-) are defined and described by
the above conditions.

5.2 Evolution of the magnetic field in a Markov linear model.

It is well known that the evolution of the initial distribution

H(z) = (Hoi (), Hoa(x), ..., Hoy(z))
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v-dimensional v > 3 magnetic field

—

H(t> $) = (Hl(t7 JT), H2<t7 aj)v XX Hl/(tv ZL‘))
in a given speed field

V(t,x) = (Vi(t,x), Va(t, x), ..., V,(t,z))

with constant magnetic diffusion v, (v, > 0) is described by the induction equation

o - . L
i H = v A ot [V x H} , 2)
H(0,2) = H(x), (3)

where t > 0,z € R”.
If we assume that the velocity field V' and the initial field H, are incompressible, i.e.
(divergences in )

divV =0, div Hy = 0, (4)

then problem —, under the condition

divH =0, (5)
reduces to solving the Cauchy problem (herein after, the bracket (...,...) means the scalar
product)

o - L /L W /e Ne 4 .

S = v A - (V, v) i+ (H, v) V., H(0,x) = Hy(x). (6)

Note that condition is a consequence of condition : from div ﬁo(m) = 0 it follows that
div H(t,x) = 0 for all ¢ > 0.

Indeed, taking the divergence from both parts of and taking into account the relation

div (rot) = 0 , we obtain
0 .. = -
—divH = v, A (le H) : (7)
ot

Therefore, by the uniqueness theorem, condition (5)) will be satisfied for all ¢ > 0 if it is

satisfied for ¢ = 0, i.e. for the initial condition Ho(z).

The initial magnetic field ﬁo (x) is given by the distribution of currents, and these currents
are concentrated in a limited region of space. It is known that then Hy(z) = O (|z] ™),z — o
and this condition ensures the solvability of system (@ Let us now write out the solution of
equation (6] in the Markov linear model ().

To do this, we first look for a particular solution in the form

A(t,x) = h(t, k)exp {z’(ﬁ(t, P, x)} . 8)
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where t > 0,k € R, i is imaginary unit, and Q(EO,E) — k. Substituting into @ and
equating the real and imaginary parts of the received relation, we obtain

d

d- - Lo o L. .
%h(ta k) + l/mQQh(a k) = C(bt)h(ta k): h(07 k) = hO(k)> (10)
where * is the transposition operation, the scalar square 3% = (Q(t, E),;?(t, lg)) and the

condition div Ho(x) = 0 is equivalent to the condition <EO, E) . In addition, the condition

divV = 0 means that the matrices C(b;), C*(b;) have zero traces:
t?"C(bt) = tTC*a)t) = O,

those C(b;) € SL(v,R). As is known ( [13] Ch. XV, §5,86), the unimodular v x v matrix
X(t), is a solution to the equation

d
ZX(1)=CHX(1), X(0)=F,

where the E is identity matrix is called the multiplicative integral (in terms of |13|-matrix)
and is denoted by the symbol

X(t) = QL(D) = / (E + D(s)ds) .

Then, introducing into consideration the matrix (multiplicative integral, more precisely,
multiplicative stochastic integral)

t

G; = / (E + C(bs)ds). (11)

0
as a solution to the equation

d
EGt = —C(bt)Gt, G() = E,

and noting that the matrix of system (9) is (G;)~" and the property 2° ( [13], p. 431) we get
that the solutions of systems @[) - can be written, respectively, in the form

(k) = (G,
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Now, to find a general solution of the problem @ in model , we need to expand the initial
condition Hy(x) into a Fourier integral and force each component of this expansion to evolve

according to systems (EI), . In other words, if by H O(E) we denote the Fourier image of
the initial field Hy(x):

Hy(z) = % / ) B (F)dF. (12)
(2m)"/
RV
then
t
At a) = —— [ G (Fyeap {i((G)F Y ds b i (13
() = o | Gt Jeap {i(G) K, 2) }-eop § —vn [ ((GD7E) ds p dE. (13)
Rv 0

It is easy to see that for the total magnetic energy F/(t) we obtain the integral representation

t

E(t) = / H2(t,z)dx = / (thfo(/z)):xp o, / ((G:)lE)st di: (14)

R¥ 0

Thus, the solution H (t,x) of the magnetic induction equation @ in the Markov linear model
by formula (13, and its magnetic energy £(t) by formula are expressed as some
functionals of the multiplicative integral (matrix) of the form (L1)). And this means that in
order to study questions about the asymptotic behaviors of the magnetic field H (t,z) and
magnetic energy £(t) as t — oo, it is important to know the asymptotic behavior as the
multiplicative integral G, itself and integrals and depending on it as t — oo.

In connection with the above, the following tasks arise:

A) Find out the asymptotic behavior of Gy as t — o0;

B) Carry out an asymptotic analysis of the magnetic field H (t,z) and magnetic energy
E(t) at t — oo.

Other equally interesting problems are also possible (for example, those related to various
moments of the magnetic field in the Markov linear model). But in this paper we will not
consider such problems.

The solution of problem A) was announced in |7], and the complete solution of problem
A) was given in [8] in the following setting.

Let 6y is an arbitrary (non-random) column vector of unit length: 6y € S*~! is the unit
sphere in R”, v > 3. Let us act on 6y by the multiplicative integral G; with the matrix C(-) :
K — SL(v,R) and denote by r; the Euclidean length of the resulting vector: r; = ||G0o]|.

The Lyapunov exponent of the matrix G, is the almost-probably (a.s.) limit

1
v = tlgono ;lnrt.

Then the following is true.
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Theorem 1 (Ferstenberg type theorem) For any fived initial phase 0y € S*~! there exists
a.s.and a strictly positive limit

1
= lim —in |G| > 0. (15)
t—oo t
In other words, it was proved in [8] that fort — oo; the asymptotic r; = |G| ~

exp{~t},v > 0, i.e., for sufficiently larget, the action of the matrix G; on a vector of unit
length leads to its exponential expansion. The proposed paper is devoted to solving problem
C). In this case, the above Theorem [I| from |8] will play an essential role.

5.3 Construction of Lyapunov bases for G;

This section is devoted to obtaining such results on the multiplicative integral G; of a Markov
random matrix that would be convenient for studying the magnetic field H (t,x) and its energy
E(t) expressed by formulas and (14).

Let us now proceed to the construction of Lyapunov (generally speaking, random) bases
and show that, with the appropriate use of these bases, the multiplicative integral G; defined
in model by formula as t — oo almost does not differ from the degree of some
constant matrix.

To do this, first of the multiplicative integral (matrix) Gy, like any matrix, we represent
as a product of orthogonal (U;) and upper triangular (K;) matrices. Technically, this can be
done as follows. We orthonormalize the columns of the matrix Gy, starting from the first one,
and form a new basis from them. As U;, we take the transition matrix from the original basis
to the new one. Then the diagonal elements of the matrix K; will have the following form:
K1y is the length of the first column of the matrix GGy, K5, are the length of the component
of the second column orthogonal to the first column, and so on. Let us now substitute this
representation Gy = U, K, into the equation for Gy, if the matrix U, 'C(b,)U, is represented
as the sum of antisymmetric (F;) and upper triangular (B;) matrices, then for U; and K; we
obtain the equations

% = U, F,, % = B/K; (16)
The first of these equations is a non-linear equation closed with respect to the orthogonal
matrix Uy, which determines the orientation of the matrix G;. After solving this equation, we
can find the diagonal elements of Kj:

Kii = Ki;(0)exp {t%‘ + \/Egz(t)} ;

where

v = lim = / bi(s)ds, &(t) = \i[ / (bi(s) — ) ds. (17)

t—oo t t
0

According to the central limit theorem, as ¢ — 0o, the process &;(t) has a normal distribution
(note that we can always put K;(0) =1).
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Moreover, the matrix U; is Markov and the group of orthogonal matrices is compact in
SL(v,R). Whence follows the existence of a stationary distribution p of the matrices U,
over which the averaging is performed in the first of formulas . Further, detK; = 1, so
Y1+ Y2+ ... +7, = 0. From the decomposition method of G; into the product U, K} it follows
that v; > v > ..y,1 > 7,,. Take 6y = (1,0,...,0) € S*~! and make sure that 7, = v > 0,
where -, is the largest Lyapunov exponent appearing in the Ferstenberg-type theorem (see
(15))). After that, we act to the unit vector 6, € S¥~! by the inverse matrix G;'. Then
the resulting vector, for the same reasons as above, changes as exp|y,|t, where 7, is the
"highest exponent in the reverse course of timei.e. the lowest index and =, < 0. However, the
negativity of ~, also follows from the fact that v; > 0,71 +v2+...+7, = 0. The signs of other
v;(j = 2,3...,v — 1) can be arbitrary. For example, if » = 3 and the distribution of matrices
also has symmetry under the change Gy, — G; ', then 5 = 0, 7, = —3. In addition, some
of v; can be the same. However, it turns out that in our assumptions, they are all different,
or rather true

Theorem 2 (simplicity theorem for the spectrum of characteristic Lyapunov exponents). The
exponents of the Lyapunov matriz Gy are different, i.e. there are strict inequalities

T=7 % > Y1 S Yo (18)

Proof 1 We divide the interval [0,t] into n parts by points 0 = tg < t; < ty < ... < t, =1
and represent the matriz Gy as ( [13], p. 433, formula (46))

Gt =0n " Gn-1" " 91, (19)
where
ty
gr = / (E+ C(bs)ds), k=1,2,...,n. (20)
th—1

It is clear that gy, ga... are stationary Markov processes with values in the group SL(v,R) and
mean value Mlin||gi|| < oo. Studying this sequence gy, gs... from the point of view of [11].
Given that, according to the results of (8], the pair (by, Gy) has a smooth transition density,
we see that this sequence satisfies all the requirements of the main theorem of [11] ( (11|, §2,
p.122). Thus, according to the main theorem [11], the characteristic Lyapunov exponents are
simple, 1i.e.

Y1 > Y2 > e > Yy

The simplicity of the spectrum of characteristic exponents is one of the central properties
that determine the asymptotic behavior of the multiplicative integral GG;. Below, using this
property, we will prove a theorem that, when using an appropriate Lyapunov basis, for large
t (t — 00) Gy almost does not differ from the degree of some fixed matrix (see Theorem
below). For these purposes, we first prove an auxiliary lemma.
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Lemma 1 a) For large t, matriz K; can be represented as Ky = D,K,, where K, is an upper
triangular matriz such that there are limits tlim K;;(t) = K;j(00), and Dy is diagonal matriz:
—00

Dy = diag {exp{(71 + 011 ()t} ... exp {( + o, (1))t} } (21)
Qyj = %/(bij(s) —75) ds.

b) Let K(c0) is a matriz with entries K;j(oc). Let us set K; = ?tﬁ(oo) Then for any a > 0
there are numbers 3;; > 0 such that, for sufficiently large t, the inequalities hold for j < i
with probability 1

—Biexp{(; — )t — at} < Ki(t) < Byexp{(y; — )t + at} (22)
where ?ij(t) are the elements of the matrix K,.

Proof 2 For simplicity, we will carry out the proof for matrices K; of order 3 x 3.
a) We know the form of the diagonal elements of K, (formula (@) Using for off-
diagonal elements, we obtain:

t
Kp(t) =1+ /512(S)K22(3>K1_11d37
K =1 + / 612 K23 + b13( )Kgg(S)) Kﬂlds, (23)

K23 =1+ /b K33 K22 dS
0

whence Ky = D,K,, where the matriz Dy is defined by proportions .

Further, due to the boundedness of the norm matriz C(xz) on the compact set K, the
elements of the matrix By with probability 1 are bounded functions of t. Therefore, from
formula , from the fact that inequalities 7 > i are found for v; — vi < 0, means of
limitation follow for K;;(t) at t — oco.

b) by the definition of a matriz, K, we have:

Kiu(t) = Kaolt) = Kas(t) = 1, Ki;(£) = 0, (j < i), K1a(t) = K12(G) — K12(00),
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Kas(t) = Kos(t) — Kos(00), Kis(t) = K13(t) — K13(00) + K 12(t) K o3(00).

Substituting now the wvalues Fl-j(t) from into the last relations, and evaluating the
integrals obtained, we obtain the inequalities we need (@

Definition 1 Let column vectors €1, €s, ..., €, form a matrix e, satisfying the condition
K(x)e=E,

where E is the identity matrixz. Then the basis €1, €, ...,€, called corresponding indicators
Y1y Y2y -, Yo Lyapunov basis.

The name "Lyapunov bases"is justified to some extent by the following theorem.

Theorem 3 On Lyapunov bases €1, €y, ..., €, the relations are fulfilled
1 S ,
i :tli}’g)ZlnHGtejHJ J = 1727”'7V' (24>

Proof 3 By definition of the Lyapunov basis
K(c0)e=(0,...,0,1,0,...,0)",

where 1(one) is in the j—th place, and the % is sign is the transposition operation.
Therefore, |]Gt€j|]2 the length is simply the square of the length of the j—th column of the

matriz DKy, i.e.,
)
G 1° = K jeap {20y + au(t))t}
=1

Using inequalities (@, we obtain that for any o > 0 there are numbers By, Bo > 0 such that
Breap {295t — at} < |G| < fheap {295t + at}
Now the relations we need follow from the last inequality (due to the arbitrariness of o).

Note that the Lyapunov exponents are, as averages, non-random numbers. Mean while, the
Lyapunov basis corresponding to them is random; it is different for different implementations
of the process b;. However, for this implementation, the basis is the same and does not depend
on time.

5.4 Asymptotic analysis of the magnetic field and total magnetic energy

Now let the vectors €}, és,...,€, constitute the Lyapunov basis, and € = €] + \é +
... + \&,. Denote by [|Gé]]° approximate value of the square of the Euclidean norm,
calculated under the assumption of the replacement K (t) with K(oo) and D, on D, =
diagexp(1t), ...,exp(7,t). In other words

|G.e])* = Z Nexp(2v;t). (25)
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On the other hand, due to the infinite smallness of a;;(¢)(j = 1, ..., v)ast — oo, for any a > 0
there exists 71 = Ti(a) > 0, such that for ¢ > T} the inequalities hold

e |Geell” < [ DR (so)el|” = Y W20 ten Ol < et [|Gre . (26)

j=1

: T L 2 .
Using @, we can write similar inequalities for the norms || D,K(c0)é]|” and |Gl As a
result, we come to the conclusion that the theorem is true.

Theorem 4 For any a > 0 there exists T = T(a) > 0 such that for t > T uniformly over all
vectors € € RY the inequalities hold

e—at < [|Gté”2 < eat' (27)

G

Inequalities will later play an essential role in the study of the asymptotic behavior of
the magnetic field strength and its total energy. Now, before proceeding to these studies, we
note the following useful information.

If v1 > 79 > ... > 7, are the Lyapunov exponents for the matrix G;, then the Lyapunov
exponents for (G7)~! will be (—v;) < (=72 < ... < (=7,). The corresponding Lyapunov basis
ey, €y, ..., €, satisfies the condition

€,
— -1

(K(c0)")

(¢/ composed of column vectors €}, €, ..., €, matrix). In other words, e*¢’ = FE, i.e. the
Lyapunov bases for Gy and (G})~! are biorthogonal.

In addition, for the elements of the matrix (G})™! inequalities similar to hold, so
inequalities are also valid for (G})~'.

Note also that in formulas and the quantities (G7)™'k and G,H(k) increase
t N\ 2
exponentially with probability 1. Therefore, the multiplier exp{—ym Ik ((G;‘)*lk> ds}
0

e =F

decreases as t — oo (and any v, > 0) as a double exponent. But in the integral sense

(due to the influence of values of k close to zero) the double exponent decreases only at the
rate of the usual exponent. This circumstance determines the nontriviality of the analysis of
integral expressions and .

Further, for simplicity, we will assume that v = 3 and proceed from formulas and
(13). In addition, below we will additionally assume that v, # 0 herefore, two qualitatively
different cases are possible:

a)yr > 0>y > s,

b)yr > 72 > 0> 3.

Let us now formulate the main results - the theorem on the exponential decrease in the
magnetic field and the theorem on the exponential growth of the total magnetic energy.
(Below, |@| denotes the length of the vector @, and we use the sign || - || to denote the norm).
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Theorem 5 Let |Hy(z)| € L*#(R3) N L(R3) where 0 < 5 < 1. Then there is o > 0 (which
does not depend on v,,, provided that v, > 0) such that with probability 1 ast — oo

sup| A (t,2)| = ofeap(—at)) (28)

Theorem 6 Let Hy(0) # 0, |Ho(z)| € L*(R3) and the initial field Hy(z) either be nonrandom
or random, but does not depend on the fluid flow, i.e. from process b;. Then there exists a
positive with probability 1 function B(w) of the elementary w and a constant o > 0 (the same
for all v,, > 0) such that for sufficiently large t the inequality

e(t) > B(w)(exp(at)). (29)

The proofs of these theorems will essentially be based on the inequalities , and the
methodologies of the proofs from the technical point of view are in many respects similar and
rather lengthy. In this connection, here we omit the detailed proofs of these assertions and
give only the proof of Theorem [5|in case b).

We will proceed from the integral representation for the magnetic field strength H
H (t, ). Omitting the constant before the integral, we can write

H(t, )| S/exp —ym/t((c;;)—%’)st

R3 0
But according to Theorem [2 for any o > 0 there exists 7" = T'(a) > 0 such that for t > T
we have

~

G Ho(k)| dk. (30)

~

Gy Ho(R)| < exp{(n1 + )t} [Ho(F) (31)

o~

On the other hand, Hy(z) € L'*#(IR3), therefore, by the Hausdorf-Young inequality, Ho(k) €

L(R3), é + ﬁ = 1. Furthermore,

Ho(k)| <es
La
where Cjs is a constant depending on 3. Therefore, applying the Holder inequality to the

right-hand side of , we obtain

F[O(:z:)‘

L1+8 ’

1+8

~

Ho(k)|| exp{(1 + o)t} dk.

La

t
’ﬁ(t,x)’ < cﬁ/ erp —(1+6)Vm/ ((G:)_llzfds

R3 0
Let us estimate the triple integral on the right side of the last inequality. Let ki, ko, k3 are the
coordinates of the vector & in the Lyapunov basis for (Gf)™!. Then, according to Theorem ,
for any o > 0 and sufficiently large ¢, the inequalities are fulfilled

/t((G:V@?dSZ/T((GZ)15)2ds+/t<(ag)1/;)2d32

3
O(w) (K2 + k3 +K3) + > fi(t)k?,

=1
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where §(w) = d is a finite, positive value with probability 1 (w is an elementary event), 7 is
a sufficiently small number,

t

fi(t) = /69319{—2 (v + a) s} ds.

t—1
Since 71 > 72 > 0 > 3 and an « is an arbitrary small number, then for large ¢

t

[ (1607%) s 280 + Culryean (20 + ) ) 2+
Co(T)exp (=2 (2 + @) 1) k3 + exp (=2 (3 + a) t) k3 >
S(w)k? 4+ exp (=2 (y3 + ) t) k3,

where C; are some positive constants depending on 7.

Hence
R[@mp e 6)um0/t <(G:)_1E>2d8 < (m)gew((% +a)t).

Substituting this into (31)) and taking into account the fact that v +~v3 = —v2 < 0, we verify
the assertion of Theorem |5 in case b).

Remark 1 Usually in applications the initial field ﬁo(x) is decreasing at infinity as
|5L‘|_(3+°‘), a > 0, so that in the most important practical cases the condition of Theorem@ 18
satisfied.

If the initial function is not random, then Theorem [5| can be strengthened by assuming only
the finiteness of the magnetic energy, i.e. by assuming that |Hy(z)| € L*(R3). Namely, the
following is true.

Theorem 7 If the initial field is nonrandom or independent of the fluid flow, from the
finiteness of its magnetic energy follows an exponential, with probability 1, decrease of the
magnetic field as t — oo: for some o > 0 with probability 1

sup |H (t, z)| = o(exp(—at)), t — co. (32)
The proof of this theorem is similar to the proof of Theorem [5]

6 Discussion of the results

The main results of the work are presented in section 5. At the same time, at the beginning,
in Section [5.4] a description of the Markov linear model considered in this paper is introduced
and given. Note that such a model of the velocity field in the form was first defined in the
previous works of the first of the authors of this article. Such a representation of the velocity
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field in [7]- [8] made it possible to apply the theory of degenerate elliptic-parabolic Hermander
operators to prove the existence of non-degenerate joint transition densities constructed
according to the multiplicative integral (matrix) G, of diffusion processes defined by formula
(11)), and, ultimately, to prove theorems of Furstenberg type (Theorem. This theorem plays
the main role later in paragraph ) in the construction of Lyapunov bases for G;.

In paragraph [5.2] the magnetic induction equation is considered within the introduced
Markov linear model. Explicit integral representations (in the form of some functionals of the
multiplicative integral Gy) of the desired solution H (t,z) of the magnetic induction equation
@ and its total magnetic energy &, (formulas and , respectively) are obtained. the
main problem was reduced to studying the asymptotic behavior of the multiplicative integral
G, and integrals and depending on it as ¢t — oo.

Section is devoted to the construction of Lyapunov (generally speaking, random) bases
for G;. At the same time, using the results known from the theory of matrices (decomposition
of a matrix into a product of orthogonal and upper triangular matrices, etc.) and the central
limit theorem, we first find the characteristic Lyapunov exponents (formulas ), prove a
theorem on their simplicity (Theorem , and the Lyapunov bases corresponding to these
t(t — oo) exponents are defined (Definition[l)).

In the last subsection [5.2] we present and prove the main results of this paper, Theorems
and [6] In proving these theorems, the results of Theorem [ (i.e., inequalities (27))) were
essentially used. Theorems [f] and [0] actually mean that in the Markov linear model for large
t(t — o0) the exponential decrease of the magnetic field occurs with probability 1, however,
its total magnetic energy grows exponentially throughout space. This property of the field,
which at first glance seems paradoxical, can be explained simply: in the linear model, due to
the increase in velocity, the volume of space occupied by the field rapidly increases, which
entails an increase in the total magnetic energy.

The results obtained in this work are similar to the results of [5]- [6], where the problem
of the evolution of a magnetic field in a random linear velocity field was also studied in a
kinematic setting (i.e., for a given velocity field), but the authors of these papers had to deal
with with the product of independent random matrices as the number of factors increases.
Our paper covers a more general situation (than papers [5|- |6]), because we are studying
the magnetic induction equation in a more general (Markovian) linear model, and we had to
investigate the asymptotic behavior of a more general product - a multiplicative stochastic
integral.

7 Conclusion

The work was devoted to the asymptotic analysis of the solution of the Cauchy problem for the
induction equation in a given Markov linear velocity model. Explicit, containing (associated
with a given velocity field) some multiplicative stochastic integral G; of a Markov random
matrix, integral representations for the magnetic field and its total energy were obtained.
So-called Lyapunov bases are constructed and it is shown that, with an appropriate choice
of the corresponding Lyapunov bases, Gy for large ¢(t — oo) almost does not differ from
the degree of some constant matrix. As a result, theorems were proved on the exponential
decrease in the magnetic field at each point in space and the exponential growth of the total
magnetic energy (over the entire space) in a given Markov linear model.
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A REGULARIZED TRACE OF A TWO-FOLD DIFFERENTIATION
OPERATOR WITH NON-LOCAL MATCHING CONDITIONS ON A STAR
GRAPH WITH ARCS OF THE SAME LENGTH

In this paper, we study the regularized trace of a two-fold differentiation operator with non-local
matching conditions on a star graph consisting of arcs of the same length. We consider both the
integrable case, when the potentials belong to the space L, and the singular case, in which the
potentials admit more general features, including distributions. The main attention is paid to the
derivation of the asymptotic decomposition of the characteristic function corresponding to the
boundary value problem on a graph and the calculation of regularized traces using spectral theory
methods. The main goal is to calculate the first regularized trace of an operator, which is defined as
the limit of the sum of the differences of the eigenvalues of the operator and its modification. It is
shown that in the integrable case, the regularized trace is a linear functional of the potential
coefficients, whereas in the singular case (when the potentials are represented as generalized
functions), it acquires a nonlinear dependence. Explicit formulas for the regularized trace using
characteristic determinants and integral representation methods are derived. The results of this
work generalize the well-known formulas of regularized traces applied to operators on a segment
to the case of more complex structures such as graphs. The work is of interest to specialists in the
field of spectral theory of operators and differential equations on graphs.

Key words: Regularized trace, star graph, differential operator, Sturm-Liouville operator.
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Y3biHAbIFbI Oip/eit goranapsl 6ap rpad >KYJIAbI3BIHAAFBI JIOKAJIBIbI €MeC COUKECTIK HiapTTapbl
bap eki ecesenren auddepeHIaagay onepaTopblHbIH PeTTEeJreH i3i

Byn xymbicTa 6ipaeit Y3BIHABIKTATBI JTOFaJapAaH TYPATHIH Ipad->Ky/IIb3Iarbl JOKAIbIb eMeC
COMKECTEH Py IMapTTaphl 6ap exi perTik anddepeHImaigay onepaTopbiHbiH, PETTE/TeH 131 3epT-
teneni. [lorennumasmap L1 KeHicTirine *KaTaTblH HHTETPAJIIAHATHIH YKAFIAH /12, TOTEHITNAJIIap YiIe-
CTIpY/Ii KOCa aJIFaH 12, KaJIITbl epeKIeIiKTepre MyMKIH/IIK OepeTiH CHHIYJISPJIBIK, YKaFIail j1a Kapac-
TBHIPBLIAIBL. ['padrars! meTKi ecenrepre ColiKec KeJIETiH CUMATTaAMAJIBIK, (OYHKIIUSTHBIH ACHMITTOTH-
KaJIBIK, BbIJIBIPAYBIH aHBIKTAYFa YKOHE CIIEKTPJIK TeOpHs 9JICTEPIH KOJIJIaHa OTBIPBIN, PETTEJITeH 13-
Jepai ecenrreyre baca Has3ap ayaapbliaabl. Herisri MakcaT-omepaTop/IbiH, MEHIITIKTI MOHAEPIHIH, aii-
BIPMAITBLIBIKTAPBIHBIH, KOCHIH/IHICHIHBIH, ITIET1 KOHE OHBIH, MOTU(MDUKAIIASACH! PETiH/Ie aHBIKTAJJIATHIH
OTIepATOP/IBIH, OipiHII peTTesreH i3in ecenrey. HTerpaijanran *Kariaii/ia peTTe/rex i3 moTeHIu-
aJ1 K03 pUImeHTTEPiHIH, CHI3BIKTHIK, (DyHKITHOHAIBI OOJIBIIT TAOBLIAIbI, aJ1 CHHTYJISPJIBIK, YKaFIARIa
(moreHnmaIAp KaanbLIaHFAH (DYHKIUAIAD TYPIHJIE YCHIHBLIFAH KE3JI€) OJI ChI3BIKTHIK, €MEC TOYeJI-
Jnikke ue 60s1abl. CunaTTaMaJiblK, aHBIKTAYBIIITAP MEH HHTErPaJIIbl OeiiHe ey oicTepin KOIIaHa
OTBIPBITI, PETTE/ITEH 13re apHAJIFaH HAKThI (popMyIaIap MILIFapbLIIbl. Byl )KYMBICTHIH HOTHKeIePi
rpadTap CUIKTBI Kypesi KYPhLIbIMIAP *KarIalibIHIa KeCiHIiIeri onepaTopapra KO IaHbLIATHIH
perTesrer i3jep/in Oesriii dpopMmysasapbiH KUHAKTaW bl 2K yMBIC OnepaTopsiap/IblH, CIEKTPJIK
TEOPUSICHI YKoHe rpadTapaarsl uddepeHnnaIblK, TEHIEYIeD CaTaChIHIAFbl MAaMaHIAPIbI KbI3bI-
KTBIPa/IbI.

Tvyitin ce3nep: Perrenren i3, rpad xkyiaeissl, quddepennuanast oneparop, Itypm-JInyBusib
OTIEPATOPHI.
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PerynsipuszoBanublii cjies; oneparopa JByX KpaTHOro JqudQepeHnnpoBanus ¢ HeJJOKAJIbHBIMU
YCJIOBUSIMU COIJIACOBAaHUsI Ha rpad-3Be3/ie ¢ AyraMu OJUHAKOBOM AJINHBI

B nammoit pabore wucciemyercs peryiaspU30BAHHBIN CJIET OIepaTopa IBYKpaTHOTO maudde-
PEHIMPOBAaHUsI C HEJOKAJBHBIMU YCJIOBUSIME COTJIACOBaHWS Ha Tpade-3Be3/e, COCTOSAIEM U3
JIyT OJMHAKOBOW JIJIMHBL. PaccMaTpuBalOTCs Kak HHTEIPUPYEMBbIH CiIydail, KOrja ITOTEHIHAJIbI
[IPUHAJJIEXKAT [POCTPAHCTBY L1, TaKk W CUHIYJISPHBIA CIydail, IpA KOTOPOM IIOTEHIIAAJIbI
JIOIIYCKAIOT OoJiee obIrie 0coOeHHOCTH, BKIIOYast pacupeenaennsi. OCHOBHOE BHUMAHUE YIEJIsIeTCs
BBIBOJLy ACHMIITOTHYECKOTO PA3JI0XKEHUS XAPAKTEPUCTUIECKON (DyHKINU, COOTBETCTBYIOIIEH
KpaeBoil 3a/1a4ue Ha rpade, U BBIUYUCIEHUIO PETYJISIPU30BAHHBIX CJIEJIOB C UCIOJIB30BAHINEM METO/IOB
crekTpasbHOil Teopun. OCHOBHOW IIEJBIO SIBJISIETCS BBIYHCJIEHUE IIEPBOIO PEryJsipU30BAHHOTO
cJIe/ia OIepaTopa, KOTOPBI OIPEIessIeTcs KakK MPEJIe] CyMMBbI PA3HOCTEH COOCTBEHHBIX 3HAYEHUIT
oneparopa u ero momudukanuu. [lokazaHo, YTO B MHTEIPUPYEMOM CJIydae Perysispru30BaHHBIN
ces SBJISIETCS JIMHEHHBIM (QYHKIIMOHAJIOM OT KO(DMUIMEHTOB NOTEHNMAasa, TOrJa KaK B
CHHI'YJISIDHOM Cjiydae (KOrja [OTEHIUAJbl IIPEeJICTABICHbl B Buje 0OOONIEHHBIX (yHKIuUii) oH
npruobpeTaerT HEeJIMHEHHYI0 3aBUCHMOCTDH. BbIBeeHbI siBHbIE (DOPMYJIBI JIJIsT PEryISpPU30BAHHOIO
cjesa, WCIOJIb3YIONIMe XapaKTePUCTUIECKUE OIIPEJIeJIUTEIM W METOAbl UHTErPAJIBHOIO IIPejl-
crapjieHusi. Pe3ysbTarhl JaHHON paboThl 0DOOIIAIOT M3BECTHBIE (DOPMYJIBI PEryJIsTPU30BaHHBIX
CJIe7I0B, IPUMEHsIeMbIe K OIlepaTopaM Ha OTPe3Ke, Ha CJydail 6ojiee CIIOXKHBIX CTPYKTYD, TAKUX
Kak rpadsl. Pabora mpejcraBiser nHTEpEC IJisi CHEIUAJACTOB B 00JIACTH CIIEKTPAJIBHON Teopun
orepaTopoB u guddepeHnnaaIbHbIX YpaBHeHUN Ha rpadax.

KuroueBble cjioBa: pery/isipu3oBaHHbI cell, rpad-38e3/a, auddepeHInaabHbli orrepaTop, ome-
parop Hlrypma-JInyBusiis.

1 Formulation of the Problem

In [1], the first regularized trace of the Sturm-Liouville operator B was calculated, generated
by the differential expression

) ==y @)+ (1o (z=F) == )y (@)

on the segment [0, 7] with Dirichlet boundary conditions. The eigenvalues of operator B are
denoted by A, for n > 0. Then the formula is valid

S0 -t = Ly caply = 2 ()

Further generalizations of A.M.Savchuk’s formula can be found in |2,3]. In this paper, the
formula (1f) is generalized to the case of a differential operator on a star graph.

N.P.Bondarenko [4] considers a star graph with more than two arcs. The lengths of the
arcs are considered equal to 7. In the article |4], the eigenvalue problem B for a twofold
differentiation operator on a graph is investigated

—y](?) (x) = Ay, (z),z € (0,7), j=1,m,



B.E. Kanryxun, 3.3. Carnaesa 43

with Robin conditions in the boundary vertices

yj(l) (O) - hjyj (O) =0, j = 1>m’

with continuity conditions in the inner vertex

Y; (Tr):yl (ﬂ-)a j:2am7

and the matching conditions in the inner vertex

Z (7 @+ [ 0@ wyac) =0

Here X is a spectral parameter, and nonzero numbers h; are complex numbers. In the
first part of the article, the functions p; (x) belong to the space Ly (0, 7). The eigenvalues of
operator B are denoted by [\,,n > 1]. Along with operator B, we also consider operator By,
which is obtained from operator B when p; (z) =0, h; =0, j = 1,m. The eigenvalues of the
operator By are denoted by {\ n > 1}.

The purpose of this article is to calculate the limit

i D (- ).
k=1

where are the sequences {ay} and {m,, } they are selected in a special way. Thus, the calculated
sum is called the first regularized trace of the operator B defined on the star graph. Formulas
of regularized traces for different classes of differential operators can be found in the works
of V.A. Sadovnichy and his students [5].

The work consists of two parts. First, we study the integrable case when the functions
p; (z) belong to the space Ly (0, 7). In the second part, we study the singular case when
the functions p] ( ) represent distributions. In this case, it is assumed that the generalized
primitive ¢; () = [p;(x)dz are functions of limited variation. It is proved that in the
integrable case, the regularlzed trace is a linear functional of the functions p; (z). At the
same time, the regularized trace in the singular case is a nonlinear functional of the functions

p; ().
2 The main result in the integrable case

It is convenient to introduce notation to formulate the results. Let

©=2 p@,  P@)=3 ki),  P)=) pj/f;),
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Theorem 1 (integrable case) . Let the nonzero numbers h; be complex, and the

functionsp; (x) belong to the space Ly (0, 7). Also assume that the function P (z) = ij (x)
=1

]7
satisfies the Dini condition at the point x = w. The, for m > 2, the formula for the regularized
trace is valid

71113;02 (A —AY) = P (7).
k=1

Here m,, is the number of eigenvalues of the original problem in the circle A plane of radius
(n + }1)2 centered at zero.

It was shown in [4] that the characteristic determinants of the operators By and B are
given by the equalities

Ay (2%) = —mzsin (27) (cos (27))" ",
AN =20 (M) A+ F ), (2)
where
o (7 ) 08 (21) . i . sin (2) . tg (zm)\" "
F(#) = /0 P )zsin(zw)d /0 i )ZQSiH<Z7T)d HQ( z )

—H, (tg f”))m_l/j P (x) %dx —H <@>m_l/oﬂp(x) %dm

In fact, the characteristic determinants Ag (\) and A (\) are integer functions of A. The
zeros of the integer functions Ag (A) andA (\) represent the eigenvalues of operators By and
B. Thus, the sequence {\2,n > 1} represents a sequence of zeros taking into account their
multiplicities of the whole function A (). Similarly, the sequence {\,,n > 1} it is associated
with the zeros of the whole function A (\). Their asymptotic behavior was clarified in [4].
Since the zeros of the whole function Ay (\) break up into series, the zeros of the whole
function A () also have an asymptotically serial structure (see Theorem 1.2 from [4]). Their
asymptotic behavior is clarified in the work [4].

Let us use 7, to denote a circle in the z-plane of radius n—l—% centered at zero. It is easy to

understand that the function tg (27) on the circles v, is bounded by a constant independent
cos(zx) sin(zx)
—=— and ——

sin(zm) sin(zm)
bounded by a constant independent of n. For sufficiently large n, the function In(1 + F'(X))
is holomorphic on the circle v,. Now let’s try to calculate the integral 5 § 2*dIn A (2%).
According to the principle of the argument, we have

of n. If x is fixed between zero and 7, then the functions on the circles v, are

L Zdln A (2%) =2 Z Ak (3)
k=1

271 T
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Here m, = 55 ¢ dInA(2%) = 5§ dln A (2?) for sufficiently large n. On the other hand,
the ratio (2)) implies

L 2 2 _Lj{ 2 2 L]{ 2 2
i %z dlnA(z)—Qm, %z dlnAO(z)Jrzm, %z dln(1+F(z ))
It is clear that
L 2 2\ _ — 0
s %z dln A (z ) = Q;Ak. (4)

Applying the piecemeal integration formula allows us to write the ratio

L 2 2 __L 2
s %z dln(l—l—F(z ))— 22m' %zln(l—kF(z ))dz

Let m > 3. For sufficiently large n, we rewrite the last equality as

L 2 2\\ _ Lj{ 2
5 %zdln(l—i—F(z ) = 25— %zF(z)dz—i—o(l). (5)

It is taken into account here that for n — co on the circles 7, the function F (2%) = o (1),
since the functions p; (x) belong to the space L, (0, 7). It remains to calculate the integral

1

7 P, 2 (2?) dz using the deduction theorem. When n — oo we have

L zF(zQ)dz—L z —/P(a:)mdx dz+o(1)

zsin (z7)

:_]p(x> (%i %dz) dz + o (1)

— —%/P(m) (1 +22(—1)k cos (k:x)) dr +o(1). (6)

0

Thus, it follows from the relations —@ that for m > 3 the formula of the regularized trace
has the form

Tim 3" (= A) = P (). (7

Now consider the case of m = 3. For sufficiently large n, equality can be written as

L 2 2
5 %z dln(l—l—F(z ))

1 7r 1 m—1
P N O _/p(a;)L('m)d;p dz+2H22—i7{z(tg(w)) d + of1).
T
0

2mi J,, zsin (zm) o z



46 A regularized trace of a two-fold differentiation operator ...

2
We need to calculate the integral ﬁ fw z <tg(m)> dz using the deduction theorem:

1 t 2
— z < & (Zm) dz =0
271 o z

2
Thus, the contribution from the integral 5= 997 z (tg(”)> dz in the sum (Eb is missing. In

z

the case of m = 3, the formula @ is preserved.

3 The singular case

In this paragraph, the generalized primitive ¢; (z) = [p;(x)dz are functions of limited
variation. In particular, the case when the generahzed prlmordlal q; (x) represent the jump
functions is studied in detail. In this case, the Stieltjes integral is calculated using the formula

| v@de@ =3 taw),

where dQ () = P (z) dx.
Then

"\ cos(zxs)  ~—_ sin(zzg) tg (zm)\""
F() ==Yty S, ()
s=1 s=1

zsin (27) 22 sin (27) 2

o (te (zm)\™ it cos (2149) o (te (zm)\™ it sin (zx,)
! z — *2 2 sin (27) ! 2 = *22sin (zm)’

In this case, the ratio will be written as

L, 22dIn (1+F(z2)) = —2% zln (1—|—F(22))dz

27 J,, m
1 "\ cos (zx) sin (zz41)
o PRy, P, M s d
27m']{ Z; zsin (zm) * 2#27{ Z "22sin (2m) ©
1 t ml
+2H2—.]§ B (M) dye
2mi ), z
1 L cos(eay) )
cos (2x
S te— d 1), — Q.
2mi J., - (Z zsm(z77)> @ +o(l) e
n s=1
It remains to calculate the required integrals using the deduction theorem:

1 - CoS zx cos k:c 1
2— 2 d =2 2 ), 1 ts,
i 3o 23 (23 )
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sin (zz41) — ok sin (kza)
j{ Z1581:528111 zwd _22t81( (=1) km )’

k=1

2 2
1 "\ cos (zx) 1

— S S ) =23 (S tcos (k
5 %z <S:1 e (m)) z 2] <s:1 5 cos ( xs))

Thus, in the singular case, the regularized trace formula has the form

- - "L cos (kx,
i {350 -3 (a3t 1)

k=1 s=1 k=1
= —Zthts (C (ry + x5) + C (24 —:ES))—i—ZtSlAS, (8)
w=1 s=1 s=1

oo . 1 o
where A; = x;l + 22 (-1 M, C(z,) = 3 Z %}fl’s)‘ Since A; = 0. Then (8)

i
—
B
Il

—

will take the form

gzg{fw*%— T (22%*1”

k=1 s=1

== Y tuts (C (2 + 23) + C (2 — 7)) (9)

w=1 s=1

Let requirement 1 be fulfilled: for an arbitrary continuous function y (), the integrals satisfy
the equalities

/O”y@)d@(:c):;tsy(xs),
| v@da Ztsly ra)

where dQ () = P (z) dx and dQ; (z) = P, (x) dx.

Theorem 2 (the singular case) Let the nonzero numbers h; be complex, the set of
functions {pj(x)} is subject to requirement 1. Then, for m > 2, the formula (@) is valid
for a reqularized trace.

Thus, from formula @D we see that the regularized trace in the singular case is a nonlinear
functional from jumps {t}. At the same time, from the theorem [I] we see that the regularized
trace in the integrable case is a linear functional of the functions {p;(z)}. A similar effect
in the case of differential operators on a segment was noted in [1, 2, 3|. In this paper, it is
shown that the A. M. Savchuk effect is also preserved for second-order differential operators
on a star graph.



48 A regularized trace of a two-fold differentiation operator ...

4 Acknowledgements

The work has been funded by the Science Committee of the Ministry of Science and Higher
Education of the Republic of Kazakhstan (grant No. AP19678089).

References

[1] Savchuk A.M., ”A regularized first—order trace of the Sturm-Liouville operator with a §-potential“, UMN, 55:6, (2000):
155-156.

[2] Savchuk A.M., Shkalikov A. A., "Trace formula for Sturm-Liouville operators with singular potentials®, Math. Notes, 69:3,
(2001): 427-442.

[3] Galkovsky E. D., Nazarov A. I., "On the trace formula for high-order ordinary differential operators®, Mathematical
Collection, 212:5, (2021): 80-101.

[4] Bondarenko N.P., "Inverse problem for a differential operator on a star-shaped graph with nonlocal matching condition®,
Boletin de la Sociedad Matematica Mezican, 29(1):2, (2023).

[5] Sadovnichy V.A., Podolsky V.E., "Traces of operators‘, UMN, 61:5(371), (2006): 89-156.

Asmopasap mypasve masimem:

Kaneyotcun Baamabex Ecmamosuyw (xoppecnondenm asmop) — oa-Dapabu amwrdaev. Kasax
YAMMBLE  YHUSEPCUMEMINiY, mamemamuka Kagedpacoiroviy npogeccopv. (Aamamov, Kazaxcman,
anexmpondor nowma: kanbalta@mail.ru);

Camnaesa 3Byxpa 3etinemondarwmsv, — Copcen  Amanoicoros amwvmdazvr  Hlwevic Kasa-
Keman ynusepcumeminit, 2 wypc dokmoparnmu (Ockemen, Kaszaxeman, aaiexmpondvik nowma:
satpaeva.zurra@mail.ru,).

Cesedenus 06 asmopax:

Kaneyorcun Baamabex Ecmamosuy (koppecnondenm asmop) — npogeccop kagedpor mamemamus-
ku Kasaxckozo mayuonaavrozo yrusepcumema umenu anv-Papabu (Aamamo, Kazaxcman, snex-
mponnaa nouma: kanbalta@mail.Tu);

Camnaesa Byxpa 3etinemondarvav, — doxmoparm 2 xypca Bocmouno-Kaszaxcmarckozo yrnusep-
cumema umenu Capcena Amanorconrosa (Yemo-Kamenozopek, Kazaxcman, ssexmponnas nowma:
satpaeva.zurra@mail.ru).

Information about authors:

Kanguzhin Baltabek Esmatovich (corresponding author) — Professor at the Department of
Mathematics, Al Farabi Kazakh National University (Almaty, Kazakhstan, email: kanbalta@mail.ru);

Satpayeva Zukhra Zeinetoldakyzy — 2nd year PhD student, Sarsen Amanzholov Fast Kazakhstan
University (Ust-Kamenogorsk, Kazakhstan, email: satpaeva.zuzra@mail.ru,).

Recewed: May 27, 2025
Accepted: June 9, 2025



ISSN 1563-0277, eISSN 2617-4871 JMMCS. Ne2(126). 2025 https://bm.kaznu kz

IRSTI 27.31.15 DOI: https://doi.org/10.26577 /IMMCS2025126204

B.D. Koshanov!"~~ N.M. Shynybaeva'"—, M.D. Koshanova?

N.O. Oralbekova?
I Institute of Mathematics and Mathematical modeling, Almaty, Kazakhstan
2 H.A. Yasavi International Kazakh-Turkish University, Turkestan, Kazakhstan
3 D. Serikbayev East Kazakhstan State Technical University, Uskamen, Kazakhstan
e-mail: *koshanov@math.kz

ON THE SOLVABILITY OF BOUNDARY VALUE PROBLEMS WITH
GENERAL CONDITIONS FOR THE TRIHARMONIC EQUATION IN A
BALL

The need to study boundary value problems for elliptic and parabolic equations is dictated
by numerous practical applications in the theoretical study of processes in hydrodynamics,
electrostatics, mechanics, heat conduction, elasticity theory, and quantum physics. This paper
investigates the solvability of a boundary value problem with general conditions for the triharmonic
equation in a unit ball.The validity of the analogue of the Almansi representation is proved. For
completeness of presentation, a representation of the Green’s functions of the Dirichlet-2 problem
is given. This article indicates the difference between the Green’s function of the real Dirichlet
problem and the Green’s function of the Dirichlet-2 problem. It is known that the results of
differential equations with partial derivatives in the entire space or differential equations without
boundary conditions are in a sense final. The theory of boundary value problems for general
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equations. However, there is a shortage of explicitly solvable problems on the path of further
development of the theory of boundary value problems of differential equations. Over the past
decades, sufficient material has been accumulated on the constructive construction of solutions to
boundary value problems for model equations with partial derivatives. This article relates to this
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DJITMITAKAJIBIK, 2KOHE TTapa0OJIaIbIK TEHIEYJIED VIMH MIeKAPAJIbIK, €CelTePIl 3epPTTey KaXKeTTijIi-
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O paspenmMocTu KpaeBbIX 33a4 C OOIMMHU YCJIOBUSIMU JIJIsi TPUTAPMOHNYECKOTO YPABHEHUS
B IIIape

HeobxomuMocTh rcc/ieJoBaHust KPAeBbIX 3a1a4 JJIsl JUIUITHIECKUX U apabOoInIecKuX ypPaBHEHUA
JUKTYeTCsl MHOTOYHCJIEHHBIMU ITPAKTUIECKAMHY TPUIOKEHUSIMU ITPA TEOPETUIECKOM UCCIIEI0BAHUT
MIPOIIECCOB THAPOINHAMUKHY, JJIEKTPOCTATUKY, MEXAHUKHU, TEILIOIMPOBOIHOCTH, TEOPUHU YIIPYTOCTH,
KBaHTOBOI ¢u3mku. B mamnoit pabore mcciemyercss pa3permMoCcTh KPaeBoil 3aadn ¢ oOmmMu
YCJIOBUSIMH JJIsI TPUTAPMOHMYECKOIO YPaBHEHUs B €IMHUYHOM Iape. JlokasaHa CIpaBeIMBOCTH
aHaJjiora upejcrasjienne Ajgbmancu. JJisi TOJTHOTHI U3JI0YKEHUs] IIPUBEJIEH IIpeJICTaB/ieHne (DyHK-
nuit 'puna 3amaun Iupuxite-2. B mannoit cratbe ykazana pasuuiia Mexay Pymknwmeit ['puna
nacrositeit 3agagan Jupuxie ¢ dyuknueit ['puna 3amauan Tupuxie-2. VI3BecTHO, 9TO PE3YaBTATHI
nuddepeHnnaIbHbIX YPABHEHUI C 9aCTHBIMU IPOU3BOIHBIMU BO BCEM IIPOCTPAHCTBE WU JTud-
depeHInaIbHBIX ypaBHEHUN 03 KPAaeBbIX YCJIOBUI SABJISIOTCS B HEKOTOPOM CMBICJIE OKOHYATEI b
HbIMU. Teopusi KpaeBbIX 3aJa4 JJjisi 00mux JuddepeHnna bHbIX OIePaTOPOB B HACTOSIIEE BPEMsI
SIBJISIETCsl aKTYaJbHON 1 OypPHO Pa3BUBAIOIIEHCsT YacTbiO Teopun JuddepeHInalbHbIX YPABHEHU.
Opnako onrymaercs 1edUuuT SBHOPEIAeMbIX 3aa4 Ha Iy TH JAJbHEHIIero pa3BuThsl TEOPUN KPa-
eBbIX 33124 udHepeHIraIbHbIX yPaBHEH . 3a MOCIeHIE JECATUIETUS HAKOILIEH JOCTATOTHBII
MaTePHUAJI II0 KOHCTPYKTUBHOMY ITOCTPOEHUIO PEIeHni KPAEBbIX 3324 JIJIsI MOJIEJILHBIX Y PABHEHUN

C YACTHBIMU TIPOU3BOAHLIME. K 3TOH akTyasbHONW TeMe OTHOCUTCS JIAHHAS CTATHI.
Kuarouesbie ciaoBa: Oyukius ['puna, TpurapMonndeckoe ypaBHeHue, 3aja4a Jupuxie-2, kpae-

Bad 3aJa4a C O6H_[I/IMI/I yCI0BUAMHA, HHTErpaJIbHOE IIPEACTABJICHUE DEIICHUA.

1 Introduction

One of the effective methods of representing solutions to boundary value problems for elliptic
equations is a method based on constructing the Green’s function of the problem. Many works
are devoted to constructing the Green’s function in explicit form for various classical boundary
value problems. The explicit form of the Green’s function of the Dirichlet problem for the
polyharmonic equation in the unit ball is constructed in various ways in the works [1-6].
In |7,[8] the solvability of some local and nonlocal boundary value problems with involution
for the biharmonic equation is investigated and Green’s functions are constructed. Solvability
conditions for some versions of boundary value problems for the biharmonic equation in a
ball are also obtained in [9]. In [10], solutions to the Dirichlet and Neumann problems for a
homogeneous polyharmonic equation were found without using the Green’s function. In [11],
the Green’s functions of the Navier |12] and Riquier-Neumann problems for a biharmonic
equation in a ball are given, and in [13|, the Green’s functions of such problems for a
polyharmonic equation are constructed. In [14,[15] the conditions for solvability of some
boundary value problems for the polyharmonic equation are found and examples are given
for the biharmonic and triharmonic equations. In [16,[17] the Fredholm solvability was
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investigated and the index formulas for the generalized Neumann problem for high-order
elliptic equations containing powers of normal derivatives in the boundary conditions were
calculated.

2 Statement of the problem and the main result

In this paper, we study the following boundary value problem with general conditions for the
triharmonic equation in the unit ball S = {z € R": |z| < 1}

Adu(z) =0, x¢€S8, (1)
oot + a1 U + ageAu + ags 2 Au + agA*u = ¢ (z), x € 95,
anaﬁu + ajpAu + algaﬁAu + au A%+ &15§A2u = po(x), z € S, (2)

ag1 EU + CLQQAU + aggaAu + Cl24A2U + &25$A2u = ‘;03($)a T 887

where % is the outer normal derivative to S, a;;, (i =0, j =0,4,7=1,2, j = 1,5)and are

some constants.

This problem generalizes the Dirichlet problem (agy # 0, ai1 # 0, age # 0, a;; = 0 for the
remaining ¢, j), the Riquier problem (agy # 0, a1z # 0, asz # 0, a;; = 0 for the remaining
i, j), but does not generalize the Neumann problem.

Theorem 1. a) The solution of problem (1)-(2) from the class C°(S)NCS(S) for arbitrary
functions p1(x) € CHS), pa(x) € C3(DS), ps(x) € C3(DS) exists and is unique if and only
if the polynomial

det P()) =
ago + Aapl 2[a01 + 2(2)\ + n)(aog + )\a03)] CLSQ
a1l 2[@11 + 2(2)\ + n)(a12 + )\alg)] aﬁ (3)
Aao1 2[@21 + 2(2)\ +n) (a2 + )\agg)] as,

does not have integer roots in Ny = N U {0}, where
apy = 8aoz + aos + (2 + 2X +n) (2 + n)agd],
ajy =8 [aiz +aig+ (242X +n)2A + n)(ay + /\a,»5)}, i=1,2.

b) If det P(m) = 0, then the homogeneous problem (1)-(2) has a solution
u(z) = [C) — Cy + (Co — C3) |z + (Cs — Cs) |z]*] Hy(z),

where Hp,(x) is a homogeneous harmonic polynomial of degree m (18], and the constants
C1, Cy, C3 are found from the system of equations

Pm)C =0, C =(Cy, Cy Cy)7. (@)

Proof. Let us prove that the homogeneous problem (1)-(2) has only a zero solution. Any
triharmonic function in S u(z) € C°(S) can be expanded in a power series |18] and therefore
the solution of problem (1)-(2) can be represented in the form

oo hm

u(@) = up(x) + 2w () + o ua(z) = Y Y [ug, + 2wl + o[ us)] H(z),  (5)

m=0 i=1
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where h,, = %(m—l—n—&..n—i’)), a HY (x), m € Ny, i = 1, h,,— is a complete orthogonal
system of harmonic polynomials on 95 [18|.
Series (5) converges uniformly at |z| <e < 1.

Let’s look at the operators
Lo = ago + api A + apeA + agsAA + agsA?,

L‘ = ale —f- anA + angA + CL]‘4A2 + aj5AA2, j = 1, 2,
where A =30 | @ 8x
Since u(z) € C°(S), it follows from the properties of the operator A that

0 0
Lou(ZE) — QooU + ama—u + (IOQAU + aoga—Au + CL04A2U, xr— S E 85,
1% 1%

Liu(x) — aﬂaﬁu—i—angu—f— azgaa Au + ayA*u + azg,aa A*u,i=1,2, z—s5€09S, (6)
v

and the limit is uniform in s € 95.
It is easy to see that the polynomials L; (uOm + [] ugy, Ozt ul) ) HE ()] ,—, are orthogonal
on 08§ for fixed 7 =0,1,2 and for all m € Ng, 1=1, h

Let for some m € Ny, i = 1, h,, either Uo # 0, or uy 0 m 7 0, or u2m # 0 in expansion (5).
Then, due to the uniform convergence of the series from (5) for |z| <e < 1, we have

o hp
H) @) Lyu(@)dse = | HD@ L3S [y + ol iy + faf* )] Hy () ds. =
|z|=¢ |z|=e p=0 k=1

HO () Ly [ul), + |22 ul) + 2| us)] HO (x) ds,.

m
|z|=e

Directing £ — 1 in the resulting equality and using (6) we obtain
HY () L, [u((fn)1 + |z|? u% + |z|* ugm H9(z)ds, =0,j=0,1,2. (7)
|z|=1

Let’s calculate the integrands. Let’s use the following properties of operators A, A:
Aluv) = ulv +vAu, Az Qq(x)) = (2k + 2)(2k + 25 + n)|z|** Qs(x).
Then on 0S we have
Lo(ug, + ol uly, + 2] * u3,.) Hﬁ?( ) =
(a0 + a1 A + agaA + agsAA + agsA?) [uOm + |x|2 —i— |z]* ugm] 9 (z) =
[U(()Ql(aoo + magy) + u% (ago|z|” + (2 4+ m)aoi|z|* + 2(2m + n)agz + 2(2m + n)magz )+
ug?n (a00|x]4 + (4 +m)|z[*aoy + 4(2 + 2m + n)|z|?ao2 + 4(2 + 2m + n)m|xPags+
42+ 2m +n)2(2m + n)ags)] HY () = |z € 0S| =

[Uéi)n(a()o + magy) + ugﬁl (aoo + (24+m)agr + 2(2m + n)age + 2(2m + n)ma03)+
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ul) (ago+(4-+m)aoi +4(2+2m-+n)age+4(2+2m-+n)mags +4(2+2m-+n)2(2m+n)ag )] HY (2);

L@&+hﬁmm+m%%JMWm:

(a1 A+ oA + aphA + a;u8%)[ul), + 2 ul), + o] uf)) B (2) =

(4)

[u(()?n maji + U1m((2 +m)aj; +2(2m + n)aje + 2(2m + n)majg)—l—

u%((él +m)aj; +4(2 + 2m + n)ajo + 4(2 + 2m + n)majs + 4(2 + 2m + n)2(2m + n)aja+

+4(2 + 2m + n)2(2m + n)ma;s) | HO(x), j=1,2;

m

Therefore (7) can be rewritten as follows

(Ug}z (aOO + magr) + Ugr)nam + Uzma02) HH HLQ(aS) 0,
U()mmall + a11“§731 + a12“2m) ||H ||L 0s) = 0,

(UOmmam + thzam + u217)na’§2) | Hrm z)“LQ sy = 0,
where
agy = ago + (2 +m)agr + 2(2m + n)agz + 2(2m + n)mags,
ay = (2+m)aj +2(2m + n)aje + 2(2m + n)mays,
ape = ago + (4+m)agr +4(24+2m +n)age +4(2 + 2m + n)mags + 4(2 + 2m +n)2(2m + n)aoq,
Wiy = (4+m)aj + 42 + 2m + n)ajy + 4(2 + 2m + n)ma;z+
42+ 2m +n)2(2m + n)ajs + 4(2 4+ 2m + n)2(2m + n)majs, j = 1,2.
Since ||HT(£)||%2(BS) # 0, we get
ago +magr  agy; G

* *
* *

Let us calculate the determinant of this system. It is equal to det P(m).
If det P(m) # 0, then system (8) has only zero U = (ué?n, u%zl,ug?n) = 0. This contradicts
the assumption that either uém # 0, or U1m # 0, or ugm # 0 in the expansion (5). Thus,
problem (1)-(2) has only the zero solution.

If det P(m) = 0, then system (4) has a non-zero solution C = (C, Cy,Cs) T, which means

Cy — G
Pm)| Co—C5 | =0 9)
Cy — O,

Therefore, on 0SS the equalities

Li[C1 — Cy + (Cy — C3) [2* + (C3 — Cy) [2|*] Hyu(z) =0, j =0,1,2,
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are true and therefore
u(z) = [C’l + Cy(—1+ |x|2 — |x|4) + C’g(—lx|2 + ]x|4)] H,,(x)

is a solution to the homogeneous problem (1)-(2). Theorem 1 is proven.
Theorem 2. If u(x) is a triharmonic function in S, then for harmonic functions in S

U ( _A2 _@ ' nflAQ 2 d
o(x) = A%u(x) 5 Ot u(t“x) dt,

_ 1 ! n—1 A2 2 o ﬁ ! n—1 A2 2
u () = " Au(ttx) dt " Afu(ttr) dt,
2 Jo 2 Jo

1 !
ug(z) = 5/ " AR () dt (10)

0

Almansi’s representation is fair

u(@) = uo() + [  ur (@) + |z[* uz(2). (11)

Proof. If the functions ug(x), ui(x), ug(z) are defined by equalities (10), then the
representation (11) is true. Let us prove that the functions wug(x), uy(z), uz(x) from (10)
are harmonic in S. Obviously, the functions u;(x),us(x) are harmonic in S if the function
u(z) is triharmonic in S.

Further, since the equality A(|z|>v(z)) = (2 + 4A)v(z) is true for the harmonic function
v(x), and the chain of equalities

1 1
Az uz) = (2m+4A)2/ () dt =
0

1 1 n 1 1
n/ " Lw(t?z) dt + 2/ ¢t Z ziwy, (Pr) dt = n/ " w(t?x) dt + / t"wy (%) dt =
0 0

1 1
n [ e e des ool -0 [ e () dt = (),
0 0

then we have

1 1
Aug = A3 u — ;A(MQ / " A%y (%) dt) =A%u— (2m + 4A);/ " A%y (P2 dt =
0 0

A3 u(x) — AP u(z) = 0.

This means that the function up(x) is harmonic in S. Theorem 2 is proven.

For the sake of completeness, we present the results of V.V. Karachik [20] on the representation
of the solution of the following boundary value problem for the triharmonic equation in the unit ball
S={zxeR":|z| <1}

Adu(z) =0, z€b, (12)

ou
ulas = o, ,%!as =1, ,Aulss = p2, (13)
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which can be called the Dirichlet-2 problem. This problem turned out to be close to the Dirichlet
problem, they have the same Green’s function. The solution to the problem is sought in the class
u € C(S)NCo(S).

The Green’s function of the Dirichlet problem for the Poisson equation in the ball S for n > 2
has the form

Gao(, &) = By(x,€) —E2<|§—|,

where Ea(x,&) is an elementary solution of the Laplace equation, as A.V. Bitsadze called it |19]. In
the work [20], an elementary solution of the biharmonic equation was determined

|z[€), (14)

ml$—fl4‘”7 n>4,n=3
Ey(r,8) = ~thjz—¢, n=4 (15)
2
|x4£| (Injz—¢]—-1) n=2,

was determined, and in the paper |21] for the 3-harmonic equation

|lz—¢[°~"

2-4(n72)(n174]~)(n|76)7 | n >3, 7;# 4,6
E x, — 64 n|xr n = 16

= (e — €| - >1n|x—5|, n=2.

In addition, the Green functions G4(x, &) and Gg(x, &) corresponding to the Dirichlet problems in S
were found.

If we denote Ej(x,§) = Ek(%, |z|€), then Gg(z,§) has the form

1ja —1¢P —1

Ge(z, &) :E6($a€)_E§(I’§)_§ B 9

1 (|2 = 1)? (¢ = 1)?
1 4 1

Ej(z,8)— E5(x,€). (17)

Based on the functions Ey(z,£) and Eg(x, &), an elementary solution of the m-harmonic equation
A™y = 0 was introduced in |23|. If m € N, then N\{1} can be partitioned into two disjoint sets
Np={neN:n>2m > 1} U (2N + 1) and its complement N¢ = {2,4,...,2m}. Since the set
N¢, is finite, N,, is infinite. It is clear that N¢, _; C N, , and therefore N,,, C N,,,_1. We define the
elementary solution Ea,,(x,&) as

(~1)™ fe—g2m—n

Em(x,s):{ R = el C
wﬁ(lnu_ﬂ_ e DY n/zik)a n € Ny,

n € Ny,
(18)

where (a,b)r = a(a +b)...(a + kb — b) is a generalized Pochhammer symbol with the convention
(a,b)o = 1, and the symbol (a,b);, means that if among the factors a, (a+b), ..., (a+kb—b), included
in (a,b)k, there is 0, then it should be replaced by 1, for example, (—2,2)5 = (—=2)-1-2 = —4.In
addition, if in the sums included in (18) the upper index becomes less than the lower index, then
the sum is considered to be equal to zero. Note that (2 —n,2),, = (2—n)(4 —n)...(2m —n) # 0 for
n € Ny, and therefore the right-hand side of formula (18) is defined correctly.

In [23] for n € N§,_; the Green’s function was constructed

m—1 2 _ 1\E(1g12 — 1)k
Ganl,8) = Ban(e,) = 3 0 = VUL 2 gy o (19)
k:() ) )
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In 22| the elementary solution Eop,(z, &) was slightly corrected and another function g, (x, &) was
introduced, which is related to the function Eap,(x,&) by the formula

Egm($ f) n e Nm 1,
( 1 m‘x_ ‘Q'm n

{ Eom(2,€) + (2= 7)12),” 2.2)m_1 Zk =n/2 s MENG

It is clear that o (x, &) = Eom(z,§) for all n > 2. For m = 2 we have N{ = {2} and, therefore,
in formula (15) only the last line will change

me(x7§) = (20)

2(n— 21 (n— 42‘ ’4—717 n > 4, n=3
54(‘/1;75) = 4 ln|$ §|’ n=4 (21>
ot (nfe—¢/-1/2) n=2

If m = 3, then N§ = {2,4} and therefore the last two lines will change

|z—¢[5~"

242 (n =D (=6’ n>3n#4,6
_@1n|$—§|7 n:6

G e — ¢~z —g, n=2
Replacing in (17) Eap,(x,&) with Eap, (2, £) we obtain a new function
1 2 2 1 1 2 1 2 2 2
Go(,) = Eol, ) — E3(0,6) — 3 D ML i g - L IPLZ D gy ) 09)
If we put m = 3 and n =4 in it, then in relation to (20)
\1’ — ¢ _
56($,€) Eﬁ(x g) 32 ’ 54(1',5) - E4($7£)7
and therefore
2 _ 2 _ 2 1\2(1£12 _ 1)2
Go(,) = Eo(,€) — £3(,&) — 3 0y g - L DR gy, g
_ ]2 _ 2
Gt + L (2= € _lafll— il
(|€!2 —D(jz* - 1)
= Gg(x, &) — 5 .

It turns out that the function Gg(x, &) obtained for m = 3 and n = 4 coincides with the Green’s
function for the 3-harmonic Dirichlet problem (12)-(13) from the works |21].
Theorem 3. |20] If a solution to problem (12)-(13) exists, then it can be written in the form

1 OA2Gg (2, €) 0AGs(, €)
ul@) = o= | (= =5, 7 #0l&) + AMs(@ ) (€) — T3 =00 (&) dse
1
Wn Jg
where wy, = |0S| is the area of an unit sphere in R and v is the outward unit normal to 0SS, the

Green’s function Ge(x,&) is defined in (23).
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ON O-MINIMALITY FOR EXPANSIONS OF A DENSE MEET-TREE

This paper aims to define the notion of o-minimality for partially ordered sets. Originally, the
notion of o-minimality was introduced for linearly ordered sets in the following way: A linearly
ordered structure is said to be o-minimal if any definable subset is a finite union of intervals and
points. For partially ordered sets, this definition does not work. One of the main reasons for this
is that the complement of an interval need not be a finite union of intervals, as happens in linearly
ordered sets. Here we suggest a notion of a generalized interval which makes possible defining o-
minimality for such a partial case of partially ordered sets as a dense meet-tree in a classical way:
an expansion of a dense meet-tree is said to be o-minimal if any definable subset is a finite union
of generalized interval and points. We think that this approach allows us to transfer the machinery
for investigating o-minimality for linearly ordered structures to partially ordered structures.

Key words: Ehrenfeucht’s theory, small theory, linearly ordered set, partially ordered set, o-
minimality.

Ajirepim HoysrerusipoBa
CHY yuusepcurerti, Kackemen, Kazakcran
e-mail: d_aigera95@mail.ru
Troirpi3 Ke34ecy arallbIHbIH, KEHEUTIINeH KYPbLIBIMIAPBIHIAFBI O-MUHUMAJAbLIBIFBI TYPAJIbI

Byt 2KyMBICTBIH MaKCaThl 2KapThIJIail PeTTEJIeH »KUBIHIAD YIIiH O-MUHUMAJIBLIIBIK TYCIHITIH aHbI-
Kray 6oJiblll TabbLIabl. O-MUHUMAJIBLUIBIK, TYCIHIN OACTAIKBIIA ChI3BIKTHI PETTEJINEH JKUBIHIAD
VIIiH KeJjiecifieil eHrisiired 6oJIaThIH: erep ChI3BIKTHI PETTETeH KYPBLIBIMHBIH opOip dhopMysibii
imKi >KUBIHBI WHTEPBAJIAD MEH HYKTEJEPiH aKbIPJbl Oipiryi 6osica, OHIA OCHI CBHI3BIKTBI PET-
TeJINeH KYPBLJIBIM O-MUHUMAJIIBI JI€N aTaJabl. Byl aHbIKTaMa KapThLIANl PETTeJIreH KUBIHIAD
yITiH opbeiHAaaMaiabl. MyHBIH 6acTbl cebenrepinin 6ipi MHTEPBAJIBIH, TOTBIKTAYBIIIBI CHI3BIKTHI
peTTeJITeH >KUBIHIAP/IAFbl CUAKTHI MHTEPBAJIAP/IBIH aKbIPJIbI Oipiryi peTinge op/aiibiM 6071a 6ep-
meiiai. Mynga 613 K/IacCHKAJIBIK, >KOJIMEH YKAPThLIAN peTTeIreH >KUBIHIAP/IBIH MbICAJIbl PETiHJIe
TBIFBI3 KE3/IeCy AFalllbl VIMH O-MUHAMAJILIIBIFBIH aHBIKTayFa MYMKIHIIK OepeTiH »KaJllbLIaHFaH
MHTEPBAJI TYCIHITIH yChIHAMBI3: erep 9pbip OPMyIIbIl iMKi KUBIH KAJMBLUIAHFAH HHTEPBAJI MEH
HYKTeJEPiH aKbIpJbl Oipiryi 60sca, OH/a THIFBI3 KE3JIeCy AFaIbIHBIH KEHEI01 O-MUHUMAJIIBI el
aTaaibl. BYJI TOCLT CHI3BIKTHI PETTETeH KYPBLIBIMIAP YITH O-MUHUMAJIIBLIBIKTHI 36PTTEY alllla-
PATBIH KapThLIail PETTETEH KYPBLIBIMIAPFa aybICThIPYFa MYMKIHJIIK Oepeii Jiern ecenTeimis.
Tyitia ce3aep: dpeHdoiXT TEOPUSCHI, IAFBIH TEOPHsl, CHI3BIKTHIK, PETTEJINeH YKUBIH, YKaPThLIai
pPeTTeJNITeH YKUBIH, O-MUHAMAJIBLIBIK.

Ajirepum ayiierusiposa
Yuusepcurer CIY, Kackenen, Kazaxcran
e-mail: d_aigera95@Qmail.ru
06 o-MUHMMAaJIBHOCTHU [Jisi OGOraIeHnil MJIOTHOTO JepeBa BCTped

esbio maHmO# CTATHY SABJISETCS ONPEIEICHIE MOHATHSI O-MUHUMAIBHOCTH JIJI YaCTUIHO YIOPSI-
JIOYEHHBIX MHOXKeCTB. IlepBOHAYAIBLHO MOHATHE O-MUHUMAJIBLHOCTU OBLIO BBEJIEHO I JIMTHEWHO
VIIOPSIIOYEHHBIX MHOXKECTB CJISYIONINM 00pa30M: JTUHEHHO yIOPsI0UeHHasT CTPYKTYpa Ha3bIBaeT-
cs O-MUHUMAJIBHOM, ecyin Jitoboe (popMyIbHOE MTOIMHOXKECTBO SBJISIETCS KOHEYHBIM O0'be ITMHEeHNEeM
MHTEPBAJIOB U TO4YeK. J[Jisi 9acTUYHO yIOPSIIOYEHHBIX MHOXKECTB 3TO OIpejiesieHne He paboTaer.
OpnHOit U3 TIABHBIX IIPUYUH ITOTO SIBJISIETCS TO, UTO JOMOTHEHNE HHTEPBAJIA He 00A3aTETbHO JTOJIK-
HO OBITH KOHEYHBIM O0bEINHEHNEM HHTEPBAJIOB, KAK 9TO IIPOUCXOIUT B JIMHEHHO yIOPSIOIEHHBIX
MHOKECTBax.
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3/ech MBI IIpejjiaraeM IOHsTHE O0OOOIIEHHOIO0 WHTEPBaJa, KOTOPOE IT03BOJISIET OIPEJEC/IUTh O-
MHUHUMAJBbHOCTD JJIsI TAKOT'O YaCTUYHOI'O CJIydas YaCTHUYHO YIOPSIOYEHHBIX MHOXKECTB KaK IIJIOT-
HOE JIEPEBO BCTPEY KJIACCHIECKUM CIIOCOOOM: OOOTAIlEeHrE TJIOTHOTO JePeBa BCTPEY HA3BIBAETCS
O-MUHUMAJIHHBIM, €CJid JiI000e (POPMYJIHHOE TOIMHOXKECTBO SIBJISIETCS KOHEYHBIM O0bEeIUHEHIEM
0000ITIeHHOr0 UHTepBaJa 1 TodeK. MBI canTaeM, YTO 3TOT HOIXO/L ITO3BOJIET HAM IEPEHECTH all-
rapaTr MCCJEJIOBAHUS O-MHUHUMAJBHOCTU IS JIMHEWHO YIIOPSJIOYEHHBIX CTPYKTYD HA YaCTUYHO
YIIOpsJ0O9EHHbIE CTPYKTYPBHI.

KitroueBsbie ciioBa: 3peH(OINXTOBaA TeOpHsi, MaJjiasi TEOPUsl, TUHEHNHO yIOPsTOYeHHOE MHOYXKECTBO,
YaCTUYHO YIIOPAOYEHHOE MHOXKECTBO, O-MUHUMAJIbHOCTD.

1 Introduction

This article aims to apply the notion of o-minimality to partially ordered structures. We start
with the dense meet tree |2,/4] as a sufficiently tame partial order to examine our approach,
where a dense meet-tree means a lower semilinear order < in which each pair of elements a, b
has a greatest common lower bound, their meet a b without the least and greatest elements
such that:

(a) for each pair of incomparable elements, their join does not exist;

(b) for each pair of distinct comparable elements, there is an element between them;

(c) for each element a there exist infinitely many pairwise incomparable elements greater
than a, whose infimum is equal to a.

The first paper on o-minimality for partially ordered sets was by Carlo Toffalori 6], who
gave the following definition. A partially ordered structure is o-minimal if each its definable
over some set X subset is a finite Boolean combination of sets defined by formulae z < a
or x > b, where these a and b are in the algebraic closure of X. As we know, all other
notions of o-minimality and weak o-minimality of partially ordered structures are based on
this definition, for instance, |3]. We suggest another approach, which was first discovered by
S. Sudoplatov and V. Verbovskiy in |5] for weak o-minimality of partially ordered structures.

The standard notion of o-minimality for totally ordered structures is not convenient for
partially ordered structures because of the following reasons. In a totally ordered set the
complement of an interval is just a union of at most two intervals, while in partially ordered
sets this is no more true. That is why Toffalori suggested using a Boolean combination of
intervals in place of a finite union of intervals. Here we suggest another approach: we do
not change “a finite union”, but we change the notion of an interval, and we introduce the
notion of a generalized interval. So, our definition of an o-minimal partially ordered set is the
following.

Definition 1 A partially ordered structure is said to be o-minimal if each of its definable
subsets is a finite union of generalized intervals and points.

In the rest of the paper, we discuss the notion of a generalized interval.

The aim of this paper is to find a way of extending the notion of o-minimality to partially
ordered structure, because the notion of o-minimality and its generalizations, as o-stability
[1,8,19] already proved its own fruitfulness. Perhaps, it will be complicated to extend the
notion of stability in a direct way to partially ordered structures, but we can also use a
more general notion of relative stability |7], where the scheme of creating different classes of
theories was suggested.
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2 Definable subsets of DMT

This section introduces the concept of generalized intervals, which extends the classical
representation of intervals. This concept allows us to work with our structure, namely the
dense meet-tree.

To begin with, we give a definition below.

Definition 2 (V. V. Verbovskiy) Let (M, <,M) be a model of the DMT theory. A subset
of M s said to be a generalized interval if it is either an interval or is equal to

U (a,+00)
acA

for some definable with parameters in the signature {<,M} subset A of M on one of the
following forms:

1. A = (¢,4+00) \ ([a1]e U -+ U ap,), for positive integer n and some elements ay, ...,
an € (¢, +00);
2. A= (c,a);

3. A={(b,c) : b€ (—o0,a), c€ (b+00)}

For our reasoning, we need the following definition.

Definition 3 An element b is said to be a partial infimum of a set A if there exists a partition
of A into sets A" and A° such that A" # (), b = inf AT and b || ap whenever ay € A°.

Observe that the elementary theory of a dense meet tree admits quantifier elimination,
so in the above definition we can use just subsets which are definable by a quantifier-free
formula with parameters.

Let M = (M;<,M) be a dense meet-tree. For every ¢ € M it is possible to define an
equivalence relation above ¢, that is, on the set (¢, +00):

a~.bsallb>c.

We call an equivalence class of this equivalence relation an open cone above c.

Lemma 1 An equivalence class for the equivalence relation ~. is expressible as written below:

[ale = | (d,+o0).

de(c,a)

Proof. Assume that b € [a].. By definition, aMb > c. Since the order is dense, there exists
do € (¢,amb). Then b > amb > dy and b € (do, +00). Hence, [a]c C e (.0 (d; +00).

Let b € Uje(ea)(d; +00). Then b € (d, +00) for some element d € (c,a). It means that
d<bandd<a,soc<d<alb, thatis, a ~.b. We proved the inverse inclusion and, thus,
the equality of two sets. O

Note that for each class [a]. there exists its infimum.

The difference between a total ordering and a partial one is the existence of incomparable
elements. So, we express the set of incomparable to a elements as a union of intervals.
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Lemma 2 For any element a the following holds:

allzexe U U (¢, 4+00)

be(—o00,a) ce(b,+o0)\[alp

Proof. First, we show the necessary condition. Let b = x M a. It means that x ¢ [a]s,
namely x is outside the class a over b. Then there is an element ¢ between b and x such that
b < ¢ < z. Note that ¢ ¢ [a]p. So, z € (¢,+00) and this interval is one of the intervals of the
union.

Now we show the sufficient condition. Let = € (¢, +00) for some ¢ € (b, +00) \ [a], where
b < a. Assume the contrary, that = and a are comparable. If a < z, then a and c¢ are
comparable, because both are less than x. Then alMe¢ = min(a, ¢) > b. It means that ¢ € [a,,
for a contradiction. Let x < a. Since ¢ < x we obtain that ¢ < a and alM¢ = ¢ > b, for a
contradiction. ([l

Note that the set of all incomparable elements to some element does not have infimum.

Thus, using the notations about the class of equivalence relations and incomparable
elements, we can express the complements of the equivalence class above c.

Below we use the following notation. Let ¢(z) be a formula. Then

(@)™ ={a € M : M= y(a)}.

Lemma 3 For any elements a and ¢ with ¢ < a the following holds:

[, = (—oo,du(@|e™u |J (d+o0).
de(ertoo) e

In particular,

[a], N (¢, +00) = U (d, +00).
de(c,+00)\[alc

In particular, the set [a], does not have infimum and ¢ = mc N (¢, +00).

Proof. Let b ¢ [a],.. Then we have the following possibilities:
—~(bMNa>c)< (bNa=c)V(bMNa<c)V(bMal c)

We consider each disjunct separately:
1.IfbMa=cthen b > ¢ and b ¢ [a].. Now we write the set of all such b’s as follows:

e, +00) \[ale ={c}U | J (d +)

de(c,+o0)\[a]e

Let b € (¢, +00) \ [al.. Since the order is dense, there exists d € (¢, b). Note that d € [b]. #
[a]e, then d ¢ [a]. and b € (d, 4+00).
Conversely, let
be{ctu |J (d+x)

de(e,+o0)\[a]e
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If b=c, then b € [¢, +00] \ [a].. Assume that b # ¢. We choose d € (¢, +00) \ [a]. so that
b€ (d,+00). Then b > d > ¢ implies b > ¢ and b € [d]. # [a].. That is why b ¢ [a]..

2. Since bMa < ¢ and a > ¢, this implies bMa =bMcand bMc < c¢,sob<corb | c
The set of all b’s such that b < ¢ is an interval (—oo, ¢). The set of all b’s such that b || ¢ is a
generalized interval. So, the set of all b’s such that bMa < ¢ is a union of an interval and a
generalized interval.

3. Since a > ¢ and a > bMa, then ¢ and bMMa are comparable, so bMa || ¢ is inconsistent.
O

Now, we describe definable subsets of DMT. It is well-known that the theory of DMT
admits quantifier elimination [4], so any formula in one free variable z is a Boolean
combination of formulae of the following kinds:

(1) t(x,u) = t(x,v) (5) t(z,u) # t(z,0)
(2) t(z,u) < t(z,0) (6) t(z,u) £ t(z,0)
(3) t(x,u) > t(x,v) (7) t(x,u) # t(z,0)

(4) t(z,w) || t(x,v) (8) t(z,w) ft(x,v)

The formulae with negation can be transformed by the following equivalences:

t(x,u) # t(z,0) & [t(z,u) <t(zx,v)]V[t(z,q)>t(x,0)]V[t(z,a) | t(z,0)];
t(x,u) £ t(x,0) < [tx,u) > t(z,0)]V [t(z,u) = t(z,0)] V [t(z,7) || t(z,0)];
t(x,u) # t(z,0) & [t(z,a) <t(z,v)]V[t(z,q)=t(x,0)]V[t(z,a) | t(z,0)];
t(z,u) ft(z,0) & [tx,u) <t(z,0)]V [txz,a)>t(x,0)]V [z, 1) =tz,0)].

So, we can assume that any formula is a disjunction of conjunctions of formulae of the kinds
(1)—(4).

The operation M is idempotent, commutative, and associative. That is why any term
t(x,u) is equal to = M t(u) for some term ¢. So, we obtain the following types of atomic
formulae:
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(1.1) z=w (3.1) z>w

(1.2) zNu==z (3.2) zMNu >z
(1.3) zMu=w (3.3) xMu>w
(14) zNu=zMNwv (3.4) zMu>zxMwv
(2.1) z <w (4.1) z || v

(22) zMNu<zx (4.2) zMNu |z
(2.3) zMNu<w (4.3) zMNu|lv
(24) xNu<zMNuo (44) xNu | zNv

We consider each case separately and show that each formula can be described as a point,
an interval, or a generalized interval.

Cases (2.2), (3.2), (4.2), and (4.4) are false. For Case (1.1) we have a point, Cases (2.1)
and (3.1) give the intervals. Also, Case (1.2) is equivalent to z < wu, and Case (4.1) is the
generalized interval.

Now we look at the remaining cases in more detail.

Case (1.3). We obtain the following

rNu=veu=vAz>v|Vu>vAz=v]Vu>vAz>vA-(r~,u)

Here, the first disjunct u = v A z > v defines an interval and the second disjunct defines
a single point. From Lemma [3]it follows that the third disjunct define a generalized interval.
Case (2.3). We see that = belongs either to the interval or to the generalized interval

rlu<v & [u<v]Vu>vA(z<ovVz|v)]V
Vu||[vA(z<ulNoVz|ufoV(z>ullvA(z ~ym u)))]

Obviously, each disjunct defines an interval or a generalized interval.
Case (3.3). Since u < v is impossible in this case, we can see that

rNu>v & [u>vAx~,ul
Case (4.3). This case is possible only under the condition u || v:
zNullv < [ullvAz~yn, u

Case (1.4). Here we have two possibilities: x Mu < uMv and 2 Mu = uMv. The first case
is similar to Case (2.3). So, we consider z Mu=xMv =ullv.
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This case is written as follows

rMNu=xzMNv=vllusrz=ullvV
Vi(z>ulovA(r ~yme w) A (2 ~ymp v))

Case (2.4). It is certain that u > v is false, then we get the following
rNu<zNue [u<vAT ~ 0 Vu| oAz~ vl
Case (3.4). Similar to Case (2.4).

Theorem 1 Notion of o-minimality for an expansion of the DMT theory is correct, that is,
any Boolean combination of sets which are either a point or a generalized interval can be
expressed as a finite union of points and generalized intervals.

For any definable set there exist at most finitely many partials infima.

Proof. We prove both statements of this theorem by the simultaneous induction in the
complexity of the construction of a Boolean combination.

Note that any set defined by an atomic formula has at most one infimum because it is
either a point, or an interval, or a generalized interval. Because of quantifier elimination, it
is sufficient to consider just an arbitrary Boolean combination of atomic formulas.

1. It is obvious that the union of generalized intervals and points is a finite union of
generalized intervals and points. Obviously, any finite union of sets that have at most finitely
many partial infima also has at most finitely many infima.

2. We consider the intersection of two finite unions of generalized intervals and points.

Since
UA mUB JinB))
irj

it is sufficient to consider the intersection of generalized intervals and points.

The intersection of generalized intervals with a point either is empty or a point. The
intersection of generalized intervals with an interval of the form (a,b), where a € M U
{—o0},b € M is a subset of a linearly ordered set (a,b), and in linearly ordered sets the
intersection of intervals either is empty or an interval.

We consider an intersection of the form: (a,+o00) N (b, +00). If @ and b are comparable,
then this is (max(a,b), +00), otherwise it is empty. We can see that in these two cases the
intersection of two sets has at most one infimum.

We consider the intersection of generalized intervals:

(U(a,+oo)>m<Ub+oo> U U ((a,+00) N (b, +00)) = | (e, +0)

acA beB a€EA beB ceC

where C = {¢ € AU B | ¢ = max(a,b) for some (a,b) € A x B such that a and b are
comparable}. Therefore, the intersection of two generalized intervals is itself a generalized
interval.

Note that if both A and B have at most finitely many partial infima, then C also has at
most finitely many partial infima, then | J .. (c, +00) has at most finitely many infima.
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We consider the intersection of a generalized interval with an interval of the form (b, +00),
but the last interval can be written as (Jyc g, (b, +00), thus we get into the previous case.

3. Now we consider the complements of the finite union of generalized intervals and
points. m = A;, therefore, it is sufficient to consider only the complement of a point,
an interval, and a generalized interval.

We should also consider the complement of intervals since we know that the complement
of intervals is a finite union of intervals, which is what the below states.

(—0a) = [n,+00) U(x | a)"
(4,7%) = (~o0,0]U (x| a)™
(@8) = (~00,a]U[b,+00) U (x || ) Uf(a, +00) U (b | 2)"]

Note that the complements of a point a is z <aUx >aUz || a.
As one can see, any of the above sets has at most one infimum.
So, we consider the complement of a generalized interval:

U (@, +00) = [ (a,+00) = () ((=oe,a] U (z || )™) =
= ((=ee,aqlu (& | &)™)

acA a€A

Note that (—oo,a] N (—o0,b] = (—o00,a Mb] for any a and b. Since A is definable in
(M, <,M) and Th(M) admits quantifier elimination, there exists ¢ = inf{a M b : a,b € A}
or (Nyea(—00,a] = 0. So, ,c4(—00, a] being non-empty is equal to (—oo, c), provided that
c=min{aMb:a,be A}, and to (—oo, c) otherwise.

Now we consider [, 4( || @)™). Observe that

(@l )™n (@ o)™ = (2|l o)™

a€A

for any pair a < b. So, if A contains the least element, say, ¢, we obtain [, ,(z || @)™ =
(z || ). If A is not bounded below, we obtain (,.,(z || @)™ = 0. So, we assume that A
is bounded below. By induction hypothesis A has at most finitely many partial infima, say
c1, ..., Cp. Let Ay, ..., A, be a partition of A such that ¢; = inf A; for each 7. As we have
noticed, if ¢; € A;, then (o, (z || )™ = (2 || ¢;)™.

Assume that ¢; ¢ A;. Then obviously, (,c 4. (2 | @)™ 2 (z || ¢;)™. Indeed, if an element
is comparable with some a, then it is comparable to ¢. Now we consider an element d that
is comparable to c. If d < ¢, then by transitivity d < a for each a € A;. So, we consider only
those d, that d > ¢. We denote D ={d >c:d ¢ A;}.

By the quantifier elimination result it holds that either D is contained in finitely many
~-classes or D contains cofinitely many ~.-classes. Also, at most finitely many ~.-classes
intersect D but not subsets of D. Let D; consist of those ~.-classes, that are subsets of D
and Dy = D\ Dy. Then (e, (z | @)™ 2 (2 || ¢)™ U D;.

Let d € Dy and d = inf(—o0,d’) N Dy. If d > ¢; then we obtain a similar situation as
before, we consider ~4-classes. So, we assume that d = ¢;. We obtain (¢;, d'| C Dy, this means
that (¢;,d'] N A; = 0. By the definition of Dy, we have [d']., € Ds.

In order to obtain A; from (c¢;,+00) we remove finitely many subsets definable by a
conjunction of atomic formulas. We can remove
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1. an equivalence class [u], for some v > ¢; and wu,

2. an interval of the form (v,4o00) for some v > ¢;,

3. an interval of the form (v,u) for some u > v > ¢;,

4. the set of all elements that are not comparable with v for some v > ¢;.

We have already described the way to deal with Case (1).
Assume we have removed an interval of the form (v, +00) for some v > ¢;. Since the order
is dense, there exists u € (c;,v). Then (z || )™ D (2 || u)™ whenever ¢ > u. Then

NeloM= [ (@l

acA; a€A;U(v,00)

Assume that we have removed an interval of the form (v, u) for some u > v > ¢;. If v > ¢
we proceed as above just replacing (v,00) with (v, u). So, we assume that v = ¢;, that is,
we have removed an interval of the form (c¢;,u). Let b be the supreme of all ¢ > u such that
(ciyt) € Dy and (w,4+00) N A; # () for each w € (¢;,t). So, we have removed an interval of
the form (¢;,b) or (¢;,b] and this set is a maximal connected set that contains u, is a subset
of Dy and any element of D, that is comparable with some element of (¢;,b) (or (¢;,b]) then
this element is comparable with all elements of (¢;,b) (or (¢;, b]). In this case we obtain

(@ )™ 2 (@ | e)™ U (Bl \ b, +o0))

acA;

or MNyea, (@ | &)™ 2 (2 || ¢;)™ U ([b]. \ (b, +00)) depending which kind of an interval do we
have: (¢;, b) or (¢, b].

Now we consider the last case: we have removed from (¢, +00) the set of all elements that
are not comparable with v for some v > ¢;. Note that

(¢, +00) \ (z || V)M = (c,v) U{v} U (v, +00)
Also we observe that

N G@loM= ) @la™=(r]e)u((e+00)\ [u])

a€(c,v)U[v,+00) a€(e,w)

Since we can make only finitely many removals from (c, +00), we end with finitely many
steps describing (4 (= || a)™.

Also we can see that this operation cannot give a definable set with infinitely many partial
infima. O

So, the next is clear.

Theorem 2 (M, <,M) is o-minimal, that is, any of its definable subsets is a finite union of
generalized intervals and points.
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SYMMETRY EQUIVALENCES OF BOUNDARY VALUE PROBLEMS FOR
THE NON-UNIFORM BEAMS

In this paper, the models of Euler—Bernoulli non-uniform beams with the axial loads on the Winkler
foundations are considered. The non-uniform beam in the model is described by three variable
parameters/coefficients: bending stiffness, foundation and beam mass per unit length. The key
finding of this study is the clear demonstration of how the agreed symmetry of variable parameters
affects the spectral properties of a problem. The qualitative results for the symmetric equivalence
(factorisation of sets of eigenvalues and eigenfunctions) of eigenvalues of non-uniform beams for
two types of fixing at the ends (clamped-clamped and hinged-hinged) have been obtained. In
order to demonstrate equivalence, a hybrid algorithm has been devised, based on the qualitative
spectral properties of fourth-order ordinary differential equations and axial load calculations. The
results have been validated using examples on the Maple computer package and compared with
the experimental measurements.
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Byn xywmpicra ipreci Bunkiep 6oiibiaima ocbTik 2KyKTemesaepi bap ditnep-beprysin 6ipkesnki emec
OepeHeepIiH, MOJeIbAepi KapacTeipblaran. Mogembaeri 6ipKeki emMec 6opeme yIr aifHbIMAJIBI TTa-
pameTpMeH /KO3 UIMEHTTEPMEH CUIATTAIA bl Uiy KATTBUIBIELL, Y3bIHIBIK, OipJiriHe KaTblCThl
OepeHeHiH ipreci MeH Maccachbl. Bys 3epTTey il Herisri TYyKbIPBIMBI aiHBIMAJIBI ITAPAMETPJIIEPIiH,
KEJIICLJITeH CUMMETPUSACHIHBIH, €CEIITIH CIEeKTPJIK KacCueTTepine KaJiail ocep eTeTiHiH aflKbIH KOpceTy
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depeHIaIBIK, TEHIEYIEP/IIH, Calla/ibl CIEKTPJIK KACHEeTTEPiHe YKoHe OChTIK *KYKTEMEeHI ecenreyre
HerizmesireH TUOpUATI aJIropuTM »Kacaiabl. HoTmkemep Maple KoMmbioTep makeTiHIEr: MbICAIIap

APKBLIBI PACTAJIIBI YKOHE IKCIEPUMEHTTIK OJIIIEMIEPMEH CATBICTHIPBLIIEL.
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B namHoit pabore paccMaTpUBAIOTCS MOJENIN HEOTHOPOIHBIX 0asiok Ditnepa—bBepHysiu ¢ oceBbIME
Harpy3kaMu Ha OCHOBaHue Bunkjepa. HeomnoposHast 6ajika B MOJE/IM OIUCHIBAETCSI TPEMSsI [1epe-
MEHHBIME TTapaMerpamMu,/ Ko UumeHTaMu: XKeCTKOCThIO U3ruba, OCHOBAHUEM U MacCoil Gajiku Ha
enuuuily JnHabl. KJro4eBbIM BBIBOJIOM JAHHOTO UCCJIEIOBAHUS SBJISETCH HAIVIAIHAS JIEMOHCTDA-
[Usi TOTO, KaK COTJIACOBAHHASI CHMMETDPHsI IT€PEMEHHBIX [MapaMeTpPOB BJIUSET Ha CIIEKTPAJIbHBIE
cBoiicTBa 3ajadu. 1losydeHbl KadecTBEHHbIE PE3YJIbTATHI JJIsl CUMMETPUYHON SKBUBAJEHTHOCTH
(dbakTopusanun HAGOPOB COOCTBEHHBIX 3HAYEHUIT U COOCTBEHHBIX (DYHKIHIT) COOCTBEHHBIX 3HAUE-
HUI HEOJHOPOJHBIX GAJIOK Jisl BYX THUIIOB 3aKPEIIeHUs Ha KOHIAX (3alleMJICHHO-3AINEMICHHOE
U [IapHUpHO-IapHUpHOe). [lJis JeMoHCTpaIu SKBUBAJIEHTHOCTH Pa3paboTaH MMOPUIHBIH ajro-
PUTM, OCHOBAHHBII Ha KAYECTBEHHBIX CIIEKTPAJIBHBIX CBONCTBAX OOBIKHOBEHHBIX M depeHIinalib-
HBIX YPABHEHUI I€TBEPTOrO MOPSJIKA U PACIETAX OCEBO HArPY3KU. Pe3ysibraThbl ObLIH IIPOBEPEHDI
C UCIIOJIb30BAHUEM ITPUMEPOB B KOMIIBIOTEPHOM I1akeTe Maple 1 cpaBHEHBI C 9KCIIEPUMEHTAIbHBIMU

U3MEPEHUIMUA.
Kutrouessbie cioBa: basika ditiepa—bepHysuin, HeogHOpoIHAS OajiKa, COOCTBEHHOE 3HAYEHIE, CHM-

METpPUA, SKBUBAJICHTHOCTD.

1 Introduction

The majority of mechanical systems comprising beam construction, as employed in technology
and engineering, are defined by their geometric and physical variable parameters. Such
structures include parabolic tapering and functionally graded beams [1H3|, which can be
adopted for a light-weight design or specific wave propagation effects |4 5], as well as
piezoelectric energy harvesting [6,[7]. In [3], a closed-form dynamic stiffness formulation for
the analysis of transverse free vibration in non-uniform symmetric Euler—Bernoulli beams was
proposed, and effects of boundary conditions were investigated. A beam with a heterogeneous
temperature distribution exhibits variable physical properties. The presence of variable
parameters introduces a significant degree of complexity into the dynamic analysis. The
modelling of mechanical systems comprising non-uniform beam construction gives rise to
the formation of fourth-order linear equations with variable coefficients. Consequently, both
approximate analytical [8-10] and numerical methods |12-16] for solving differential equations
with variable coefficients under different conditions are being actively developed. A thorough
literature review on the solution methods for transverse vibration of non-uniform beams with
variable cross-sections can be found in [9]. In [10], approximate analytical expressions for the
natural frequencies of non-uniform beams were obtained in terms of asymptotic theory. The
isospectral problems for non-uniform beams were studied in |11{12]. The isospectral problems
between non-uniform and uniform beams were presented in [12]. The natural frequencies of
free boundary value problems for beams with symmetric coefficient without an axial load
were studied in [9]. In |15], a regular variation approach to finding natural frequencies and
modes of vibration of non-homogeneous beams were studied.

In the modelling of mechanical systems, it is essential to have a closed analytical formula
for natural frequencies [17,(18,120,23]. In [17], a closed-form solution for non-uniform beams
was proposed using special functions. In [18], an asymptotic formula of natural frequencies for
the non-uniform beams with different boundary conditions was derived based on perturbation
method. Eigenvalue asymptotics of an even order differential ordinary operator with square
integrable potential were obtained in [19]. In |20], a solution for the free vibrations of
non-uniform beams on a non-uniform Winkler foundation was presented, employing the
Laguerre collocation method. The influence of axial loads on the natural frequencies of
uniform beams with various boundary conditions were investigated in |21,22]. Additionally,
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the papers revealed critical values of axial loads. In |23|, several results pertaining to
the closed-form expression for the natural frequencies of uniform beams were modified.
Additionally, the concept of symmetrical equivalence was demonstrated for a uniform Euler-
Bernoulli beam subjected to an axial load. The spectral properties of hinged-hinged beams,
both with and without axial loads on an elastic foundation, were investigated based on
the characteristic determinant in |24}25] and |26], respectively. The effects of a foundation
coefficient for calculating of the critical load were presented in [27]. The symmetric equivalence
of boundary value problems for the uniform beams without and with axial loads lying on
a Winkler’s type foundation were studied in [28] and |29], respectively. Nevertheless, the
symmetric equivalence of boundary value problems for non-uniform beams remains an area of
incomplete investigation. One of the methods for studying non-uniform beams is to represent
them as stepped beams. The symmetric equivalence of stepped beams can be employed for
identification problems pertaining to the physical properties of beams, as evidenced by the
findings set forth in the paper by [30].

The goal of this research is to identify conditions for the variable coefficients of bending
stiffness, foundation and mass of the beam per unit length and fixing types of a non-
uniform beam under which it is possible to establish the equivalence of the eigenvalues and
eigenfunctions. The novelty of the paper is the agreed symmetry of the variable coefficients
(see Theorems [1)). The results presented here extend several known results from the cited
sources, namely [23]28]29].

The problem of transverse vibrations of a non-uniform beam of unit length

Pu(r,t) | () (mHTam(:c,t) P (EJ($)aw(x,t)) _o,

ot?

pA() ox? 0x? 0x?

after replacement w(x,t) = v(\, z) sin(wt) reduces to the following spectral problem:
(EJ(x)v" (N, 2))" +T" (N ) + k(2)v(\, x) = A\pA(x)v(\,x), =€ 1, p=1,2, (1)

where v(\, z) are the eigenfunctions of the transverse static deflection of the beam; E.J(x)
is the bending stiffness; p A(x) is mass of the beam per unit length; 7" is corresponding to
a constant compressive force if T > 0 or a constant tensile force if T < 0; A = pw? are
the eigenvalues; w is the circular frequency; p is the material density; k(x) is the variable
coefficient of foundation, I; = (0, 1), I, = (3, 1) . Notice that J(z) and A(z) are assumed
twice continuously differentiable and strictly positive, k(x) is the real-valued summable
function.

In this study, two types of beams are considered. The first is the hinged-hinged beam on
the interval I; with the boundary conditions (see Figure [1)

v(N,0) =0, v"(N,0)=0,v(\,1) =0, v"(\, 1) =0, (2)

and the second is the clamped-clamped beam on the interval [; with the boundary conditions
(see Figure

v(A,0) =0, v'(N\,0) =0,v(A\, 1) =0, v'(\, 1) = 0. (3)

In addition, we introduce the sliding-hinged boundary conditions
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Figure 1: Hinged-hinged Euler—Bernoulli non-uniform beam.
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Figure 2: Clamped-clamped Euler—Bernoulli non-uniform beam.

1 1
v’ ()\, 5) =0,v" ()\, 5) =0, v(A\ 1) =0, 0" (A1) =0, (4)

and hinged-hinged boundary conditions

1 1
' (A’ 5) -0 (A’ 5) =0,v(,1) = 0,v"(3, 1) = 0 (5)

which are connected with hinged-hinged fixing on the interval I,. Furthermore, we introduce
the sliding-clamped boundary conditions

1 1
v’ ()\, 5) =0, 0" (/\7 5) =0,v(\,1)=0,7"(\1) =0, (6)
and hinged-clamped boundary conditions
1 " 1 /
v )\,5 =0,v )\,5 =0,v(\,1) =0, (A\,1)=0 (7)

which are connected with clamped-clamped fixing on the interval I.

2 Main results

Let o(A;),0(B1),0(Cy) be a set of eigenvalues of problems Ay — A, By — A, Cy — A\l
generated by Equation ({1]) on finite intervals by boundary conditions , @, , respectively.
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Theorem 1 Let J(x), k(z) and A(x) be the symmetric functions with respect to the point

_1
=73

Jx)y=J1—-2), k(zx)=k(1l-2z), Alx)=A(l-2), z¢€ {O; 11 (8)

and T < T.,.. The following statements are true:

1. U(Al) = O'(Bl) U 0'(01)

2. If X € a(By) or A € o(Cy), then the eigenfunctions of problems Ay — Al corresponding to
the eigenvalues A are symmetric or asymmetric with respect to the middle of the beam at the

point x = % on the interval (0, 1), respectively.

Let 0(As), 0(Bz), 0(C2) be a set of eigenvalues of problems A; — A, By — A, Cy — A\
generated by Equation ([1)) on finite intervals by boundary conditions , @, , respectively.

Theorem 2 Let J(x), k(z) and A(x) be the symmetric functions with respect to the point

L i.e. the condition in Equation (@) holds and T < T... The following statements are

1'257

true:

1. 0(As) = 0(B2) U (Cy)

2. If X € 0(By) or A € 0(Cy), then the eigenfunctions of problems Ay — Al corresponding to
the eigenvalues A are symmetric or asymmetric with respect to the middle of the beam at the

point x = % on the interval (0, 1), respectively.

The proof of Theorems [1] and [2| is ideologically similar to that presented in work [28].
Nevertheless, there is a single discrepancy, which require is calculating of the critical value
T.,. Further will be described the scheme for proving Theorems [I] and [2]

First step. The following functions J(x), k(x) and A(x) will be selected to satisfy
condition ().

Second step. The critical value of T,, will be calculated that corresponding to the first
step and the value of T" will be selected such that T' < T,.. The calculation of T, will be
conducted using well-known numerical method (see, [22]).

Third step. The final step will employ the same technique used to prove the result
presented in [28|.

Upon completion of the aforementioned three steps, the proofs of Theorems [I] and [2] will
be obtained. In the third step, the analytical or numerical method may be employed. It should
be noted that if the functions J(z), k(x) and A(x) satisfy condition and the additional
condition from [12], then the non-uniform beam can be transformed into a uniform one.

Remark 1 Results from Theorem and Theorem [J are preserved for stepped beams.
Experimental and numerical simulations for the clamped-clamped stepped beam were carried
out in [30,31)]. The symmetric equivalence of the clamped-clamped stepped beam was used for
solving the inverse coefficients problems in [30).

3 Examples and discussion

In this section, we calculate approximately the four or five eigenvalues of boundary value
problems A, — I, B,—\I, C,— I (n = 1,2, 3) generated by the Euler—-Bernoulli equation for
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the various coefficients J(x), k(z), A(x) and p(x). The results of calculation of the eigenvalues
are shown in the corresponding columns of Tables [IH4]

Example 1 In this analysis, we examine three steps.
First step. Let J(x) =1+ x(1 — ), k(z) =4x2(1 — z), A(z) =2(1 —z) and E = 1.
Second step. In this example T, ~ 12.09 and take T = 5.
Third step. The numerical results of the first five eigenvalues’ square root \/X for Example
@ are shown in Table [

Table 1: Numerical calculations of the first five eigenvalues from the Example [I]
Hinged-hinged at the Sliding at the point + = Hinged at the point x =

points x =0, z=1 %, hinged at the point %, hinged at the point
r=1 r=1
B @ ]
17.95 17.95 95.65
95.65 229.93 420.31
229.93 666.79 969.34
420.31 1327.96 1742.63
666.79 2213.36 2740.14

The calculations presented in Example [I| provide corroboration for the validity of
Statement 1 of Theorem [I] pertaining to the factorization of the set of eigenvalues.

Example 2 In this analysis, we consider three steps.

First step. Let J(x) = z(1 —z), k(z) =5(1 + )3, A(z) = 2(1 —2) and E = 1.

Second step. In this example T, ~ 3.73 and take T = 1.

Third step. The numerical results of the first five eigenvalues’ square root \/\ for Example
are shown in Table[3.

Table 2: Numerical calculations of the first five eigenvalues from the example [2]
Hinged-hinged at the Sliding at the point + = Hinged at the point x =

points x =0, z =1 %, hinged at the point %, hinged at the point
=1 r=1
2] @ F)
11.31 12.37 37.09
36.38 84.70 152.81
84.31 240.98 349.07
152.55 476.99 624.72
240.81 792.23 979.52

The violation of the regularity of factorization of eigenvalues in Example[2]is due to the failure
to satisfy the symmetry condition for the function k(x). The aforementioned calculations in
Example [2] confirm the validity of Statement 1 of Theorem [I}
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Example 3 We consider three steps.

First step. Let J(x) =1+ z(1 — ), k(z) =4, A(z) = 2*(1 — z)? and £ = 1.

Second step. In this example T, ~ 45.71 and take T = 30.

Third step. The numerical results of the first five eigenvalues’ square root \/A for Example
are shown in Table[3

Table 3: Numerical calculations of the first five eigenvalues from the Example
Clamped-clamped at the Sliding at the point x = Hinged at the point z =

. o o 1 . 1 .
points x =0, =z =1 3, clamped at the point 3, clamped at the point

r=1 rz=1
B) (8]

27.4 27.4 121.79
121.79 285.1 511.35
285.1 800.52 1152.37
511.35 1566.79 2043.71
800.52 2583.07 3184.87

The calculations which represent in Example [3] confirm the validity of Statement 1 of
Theorem [2] on the factorization of the set of eigenvalues.

Example 4 We consider three steps.

First step. Let J(z) =1+ z(1 + z), k(z) =4, A(z) = 2*(1 — 2)* and E = 1.

Second step. In this example T, ~ 67.4 and take T = 30.

Third step. The numerical results of the first five eigenvalues’ square root /A for Example
[4 are shown in Table [}

Table 4: Numerical calculations of the first four eigenvalues from the Example [4]
Clamped-clamped at the Sliding at the point x = Hinged at the point z =

. o o 1 . 1 .
points x =0, z =1 3, clamped at the point 3, clamped at the point

r=1 r=1
g B ]
43.21 62.46 191.41
159.65 420.72 725.72
357.61 1126.92 1602.73
631.47 3562.85 2820.71

The violation of the regularity of factorization of eigenvalues in Example [4] is is due to
the failure to satisfy the symmetry condition for the function J(z). The aforementioned
calculations in Example [4] confirm the validity of Statement 1 of Theorem [

Example 5 In this study, we consider a two-stepped beam with clamped-clamped boundary
conditions. The geometric dimensions of the composite beam are as follows: Ly = L3z =
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247.6mm Ly = 508mm, hy = hy = hg = 3.6mm, by = b3 = 38.2mm and by, = 25.7mm
and these are illustrated in in Figld Young’s modulus and the density are 28.3GPa and
p = 1800kg/m3, respectively. In this example, T = 0, k(z) = 0. The natural frequencies

/382 - /382
,” 3E.2 mm '{{]1 7 mm /38l |'|1.||'|
’J—fﬁ '—ﬁ 3.6 mim
g l'lr r.." :+
—— A —|
! "IIII
L 247.6 mm SUE mm 247.6 mm |

Figure 3: Two-stepped composite beam with clamped-clamped boundary conditions [30,31].

are computed by transcendental eigenvalue problem (TEP) and the results compared with the
experimental measurements [30] in Table[3

Table 5: The first five natural frequencies (Hz) from the Example
Clamped-clamped at the Sliding at the point x = Hinged at the point z =

points x = 0, x = 1. %, clamped at the point %, clamped at the point
Experiment |30] r=1 r=1
B) ) @

16.1 £ 0.16 16.12 41.01

41.3+0.16 78.67 130.55

79.3 £0.16 195.01 270.97

134.0 £0.16 360.78 465.47

196.5 £ 0.16 581.72 708.17

The calculations presented in Example [5] confirm the validity of Statement 1 of Theorem
[2 on the factorization of the set of eigenvalues.

A numerical method was employed for the calculation of the eigenvalues at the variable
coefficients of J(x), A(x) and k(x) with the polynomial expansion and integral techniques as
outlined in [14]. The degree of the polynomial was selected as N = 25, which ensures accuracy
of calculations. The numerical calculations were carried out using the Maple computer
mathematics system [32)].

The results obtained in this work permits to study the qualitative spectral properties of
a non-uniform beam. Symmetrical equivalence permits to calculate the natural frequencies
of a full beam using the natural frequencies of two short beams with different lengths and
fixing methods. This paper presents examples of partial factorization of the eigenvalues of
a full-length beam in the case of an asymmetric foundation coefficient. Furthermore, the
length of short beams is also contingent upon the agreed symmetry. To illustrate, when the
parameters are symmetric about the z = 1/2, the length of the short beams is equal to half
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the length of the full beam. The aforementioned capabilities are play a significant role in
computer calculations and the modeling of mechanical systems with complex structures. It
is therefore anticipated that future research will focus on the behavior of mechanical systems
of complex structure, with the star graph serving as a case in point 33| .

4 Conclusions

In this paper, the problems for determining the eigenvalues of the non-uniform
Euler—Bernoulli beam with the axial load lying on the Winkler’s type foundation at two types
of fixings at the ends have been solved: clamped-clamped and hinged-hinged. A sufficient
condition has been found for the variable coeflicients of the differential equation of the beam,
which a symmetrical equivalence of the eigenvalues and eigenfunctions is satisfied.
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SYMMETRIC BANACH-KANTOROVICH SPACES

Let B be a complete Boolean algebra, let Q(B) be the Stone compact of B, let C, (Q(B)) be the
commutative unital algebra of all continuous functions = : Q(B) — [—00, +00], possibly assuming
the values +00 on nowhere-dense subsets of Q(B). We consider Maharam measure m defined on
B, which takes values in the algebra L° of all real measurable functions. With the help of the
property of equimeasurability of elements from Co.(Q(B)), associated with such a measure m, the
notion of a symmetric Banach-Kantorovich space (E, || - |g) over L° is introduced and studied in
detail. Here E C C(Q(B)), and |- |g — L%-valued norm in F, endowing it with the structure of
a Banach-Kantorovich space. Examples of symmetric Banach-Kantorovich spaces are given, which
are vector-valued analogues of classical LP-spaces for 1 < p < oo, associated with a numerical
o-finite measure.

Key words:: the Banach-Kantorovich space, order complete vector lattice, vector-valued measure,
vector integration, symmetric space.

B.U. Yuun, I''B. 3akuposa*
TamkenT MeMJIeKeTTIK KOJIiK yHuBepcuTeTi, Tamkent, O36ekcran
*e-mail: zg1090@list.ru
Cummerpusinbik, Banax-KanropoBud KeHicrikTepi

B roabik Gysbaik anrebpa, Q(B) B 6yabjik anrebpara CoifKec Kesylni CTOYHJIIK KOMIAKT 6OJI-
et xone L0 (B) := Cu (Q (B)) Q(B)- na anbikTasran xkone + mousepa Q(B)-1arst e xepje
THIFBI3 6OJIMAFaH KUBIHIAPAA FaHA KabblinaiiTeH © : Q (B) — [—o00, 4+ 00] 6apisik e3iiiccis GyHK-
MUATAPIbIH airebpack 607chH. MarapaMubs, BekTop Monai m : B — L0 () emmemmepi xapac-
TBIPBUIAJIBI, OJIAPJBIH MOHIEpP] esneMi o-akpipibl Goaran (2, X, 1) esnemMal KeHiCTIKTeri HAKThI
emmeMIl DYHKIHAIAPFa TepJiK Gap/bIK JKepie TeH 6apJblK Kiaaccrapabiy L0 (Q) asnrebpacobiaza
0oJ1aabI. M eJIIIeMMeH OailTaHbICKaH LO(B ) - JIAFBI SJIEMEHTTEP/IIH TEHOJIIIEM ITIK KACHET] KOMeri-
ven (B, ||| ) cnvmerpusiibik Banax-Kanroposud kenicriri Tyciuiri enrisineni, mynna E C LO(B),
|- |z E—neri L° (Q)-monsai Hopma, 6y HopMa oran Banax-KaHTOpoBIY KeHiCTIriHIH KyPBLIBIMBIH
6epeni. Cummerpustipik Banax-KanropoBud kenicririne Mpicaimap KeJTipijemi, oap CaHmbIK o-
aKBIPJIbI OJIIeMMeH OailTaHbIicKaH KiaaccukaablK LP, 1 < p < 00 KEHICTIKTep/iiH, BEKTOP MOHII

aHaAJIOrTaphbl OOJIaTHI.
Tyitin ce3mep: BeKTOPJBIK uHTEerpasaay, Marapam esmiemi, Tex osmeM, banax — Kanroposud

KEeHICTIri.

B.U. Yunun, I'B. 3akuposa*
TamkeHTCKUil TOCYIAPCTBEHHBIN TPAHCIOPTHBINA yHUBEPCUTET, TAIKEHT, ¥Y30€KuCTaHn
*e-mail: zg1090Qlist.ru
Cummerpuynble npocTtpancTBa Banaxa-Kaunroposuyua

[Tycrs B npousBosibHas 10JiHast OyiieBa airebpa, (Q(B) cTOyHOBCKUI KOMIIAKT, COOTBETCTBYIONIHI
Gynesoit anre6pe B u L°(B) := Cu(Q(B)) anrebpa Bcex HempepbIBHbIX dbynkmuit = : Q(B) —
[—00, +00], onpenenensbix Ha Q(B) n NIPUHEMAOINX 3HAYEHHsI £0O JIMIIb HA HUIVIE He IIOT-
HBIX MHOXKecTBax n3 Q(B). PaccmarpuBaioTcs BeKTOpHO3HAYHBIE Mepbl Marapam m : B — LO(Q)
co sHadenusmu B anrebpe L(Q) Bcex KaccoB paBHBIX TIOYTH BCIOLY JEHCTBUTEIHLHBIX H3MEPH-
MbIX dyHKIMI Ha u3MepuMoM npocrpanctse (2, X, i) ¢ o-koneunoii Mepoii. C 11oMoIpio cBoicTBa
pasHOM3MepuMocTH dy1eMenTon u3 L0 (B), accomunpoBaHHOTO ¢ TaKOit Mepoii 11, BBOJUTCS MOHATHE
CUMMeTpHYHOTO pocTpancTsa Banaxa-Kantoposnua (E, ||-|g) van LO(Q), e E C LO(B),u |||
— L%(Q)-3naunas nopma B E, HaJesIsiomas ero CTPYKTYpoil mpocTpancTsa Banaxa-KanToposna.
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ITpuBoasiTcss mpuMepbl CHMMETPUIHBIX TpocTpaHcTB banaxa-KanTopoBuda, sBIISIONUXCS BEKTOP-
HO3HAYHBIME aHAJOraMu Kiaccudeckux LP-nipoctpancrs, 1 < p < 00, aCCOMUUPOBAHHBIX C IHCJIO-

BOI 0-KOHEYHOH MEpOi.
KuroueBble ciioBa: BeKTOpHOE HHTErpUpoBanue, Mepa Marapam, paBHOM3MEPUMOCTb, ITPOCTPAH-

crBo Banaxa - Kanroposuya.

Introduction

The development of the theory of Banach-Kantorovich space theory began with the
construction of integration for measures with the values in order complete vector lattice
(K-spaces), in particular, in the algebra L°(Q) of all classes of almost everywhere equal real
measurable functions on the measurable space (€2, 3, i) with a o-finite numerical measure .
Important examples of the Banach-Kantorovich spaces include the "vector-valued" analogues
of the L,-spaces, 1 < p < oo |1, 2], and the Orlicz spaces 3|, [4], [5]. If € is a singleton,
then the class of Banach-Kantorovich spaces coincides with the class of real Banach spaces,
important examples of which are functional symmetric spaces. The theory of symmetric
spaces contains many profound results and has important applications in a wide variety of
fields of function theory and functional analysis, in particular, in the theory interpolation
of linear operators, ergodic theory and harmonic analysis (see for example, [6], |7], [8]). The
development of the theory of Banach-Kantorovich spaces naturally involves the introduction
and study of symmetric Banach-Kantorovich spaces. In this paper, we consider a measure m
defined on a complete Boolean algebra B, which takes on value in the algebra L°(Q). With
the help of this measure, the associated distribution function for elements of the algebra
L°(B) = C(Q(B)) of all continuous functions = : Q(B) — R = [~00, +00], defined on
the Stone compact Q(B) of a Boolean algebra B, such that z7!({£o00}) is a nowhere dense
subsets of Q(B), is determined. Then the notion of a symmetric Banach-Kantorovich space
(E,||-|g) over L°(Q) is introduced, where E C L°(B) and || - ||z — L°(Q)-valued norm in F,
endowing it with the structure of the Banach-Kantorovich space. Examples of symmetric
Banach-Kantorovich spaces are given, which are vector-valued analogues of classical LP-
spaces, 1 < p < 00, associated with a numerical o-finite measure. Throughout the paper, we
use the terminology and notation of the theory of Boolean algebras [9], an order complete
vector lattice [10], the theory of vector integration and the theory of Banach-Kantorovich
spaces |1, as well as the terminology of the general theory of symmetric spaces [6].

1 Preliminaries

Let (Q,3, 1) be a measurable space with o-finite measure u, and let L°(Q2) = L°(Q, %, )
be the algebra of all real measurable functions on (€2, %, ) (functions coinciding almost
everywhere are identified). L°(€2) is an order complete vector lattice with respect to the
natural partial order (f < g< ¢g— f >0 almost everywhere). The weak unit is 1(w) = 1,
and the set B(Q2) of all idempotents in L°((2) is a complete Boolean algebra. Denote L°(2), =
{feL’0): f>0}

Let X be a vector space over the field R of real numbers. A mapping ||-|| : X — L°(Q)
is called an L°(Q)-valued norm on X if the following relations hold for any z,y € X and
AeR:

(1) [lz]l = 0, [zl = 0 & 2 = 0;
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(2) [zl = [A] ll=[[;

(3) [l +yll < l=ll + llyll

The pair (X, ||-]]) is called a lattice-normed space over L(2). A lattice-normed space X is
said to be d-decomposable if for any x € X and any decomposition ||z| = f; + f2 into a sum
of nonnegative disjoint elements fi, fo € L%(f2), there exist z1, 7o € X such that x = z; + zo,
lz1]l = f1 and [zof| = fo.

A net {zy}aea of elements of (X, || -|) is said to (bo)-converge to x € X if the net
{llz — 24|l }aca (0)-converges to zero in L°(S2), that is, there exists a decreasing net {f,} er
in L°(Q2) such that f, | 0 and for each v € T’ there is «a(y) € A with ||z — z.] < f,
(a > a(y)) |1} 1.3.4] (note, that the o-convergence of a net in L°(Q) is equivalent to its
convergence almost everywhere). A net {7q}aea C X is called (bo)-fundamental if the net
{za — 28} (ap)caxa (bo)-converges to zero.

The Banach-Kantorovich space over L(€) is defined as a (bo)-complete d-decomposable
lattice-normed space over L°(Q2). If a Banach Kantorovich space (X, || - ||) is in addition a
vector lattice and the norm || -|| is monotone (i.e. the conditions |z| < |y| implies ||z|| < ||y||
for z,9 € X ) then it is called a Banach-Kantorovich lattice over L°(Q) (see [1], [2]). Useful
examples of Banach-Kantorovich lattices are constructed using vector integration theory. Let
us recall some basic notions of the theory of vector integration (see [1], [2]).

Let B be a arbitrary complete Boolean algebra with zero 0 and unit 1. A mapping
m: B — L°(Q) is called a L°(Q)-valued measure if it satisfies the following conditions:

1) m(e) > 0 for all e € B;

2) m(eV g) = m(e) + m(g) for any e,g € B with e A g = 0;

3) m(ey) | 0 for any net e, | 0, {e,} C B.

A measure m is said to be strictly positive, if m(e) = 0 implies e = 0. In this case, B is
a Boolean algebra of countable type, thus, in condition 3) above, instead of the net e, | O,
one can take a sequence e, | 0, {e,}nen C B.

A strictly positive L°(2)-valued measure m is said to be decomposable, if for any e € B
and a decomposition m(e) = fi + fo, fi,f2 € L%(Q), there exist e;,eo € B, such that
e =e Ve m(er) = fi and m(ez) = fo. A measure m is decomposable if and only if
it is a Maharam measure, that is, the measure m is strictly positive and for any e € B,
0< f<m(e), fe L), there exist ¢ € B, q < e, such that m(q) = f |11].

The following statement shows that, in the case of the Maharam measure m, there is a
natural embedding of the Boolean algebra B(f2) into the Boolean algebra B.

Proposition 1 ( [12], Proposition 2.3) . For each L°(Q)-valued Maharam measure m :
B — L°(Q) there exists a unique injective completely additive Boolean homomorphism ¢ :
B(Q2) — B such that ¢(B(R)) is a reqular Boolean subalgebra of B, and m(p(q)e) = gm(e)
for all g € B(Y), e € B.

Let Q(B) be the Stone compact of a complete Boolean algebra B, and let L°(B) :=
Cx(Q(B)) be the algebra of all continuous functions z : Q(B) — [—00,400], such that
71 ({£o00}) is a nowhere dense subsets of Q(B). Denotes by C(Q(B)) the Banach algebra of

all continuous real functions on @Q(B) with the uniform norm ||z||.c = sup |z(t)].
teQ(B)
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We denote by s(z) := sup{|x| > n~'}, the support of an element z € L°(B), where
n>1

{lx| > A} € B is the characteristic function yg, of the set E, which is the closure in Q(B)
of the set {t € Q(B) : |z(t)| > A}, A € R.

Let m : B — L%()) be a Maharam measure. We identify B with the complete Boolean
algebra of all idempotents in L°(B), i.e., we assume B C L°(B). By Proposition 1, there exists
a regular Boolean subalgebra V(m) in B and a Boolean isomorphism ¢ from B(f2) onto
V(m) such that m(p(q)e) = gm(e) for all ¢ € B(Q2), e € B. In this case, the algebra L°(Q)
is identified with the algebra L°(V(m)) = C.o(Q(V(m))) (the corresponding isomorphism
will also be denoted by ), and the algebra C.(Q(V(m))) itself can be considered as a
subalgebra and as a regular vector sublattice in L°(B) = C(Q(B)) (this means that the
exact upper and lower bounds for bounded subsets of L°(V(m)) are the same in L°(B) and
in L°(V(m)). In addition, L°(B) is an L°(V(m))-module.

Denote by S(B) the vector sublattice of L°(B) comprising all B-simple (finite-valued)

elements, i.e. z € S(B) means, that there is a representation x = > aye;, where g, ..., a, €
i=1
R and ey,...,e, € B are pairwise disjoint. Let m : B — L) be a strongly positive

measure on a complete Boolean algebra B. If © € S(B) then we put by definition
I, (z) = / xdm = Zakm(ek) (x € §(B)).
k=1

This formula correctly defines a linear order continuous operator I,,, : S(B) — L°(Q) |1, 6.1.1,
6.1.2].

We say that a positive element x € L°(B) is integrable by m, or m-integrable if there is
an increasing sequence (,)nen of positive elements in S(B) (0)-converging in L°(B) to x and

the supremum sup | z, dm existing in L°. In this case, the sequence of integrals (1, () )nen
neN
is (0)-fundamental sequence (see 1} 6.1.3]). Therefore, we may define the integral of x by

putting
I (x) ::/ xdm = (0)- lim [ z,dm.

n—oo

An element z € L°(B) is integrable (= m-integrable), if its positive part x, and the
negative part z_ are integrable. Denote by L'(B,m) the set of all integrable elements and,
given r € L'(B,m), put

nta) = [ wdmi= [ aodm [ o am

It is known, that L'(B,m) is an order-dense ideal in L°(B) and I,,, : L'(B,m) — L°(Q)
is a linear operator. For each x € LY(B,m), let ||z, := [ |z|dm. Then (L'(B,m), ||z||1,m)
is a lattice-normed space over L(Q) (see |1, 6.1.3]).

Let p > 1, and let
17(B,m) = {x € L°(B) : |a}" € L'(B,m)},

1
||| pm == [/\x!”dm]", x € LP(B,m).

The following is known
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Theorem 1 ( [1/, (2]). Let m: B — L%Q) be a Maharam measure. Then
(). (LY(B,m),||z||im) is a Banach-Kantorovich space over L°(2), moreover,

LNV (m)) - L (B,m)  L'(B,m), / ola)zdm = a / dm,

for every x € LY(B,m), «a € L°(Q);
(ii). (LP(B,m), ||x|lpm) is a Banach-Kantorovich space over L°(12).

In what follows we identify ©(L°(Q2)) and L°(V(m)), and instead of ¢(f) we will write
f e L.

The element z € L°(B) is called L%(Q)-bounded, if there exists an element f € L%(Q),
such that |z| < f. Denote by L>(B,L°(f2)) the set of all L°(Q)-bounded elements from
L°(B). Tt is clear that L>(B, L)) is a subalgebra in L°(B), as well as order complete
vector sublattice in L°(B), moreover, L°(Q) C L>(B, L°(Q2)), C(Q(B)) C L>(B, L°(Q)).

For each = € L*°(B, L°(Q) put

lelloo oty = iE(F € L), : [2] < f}.
It follows directly from the definition of element ||z||o zo() € L)+ that |z| < [|z|so,r0(0)-
Proposition 2 ( [13], Propositions 4 and 5) . The map
I loe.zoq@ = L(B, L7(€2)) — LY(Q)

is a L°(Q)-valued d-decomposable norm on L>*(B,L°(Q)). Moreover, if |y| < |z|, y,z €
L>(B, L%(Q)), then [[yllce,o@) < lI#]lso,Lo@)-

Theorem 2 . (L>(B,L°(Q)), || - [|co,z0()) %s the Banach-Kantorovich lattice over L°(S)

Proof. According to Proposition 2, (L>(B, L°(Q)), || |oc,r0(0)) is & d-decomposable lattice-
normed space over L°(£2).

It remains to show that this lattice-normed space is (bo)-complete. Take an (bo)-
fundamental net {z,}aca C L>®(B,L°(Q)). Then by the definition of fundamentality, net
(ta — %8)(a8)caxa  (bo)-converges to zero. Hence, there exists a net {h,},er | 0, hy €
L>(B, L°(2)) such that for any h, there is «a(y) € A, that

|Ta — 28] < ||Ta — 25]|0o,00(0) < hy forall a>aly), B> aly). (1)

This means that the net {z,}aca is a (0)-fundamental net from order complete vector lattice
L>(B,L°(€2)). Consequently, this net (o0)-converges in L*(B, L°(Q2)), i.e., there exists an

element x € L>(B, LY(Q)), for which z, ) 4 In particular, for each fixed 8 > «(y) the
net {Zo — Tstaca, aa(y) (0)-converges in L(B, L(2)) to element @ — x4(,). Hence by (1)
we have |z —x5| < h, € L®(B,L%(Q)) for all B > «a(vy), which implies the inequality

|z — 25]|00,00(02)) < by forall B> a(y).

This means that the net {z,}aca (bo)-converges to the element x € L>(B, L°(Q)). O
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2 Symmetric spaces of Banach-Kantorovich

Denote by L°(€2). the set of all positive elements A € LY (Q) such that s(\) = 1. It is clear
that for any A\ € L°(Q),, there exists A\™' € L°(Q),, such that A- A\7! = 1.

Let m be L°(Q2)-valued Maharam measure on a complete Boolean algebra B. In the rest
of this section we assume that m(1) = 1.

Definition 1 . Let 0 < z € L°(B) and h € LY (). The L°(Q)-valued distribution
function n, : LY (Q) — LY(Q); is defined by setting

ne(h) :=m({x > h}),

where {x > h} € B is the idempotent in the algebra LY(B), which is the characteristic
function X,z of the closure Ey(x) of the set {s € Q(B) : x(s) > h(s)}.

Proposition 3 . A mapping n, is decreasing, and right-continuous, that is, if h, €
LY, (Q),n=0,1,..., and h, | ho, then ny(ho) = sglzl) Ne(hy)

Proof. The first statement follows from the following implications
h1 < hy = Eh1 (x) D) Eh2($> = {x > hl} > {IE > hg} = 7]36<h1) > ﬁx(hg)

To establish right-continuity, let ¢, = {x > h}, (h € L} (Q)), and fix hy € LI, (Q).
The sets Ej,, (z) increase as h,, decreases, and Ej,(z) = |J Ep,(z). Hence, by the monotone
n=1

convergence property of measure m,

Ne(hn) = m(qn,) T mM(qne) = Ne(ho). O

Proposition 4 . Suppose x,y,x, (n = 1,2,...) belong to L°(B), and let h,g € LY (Q).
Then

() of |z < |yl, then mg (k) < my (h);

(“) ng|m|(h) = 77\z|(§);

(46i) if £ >0,y >0, hy,hy € LY (Q), then nyyy(h1 + he) < ny(he) + ny(he);

() if |zn| 1 |z], then ng,|(h) T N (h) for every h e LY (Q).

Proof. (7). If |z| < |y, then {|z| > h} < {|y| > h}. Consequently,
Mei(h) = m({|z| > h}) <m({ly| > h}) = ny(h).

(i1). Nglal (h) = m({glz| > h}) = m({|z| > £}) = nu (5)-

(it7). If s € Q(B) and x(s) + y(s) > hi(s) + ha(s), then either z(s) > hy(s) or
y(s) > ha(s). Therefore {x +y > hy + ha} < {x > h1} V {y > hyo}. Consequently,

Nety(h1 4+ ho) =m({x +y > hy + ha}) <m({z > hi}) + m{y > ha}) = nu(ha) + 0y (he).

(iv). We fix h € LY, (Q) and put Gi(z) = {s € Q(B) : |z(s)| > h(s)}, Gr(x,) = {s €
Q(B) : |za(s)| > h(s)}, (n = 1,2,...). Since |z,| < |zpyal, then Gi(z,) C Grp(Tpir).
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Furthermore, the condition |z,| 1 |z| imply that Gi(z) = | Gi(z,). Hence, by the
n=1

monotone convergence property of measure m,

Man| () = m({|zn| > h}) T m{{|z| > h}) = ne(h). O
Examples 1 . 1. Letz=e€ B and he L9, (). Then
ne(h) =m({e > h}) =mle), if h<1, andn.(h) =0, if h>1.
2. It will be worthwhile to formally compute the L°(Q)-valued distribution function n, of
a positive B-simple element x € S(B). Suppose

n
Tr = § Ak Cr,
k=1

where o, . .., o, € RT =(0,00), and ey, ..., e, are pairwise disjoint elements of B. Without
loss of generality we may assume that ay > as > ... > a, > 0. If h € L} (Q) and
h > ay -1, then clearly n,(h) = 0. However, if as -1 < h < ay -1, then {x > h} = ey,
and so ny(h) = m(ey). Similarly, if ag-1 < h < ay -1, then {x > h} = e; V ez, and so
nz(h) = m(e; Vea) = m(er) + m(ez). In general, we have

k
ne(h) = mle;) if apsr1-1<h<ap-1(helLl (Q),

i=1
where k=1,2,...,n, and ap.1 =0.
Definition 2 . Positive elements x,y € L°(B) are called m-equimeasurable, if n, = n,, i.e.,
m{z > h} =m{y > h}
for all h € LY ().
Examples 2 . 1. Two idempotents e1,es € B are m-equimeasurable if and only if m(e;) =
m(es) (see Example 1.1.)
2. Let v,y € S(B)y, v =Y apep and y = > Prgr, where ag, fbr € Ry, a1 > ay >
k=1

- k=1
o>, >0, B> By > ... > 06,>0, and {ex}, respectively, {gr} are pairwise disjoint

elements of B. By Example 1.2, we have

k
ne(h) = Zm(ei) if a1 1< h<ag-1,

=1

k
ny(h) =Y m(g:) if Brer 1< h<pBi-1(hell (Q),
=1

where k=1,2,...,n, and api1 = Ppi1 =0.

k k
From equality n,(t) = n,(t) we get ay, = f and > m(e;) =Y m(g) forallk =1,...,n.
=1 =1

=

Of the last equalities by k = 1 we have m(e;) = m(gy). Further, if k = 2 the equality
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m(er) + m(e2) = m(g1) + m(ga) is true, thus m(es) = m(gs), etc., when k = n we get
m(en) = 1m(gn)-

Thus the elements x and y m-equimeasurable if and only if ap = Br and m(ex) =
m(gy) forall k=1,....n

3. If x and vy are positive elements of LY(B) and m{z >t-1} =m{y > t-1} for all
t >0, then

m{x <t-1}=m{y<t-1} and m{s-1<x<t-1}=m{s-1<y<t-1}

forany 0 < s < t.
Indeed, m{z <t-1} =m(1)—m{z >t -1} =mQ) —m{y>t-1} =m{y <t-1}.
Further, using the equalities {s-1 <z <t-1}={r>s-1} —{z>t-1},{s-1 <y <
t-1}={y>s-1} —{y >t-1}, we get

m{s-1<z<t-1}=m{r>s-1} —m{z >t -1} =
m{y>s-1}—m{y>t-1} =m{s-1 <y <t-1}.
The following theorem establishes the equality of integrals for m-equimeasurable elements.

Theorem 3 . If x,y are m-equimeasurable, where y € L*(B,m), then x € L*(B,m) and
[ zdm = [ ydm.

Proof. Let x,y € S(B);, * =Y axer, and y = > Brgr. Then by m-equimeasurable
k=1 k=1
x and y (see Example 2.2.),

/Sﬁdm = iakm(ek) = iﬁkm@k) = /ydm.

Let now x € L%B);, 0 <y € L'(B,m) and 7, = n,. Let us, first assume that
y € C(Q(B)). Recall that by assumption m(1) = 1, and therefore C(Q(B)) C L'(B,m)),
in this case, ||yll1m < [|ylleol. Without loss of generality we may assume that ||y < 1.

Since 1, =1, then m{z >1} =m{y > 1} =0, that is ||z]~ < 1.
Consider the following two increasing sequences of positive simple elements

2m 2m

Z Lew) 13, yn—(zk Lo 1y,

2n
k=1 k=1

Wheree:{ 1<:c<2in 1}, gk:{k—’nl-1<y§2%-1}.Since77x:77y,then
m(ex) = m(gx) (see example 2.3.), and therefore
on on
k—1 k—1
/%‘ndmz Z on m(ey) = Z on m(gr) = /ynme/ydm-
k=1 k=1
Hence,

/xdm = (0)- lim [ x,dm = /ydm.
n—oo
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Now let y be an arbitrary positive element L'(B,m). Consider two increasing sequences
of positive elements of C(Q(B))

InziﬂpnTﬂf, yn:anTyy
where p, ={x <n-1}, ¢, ={y <n-1}. Using example 2.3., we obtain
m{z, >t- 1} =m{zp, >t -1} =m{t- 1<z <n-1}=m{t-1<y<n-1} =

=m{yg, >t-1} =m{y, >t-1}

for any t € R*. Since y, is an integrable element of C(Q(B)), it follows from the above,
that f Tpdm = fyndm. At the same time, there is a limit

n—o0 n—o0

(0)- lim [ z,dm = (0)- lim [ y,dm = /ydm.

Hence x € L'(B,m) and [zdm = [ydm. O

Corollary 1 . Let 0 < x € L%B) and 0 <y € LP(B,m), p > 1. If = and y m-
equimeasurable, then x € LP(B,m) and ||z|/pm = |Yllpm-

Proof. Since y? € L'(B,m) and
m{:rp>t-1}:m{a:>t%~1}:m{y>t%-1}:m{y”>t-l}

for any t € R*, p > 1, then for the elements 27 and y? the proof of Theorem 3 is preserved,
by virtue of which we obtain

2P € LY(B, m) and /x”dm = /ypdm,
ie.x € LP(B,m) and |zlpm = |Yllpm. O

Definition 3 . Let E - be a nonzero linear subspace in L°(B) with the property of ideality,
i.e. forx € L%(B) andy € E, from |z| <l|y| it follows that x € E. Consider the L°(2)-
valued norm ||-||g on E, which endows E with the structure of a Banach-Kantorovich lattice.
We say that E is a symmetric Banach-Kantorovich space over L°(Q), if m-equimeasurablity of
the elements x and y, where x € L°(B),, 0 <y € E, implies that x € E and ||z||g = ||y| &

The main and most important examples of symmetric Banach-Kantorovich spaces are the
spaces LP(B,m), 1 < p < oo, and L>(B,L°()).

Theorem 4 . (i). (LP(B,m), || - |lp.m) is a symmetric Banach-Kantorovich space over L°(Q)
for every 1 < p < oc0.
(40). (L®(B,L°(Q)), || - lloo,r0(0)) 18 a symmetric Banach-Kantorovich space over L°(Q).
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Proof. (i). According to |1, Section 6.1], linear subspace L'(B,m) C L°(B) has the ideality
property, moreover, the norm || - ||, is monotone, and the space L'(B,m), equipped with
this norm, is a Banach-Kantorovich lattice. It remains to apply theorem 3, by virtue of which
the pair (L'(B,m), || - [[1m) is a symmetric Banach-Kantorovich space over L%(€2).

Now let |z| < |y|, = € L%B), y € L?(B,m), where 1 < p < oo. Since |z[P < |y|P €
LY(B,m), then |z|P € L'(B,m) and

205m = 1P lm < Wy llm = 1yl15m

and therefore ||z]lpm < |Yllpm, 1€ || - lpm is L2(Q)-valued monotone norm on LF(B,m),
which endows LP(B,m) with the structure of a Banach-Kantorovich lattice over L°(Q). It
remains to apply Corollary 1, by virtue of which the pair

(LP(B,m), || - llpsm) is a symmetric Banach-Kantorovich space over L%((Q).

(4). By Theorem 2, the pair (L>(B, L(2)), || - [|oo,z0()) is & Banach-Kantorovich lattice,
moreover, it is clear that L>°(B, L%(2)) has the ideality property and the norm || - ||, ro(0)
is monotone on L*>(B, L°()).

Let z € LY(B), y € L>(B, L°(Q)), and let = and y be m-equimeasurable. Assign h(e) =
|Ylloo,00) + €1, € > 0. Since h(e) € L5, (), then

milz| > h(e)} = m{lyl > h(e)} = 0.

Hence, |z| < h(¢), and therefore = € L>®(B, L%(2), moreover, ||z|lw, 0@ < h(e) for every
e > 0. From this it follows that ||2||sc,zo@) < [|Ylleo,00)-
Let’s put now hy(e) = [|2]|oo o) +€ -1 € LY (), € > 0. Using equalities

mily| > hi(e)} = m{[z[ > hi(e)} = 0,

we get that ||y|le, o) < hi(e) for every e > 0. This means that ||y|le o) < ||7]]oo,L00)-

Thus, [J2]lee,00) = [[Ylle.0()-
Consequently, (L>(B,L°(Q)), || |lso,.0(0)) is a symmetric Banach-Kantorovich space over
LY(Q). O

Following the general theory of functional symmetric spaces, consider a space L'(B,m) N
L>(B, L°(Q) with a norm

[ zinzee = 2 ]l1m V |2lloo,20(@)s & € LY (B,m) 0 L*(B, L(4)).

Proposition 5 . (LY(B,m)NL>(B,L°(Q)), |||l z1nz=) is a symmetric Banach-Kantorovich
space over L°(2).

Proof. Since m(1) =1, and for every z € L>°(B,L%(2)) the inequality |z| < [|z||s0 10
is true, then L°°(B LO(Q)) € LY(B,m), moreover, ||z|l1m < ||2|lco,0(0)- Hence, L'(B,m)N
L‘X’(B,LO(Q) L>*(B, L°(Q)) and ||z]|1,m V [|Z|lso,0() = [|Z]lc,z0()- Thus, the pair

(LY(B,m) N L=(B, LX), | | rar=(B, L(Q)) = (L=(B, L*(Q), || - lloo, o)

is a symmetric Banach-Kantorovich space over L(2) (see Theorem 4 (44)). O
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MATHEMATICAL MODEL WITH NON-LOCAL BOUNDARY CONDITION
OF INCOMPRESSIBLE FLUID FILTRATION

This work is devoted to an actual problem today — the creation of cost-effective technology of
combined development of several reservoirs. Joint development of oil reservoirs combining two or
more oil reservoirs into one production facility by simultaneous extraction of reservoir fluids from
them by a single network of wells [1,[2]. Oil fields, as a rule, are multilayer, and the productive
formations are heterogeneous, first of all, by reservoir properties: first of all, they have different
permeability and thickness. It is economically unprofitable to drill a different production grid for
each of the productive formations. One of the primary tasks of putting an oil field into commercial
development is to combine productive formations into single production facilities and to carry out
joint development of these formations. After the reservoirs are combined into a single production
facility, they are drilled using a single grid of production and injection wells [3,}4]. This paper
considers a two-layer reservoir with different permeability and thickness. Numerical solution of
the model is proposed to determine the pressure field of incompressible fluid at known total
flow rate. The technology of combined development of several reservoirs isolated from each other
is used. We construct special difference equations in the neighborhood of internal boundaries
that allow us to apply the integro-interpolation method in a two-connected domain. Special
differences equations in the vicinity of internal borders, allowing overcome the difficulties arising
from the borders of the domain are constructed. The necessity of combined development in order
to reduce the economic costs is revealed and justified. Based on the numerical investigations
of the problem, obtained numerical results in programming language Fortran, and graphics in
Tecplot for double-layer reservoirs. The article also found an analytical solution of this problem
for the two reservoirs and made a comparative analysis of the results. Given conclusions about
the quality and accuracy of used iterative method. The scientific novelty of this work is to
research several layers by simultaneous selection of the reservoir fluids single well. The method of
solving and analysis of the results will be of interest to those skilled in the development the oil fields.

Key words: combined development, doubly connected domain, reservoir thickness, mesh of wells,
numerical solution, finite difference method, analytical solution.

K. Umanbepaues®, A. Kapumos
Osi-Qapabu arsinjgarsl Kasak, yarTeik, yausepcureri, Anmarsr, Kazakcran
*e-mail: kanzharbek75ikb@gmail.com
HTekapaJsbik HIAPTHI JOKAJAbI €MEC ChIFbIIIMAUTHIH CYMBIKTHIH,
dbuabTpaeHyiHiH MaTeMaTUKAJIBIK MOJIEJi

3eprrey KYMBICHI Ka3ipri Ke3jeri e3ekTi — HipHerre maacTbl 6ipre OHIIPY/IiH SKOHOMUAKAJIBIK, THIM-
JIi TEXHOJIOTUSICHIH KYpy Mocesecine apHasran. Exi Hemece KenkaTnapima maactap/ibl 6ipmesrisiie
VHFBIMa KYileciH eHrisin enaipy »Kosuapbiaa |1}2] GafinaHbicThl MaTeMaTHKAJBIK MOJEIbIEPIIH
MIENNMiH KapacThIpy OipMe3riie MyHaiIbl OHIIPY/IiH KAXKETTUIrH Taugay MyMKIHIIKTEpiH Oe-
peai. MyHait KOpbl *KepacTbl KabaTTapbIHBIH OPTYPJI KOJIJIEKTOPJILIK, KACHETTEPiHe YKoHe TIaCTKa-
OaTmaapablH, KaJIbIHIbIFbIHA OaiilaHbIcThl opHajackad. Coran 6aiijaHbICThI MyHal KOPbI 6ap Ka-
Oarmajapra KeKe YHFbIMa XKYHeciH naiijaaany b, THiMIiIir mamasibl. COHABIKTaH MyHal KOPbI

© 2025 Al-Farabi Kazakh National University
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bap mIacTkabaTIaIapabl Oipre eHJIIPY KOJJIAPBIH KAPACTPBIN 3€PTTEy MYHAil MeXaHUKACHIHJIA
xkui Koszanbliagasl |3l /4], ©s3apa Gaitnanbicnaran eki IiacTarbl CYHBIK KODBIH OHJUpY ecebi
3epTTesred. MyHIa YHFBIMAHBIH, BIKIAJIIBIK PAIAyChIMEH IMEKTEITeH aiiMaKTa apHaNlbl aKbIPJIb-
AfBIPBIMIIBIK, CXeMa, AJIBIHBIN, OAPJLIK aifMak VIMiH WHTErPO-MHTEPHOJANUSIIBIK, 9IICTI KOIIAHY
2KoJIbI Koitblira. OckIiMeH Hipre eki IJIacT yiH IIeKapaJiblK, MapThl JOKAJIbIbl €MeC ChIFbLIMANTHIH
CYUBIKTBIK, (PUILTPJCHY eceOiHiH AaHAJIUTUKAJIBIK, IMEeIiMi asbIHbII, KYBIK IIEeIIMiHe TaJaay
Kacajabl. JKOHOMUKAJIBIK, IIMBIFBIHIADILI a3aiiTyga Oipre OHIIPYIiH KaXKeTTirl KepcerTiir,
monengenei. 2Kyprisiiren canapik 3eprreyiepin HoTuxkecinge Fortran 6armapiamanay TigiHe
€Kl TJIaCT YIMH eCenTiH CaHablK MoHIepi »kKome Tecplot Garmap/aMajbIK MaKeTiHIe Chi3daapbl
ajparad. KoJsmaHbLIFaH wTeparmablK, OJiCTiH camachkl mojesaeHretn. 2KyMbBICTBIH Oacka Ka-
PACTBIPBIIFAH KYMBICTAPMEH CAJIBICTHIPFAHIAFBI FBIIBIMEU 2KaHAJIBIFBI — e3apa OaitlaHbIcTIaraH
IJIACTapJAarbl CYHWBIK KOpPBIH Oip Me3rimge Oip yHFbIMaJIap TOPBIMEH OHJIPY ecebiH 3eprTey
GoJtbilt TabbLIA L. MomesbIi 3epTTey oJicTepi MeH aJIbIHFaH KOPBITBHIHIBI HOTUXKeIepl MyHall KeH
OPBIHJIAPHI MAMaHIAPBIHBIH, KbI3bIFYIIBLIBIFBIH TYIbIPYbl MYMKiH.

Tyiiin ce3mep: Gipre enmgipy, exi OailTaHbICKAH aifiMaK, MIACTHIH KyaThl, VHFBIMAJIAP TOPHI, CaH-
JIBIK, TIETITM, aKbIPJIb-AfbIPBIMIIBIK, 91iC, AHAJINTUKAJIBIK, MIEITiM.

K. Nmaubepaues®, A. Kapumos
Kazaxckuit HanuoHaJIbHBIH yHUBEpcuTeT nMeHn ajib-Papabdbu, Anmarsr, Kazaxcran
*e-mail: kanzharbek75ikb@gmail.com

Maremarudyeckasi MOJ€Jb C HEJIOKAJIBHBIM I'PAHUYHBIM
ycjioBueM (PUIbTPAIIN HECXKUMAEMON YKUIKOCTA

Jlannass paboTa TOCBAIIEHA aKTYAJbHON HA CErOMHSIITHUN JI€Hb MpobJieMe — CO3JAHUI0 SKOHOMU-
qeckn d(PDEKTUBHON TEXHOJIOIHH COBMECTHON pPa3pabOTKM HECKOJbKUX maacToB. CoBMecTHAs
paszpaboTka HedTIHBIX IJIACTOB — OObEINHEHNE IBYX U Oojiee HePTIHBIX IJIACTOB B OJUH IKCILIY-
ATAIMOHHBIN 00BEKT IIyTEM OJIHOBPEMEHHOrO 0TOOpA U3 HUX IJIACTOBON KUJIKOCTU €JIMHOI CeTKON
CKBaXKuH paccmarpusasancs MHoruMu asropamu |1}2]. Hedrsiabie MecTOpoXK IeH s, KaK IIPaBUIIO,
SIBJISIIOTCST MHOTOIIACTOBBIME, IIPUYEM IIPOJLYKTUBHBIE IJIACTHI HEOIHOPOJHDI, IIPEXKJE BCEro 10
KOJUIEKTOPCKUM CBONCTBaM HMMEIOT IEPBYIO OY€PEIb PA3IMIHYI0 MPOHUIAEMOCTb u ToJmuHy. Ha
KaXKJIblil U3 MPOAYKTUBHBIX ILIACTOB OyPHUTH CBOIO CETKY JIOOBIBAIOIINX SKOHOMUYECKHU YOBITOUHO.
OpiHO¥ M3 IEPBOOYEPETHBIX 33/1a9 BBOJIA HEDTIHONO MECTOPOXKJIEHUS B IIPOMBIIIJIEHHYIO pa3pa-
6OTKY sBJIsIeTCsl OObEMHEHNE IPOJYKTUBHBIX ILIACTOB B €JIMHBIE SKCILIYATAIMOHHBIE OOBEKTDHI
7 IIPOBEJIEHNE COBMECTHOH pa3paborkm 3tmx msactos. llociae obbeuHeHNs IJIACTOB B €IMHBIN
IKCILIYATAMOHHBIA 00beKT UX pPasbypUBAIOT 10 €IUHON ceTKe noObIBaromux ckBaxkuu |3, |4].
B pabore paccmarpumBaeTcst ABYXCJOHHBIN TIJIACT PAa3JIUIHON MPOHUIIAEMOCTH W TOJIIIWHEI.
[Ipensioxkeno dYucieHHOE peEIleHre MOJIEJIN OIPE/IESIEHUs /IaBJIEHNs] HECXKAMAaeMOU JKUJIKOCTH,
KOIJIa M3BECTE€H CYMMAapHBIN JeOMT HPH OJHOBPEMEHHOI COBMECTHO# pa3paboTKe HECKOJbKUX
M30JIMPOBAHHBIX MEXKJy CODOOIl IIACTOB METOJIOM KOHEUHBIX pasHocteil. IlocTpoensl cuenuaibHbe
Pa3HOCTHBIE YPABHEHUsI B OKPECTHOCTY BHYTPEHHUX I'DAHWIIL, ITO3BOJISAIONINE TPUMEHUTD HHTETPO-
WHTEPIOJISIINOHHBI METOJT B JBYXCBA3HOI obsiactu. Ha ocHOBe mpOBEIEHHOrO WUCCIIEIOBAHUS
IIOCTABJIEHHO 3312491 10Ty YeHbl YMCJIEHHbIE PE3YIbTATHI Ha sA3bIKe MpOrpaMMupoBanus Fortran u
rpacduku mogenn ua Tecplot mist AByxcioiinoro maacra. Tak:ke HallIeHO AHAJTUTUIECKOE PeIlleHIe
JIAHHOHN 3aJIavu JJIst JBYX ILUIACTOB M CJIEIaH CPABHUTEIbHBII aHAJN3 MOJIYIEHHBIX PE3YJIbTATOB.
[Tomnyueno anajuTHYECKOE U YHCJIEHHOE PEIIeHHe 33/1a91 C HEJOKAJbHBIM PAHUIHBIM YCIOBHEM
[IPU COBMECTHOH pa3paboTKe NBYXCIOWHBIX IJIACTOB C 3aJaHHBIM CyMMapHBIM pacxomoMm. Hayanas
HOBU3HA DPAbOTHI 3AKJIIOYAETCH B HCCIEIOBAHUU HECKOJIBKHAX ILIACTOB IIyTEM OJIHOBPEMEHHOTO
0TOOPA IJIACTOBOI KWMITKOCTU €IMHOI CETKO# CKBaKUHBI. MeTos pelleHnst 1 aHaJII3 IOy 9€HHBIX
pe3yIbTaTOB Oy/IyT HHTEPECHBI CIIEIUAIUCTAM B 00JIACTH PAa3pabOTKU HEMTSIHBIX MECTOPOXK ICHUIA.

KitroueBbie ciioBa: coBMecTHasi pa3paboTKa, JBYXCBsI3Has 00JIACTH, MOIIHOCTH ILIACTA, CETKA
CKBasKWH, YUCJIEHHOE PEIIeHNne, MeTO/l KOHEUYHBIX Pa3HOCTel, aHAJIUTUYIECKOe PellieHne
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1 Introduction

The isothermal filtration of a homogeneous liquid in two formations isolated from each other,
but penetrated by one well, is considered. Thus, the problem of planned filtration of fluid into
a well comes down to finding a solution to Laplace’s equation in a doubly connected region,
the outer boundary of which is the contour of the filtration area, and the inner boundary is
the contour of the well.

Due to the fact that the size of the filtration area, as a rule, is much larger than the
size of the well contour, when solving the problem using the grid method, approximating
the filtration area by the grid area so as to take into account the size and shape of the well
presents certain difficulties |5]- |7].

When the well is replaced by a material point — the well in which the source (sink) is
located, the function p at point Oy becomes unlimited, and the flow rate q is defined as the
limit
. op
lim Uandl =q, (1)

1—0
l

where [ is some closed contour covering the well, n is the external normal lose to (.

At filtration of homogeneous fluid the condition is quite justified.If we keep the
boundary Ow,, associated with the control well, then specifying only the well flow rate for
them is not sufficient; additional conditions are needed on the well contour, i.e.

dp
/ 0ondr =1 (2)
Owe
p(z,y) =C, at (z,y) € Ow.. (3)

where C' is some unknown constants. In this case it follows from relations , that in e
neighborhood of the well the function p(z,y) is represented as

p=u-+ alni, (4)

C

where #Uc, r. is the radius of the well.
Then from we have

27

1
=5 o(re, p)de (5)
T
0

Oc

Apparently, using relation and hydraulic conductivity, it is necessary to continue to
the inside of the well so that at the well point it takes o., and require the fulfillment of
condition instead of condition . In this case, we can apply the substitution method [7].
However, as a result of such a transition, condition will be fulfilled only approximately.
Following the work [4,8] given conditions , on the well and taking into account the
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logarithmic dependence , the pressure function in € neighborhoods of the well, a finite-
difference method of solving the problem is constructed.

When studying the issue of fluid flow to production wells in a multi-layer system or in
layers with a permeable roof and bottom, it is necessary to take into account its possible flows
from one horizon to another, which greatly complicates theoretical studies and mathematical
solutions of practical problems. We will investigate the plane-radial motion of liquid in two-
layer formations isolated from each other, but opened by a single well. Considering that the
thickness of the formation H is small compared to its dimensions in the horizontal plane,
that the roof and the sole of the layers are impermeable, it is possible to pre-carry out all
the necessary averaging of the parameters by power and thus move from spatial tasks to flat
ones.Let’s direct the OZ axis against gravity and introduce the reduced pressure function
p* = p+ pgh. Then we write the filtration rate in the form v = —%gradp*. In the following
we will omit the asterisk at p* and by the function p we will understand the reduced pressure.

2 Mathematical model of fluid filtration in two-layer formations

Let us introduce the notations: w.-area, enclosed within the contour dw,, Q2-area enclosed
within 02, @)y is total flow rate of the well, selection from two layers, & = 1,2 is layer
number. Then € is a flat doubly connected region 0§, and w. € ) is a circle of radius
r. = € < diamf);. Assume that the center of the circle coincides with the origin. Let us pose
the problem of finding pressures in the region ). , = /@, that satisfy the equation

divopgradp, =0, k=12 (x,y) € Qep, (6)

where ¢ is the radius of the well hereafter for convenience we will assume r. = €. On the
contour 0§ takes the given values

pk(xay) = (,00(1',3/), (x,y) € 0y, (7>

on Ow, satisfy the following conditions

Opx, -
;}éws Uk%d’Y =Qo (z,y) € Owe (8)
p2(x,y) = pi(z,y) + pgzc  at(z,y) € duw. (9)

where g, = % > 0 is coefficient of hydraulic conductivity, pi(x,y) = C' is some unknown
constant value, z. = const is trance between the center surfaces (horizontal planes) of the
two layers, p is the density of liquids, g is the acceleration of free fall.

3 Analytical solution of the problem (@—@D

Let’s pass to polar coordinates in two-dimensional space

r?=a?+y?, w=rcosp, y=rsing, tanp=y/z.
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In polar coordinates, the desired function p(r, ¢) must be periodic with period 27 : p(r, p+
2m) = p(r, ). Let us write the isobaric pressure field for a circular reservoir with constant
hydraulic conductivity coefficient (o} = const):

d’p;  1dp;
- =0 . R. 10
dr?  rdr » Te<T< (10)

On the contour of two-layer strata
We set the total flow rate )y on the well

2

Z]é i P = Qo (12)

, or
=1

and unknown pressure on the well contour

pa(re) = pa(re) + pgH. (13)
Let us represent the general solution in layers in the following form

pi(r)=A;Inr+ B;, i=1,2, (14)

Let us take a sector of a circular layer (Figure 1), where ZAOB = dp, dy = AB. Then

for small (%‘p) we have d% = r.sin (%‘p) or write dy & r.dp.

Figure 1. Sector of the circle dp = ZAOB.

2 27
Now let us write the condition ([14]) with period 27 in the form ; of o; %’:}' redp = Q.
Then after integration on the basis of the general solution we obtain
27'('0'1141 + 27TO'2A2 = Qo. (15)

Taking into account the boundary conditions on the well contour, we determine the
integral constants for the first and second reservoirs:

C

A= (B =)/ (7). (16
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A = (po — p1(re) — pgH) / In (g) : (17)

From equations — we find the pressure on the well contour of the first and second
layers:

pi(re) = po — % In (EC) /(014 02) — 02 pgH /(01 + 02). (18)
palre) == 20 () flon +.02) + (1= 0001+ 02) - po. (19

Knowing the boundary conditions on the contour of two layers p;(R) = py and conditions
on the contour of the well and , we plot the field of pressure changes in the first and
second layers:

[ Qo
oo oy - pgH/ (01 + 09) r
pi(r) =po+ o1+ 09 + In (ﬁ) n(R) ’ (20)
e (1 —o09/(01 +02)) - pgH r
= —Iv— 2 — '1 . 21

If pgH = 0, we get a pressure field where the downhiller pressure at the well’s same for the
two layers, Pj(r.) = Py(r.) = const. It should be noted that problems with nonlocal boundary
condition for elliptic equation are considered by many authors. For example, in [9,/10] the
asymptotes of solutions of nonlocal elliptic equations are considered in flat bounded domains.

4 Numerical solution of the problem by finite difference method

In the case of joint reservoir development, the finite element method is proposed in [11]. It
is shown here that when using the finite difference method, the influence of the well radius
on the filtration process presents certain difficulties. Following the work [8], we construct the
solution by the finite difference method. First, we will construct a solution method for one
layer (for the prostate we will take p = p; = po, 0 = 01 = 09, Q = Q1 = Qs, g1 = const).
Let the area 2 is covered by a grid Q(h > r.). We will place the well point Oy at node
(10, Jo)- The point Oy does not belong to the area 2, so the node (i, j,) does not belong to 2,
either. We include all points formed by the intersection of grid lines with the boundary dw.
We denote this set of nodes by 09, and we denote an area (cell) by €2; ; and its boundary
by Ow; j. Then the cell 0, ;, is doubly connected, has an internal boundary wy and, unlike
other elementary areas, contains not one grid point, but a set of nodes dwy, (see Fig. 1).
From the generalized Green’s formula and applying the condition , we obtain

Il Z

divogradpdV —% y a%d’y —]{ a%d”y —i Ja—nd’y —q1.

Wig,jo Wig.do
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The grid cell ©;, ;, is bi-connected because the cell contains a well with radius r. (Figure

2).
| (iorfy +1) |
i - 1
l dew;, |
— S VD . I A
| )2 |
(ip—14,) } 3 Li) 1—\:\:.,1 : (io+1.4,)
1ﬂln.m Ta |
| I
_._—_—T_—_—_—_T____.
| |
| |
! b Wd-1) !

Figure 2. The well is located at a grid node.

Let the grid be square x = ih, y = jh, 1,7 = +£1,+2,... then

Q= {%’—1/2 <2 < Tig1/2, Yj—12 S Y < Z/j+1/2}-

Thus, as a result of integration of equation @ over the cells §2; ; we obtain
dp
—d P, 22
% an ")/ 7.77 ( )

where ®, ; = ’ 7 SN
7 { q1, at (Z7]) = (ZOaJO)'

The radius (p) of influence of the well is comparable to the grid spacing (h). Then in
the neighborhoods of p point the function p has a logarithmic dependence. Therefore, in p

neighborhoods we introduce an auxiliary function

u=p—aglnr, r’=(xr—z0)>+ (y— o)’ (23)

where « is an undetermined constant.

Then we write in the following form

op dlnr
—d D, —d 24
[ TR 24
where 2% = 2% cos(n, z) + g—“ cos(n,y) and taking into account the difference derivative along

the normal Vn, m to the boundary =, (Figure 2). Thus ~,, is orthogonal to the m-th grid
line leaving node (4, j) of the grid. As a result of numerical differentiation and integration of

the left side of equation , we obtain

Zam nm UV Y = ”—aozom/ onr, (25)

Here V7, is the length of the boundary ~,,.
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Consider the cell €, ;, (Figure 2). Its outer boundary is formed by line segments z =
xo £ %(h +7.),y =1y % %(h + 7). In this cell, four points belong to the grid ;. Obviously,
the distance from all points to the well point O is equal to r.. When m = 1,3 and m = 2,4, we
write down the difference approximation V, ,u (h +1r.) and V,,u (h +r.). Then we make
the reverse transition on the grid, i.e. we exclude the grid values of the auxiliary function
u(z,y) using equality connecting the values of the functions p(x,y) and u(z,y). Since in
our case h > r., we can get:

h h
Vamt = (pioﬂ,jo — Piojo — al”—) o Vymt = (pio,joﬂ — Pio.jo — al”—> :

c c

It is not difficult to make sure that for all m we have

/ Olnr /1/2 1/2hdy B

. q1 - _ 1
Here ap = , where Gop = § (Tig1/2.j0 + Tio—1/20 + Tiojo+1/2 + Tigjo—1/2) -

2M0O cp
Finally, for the cell €, j,, the difference equations with a given flow rate ¢; for one layer

will be written in the form

DX

hQL(Ua p>io7j0 = Oiy+1/2,j0 (pi0+17j0 - pioJo) + Tig—1/2,4o (pio—l,jo - piovjo)

h
+0ig jo+1/2 (Pio.jot1 = Piosjo) + Tioo—1/2 (Pio.jo—1 = Pioyjo) = @1 In —.
Thus, when the radius of influence of the well (p) is equal to the grid step (h), for one
reservoir the condition has the following difference approximation

2 h
th(O', p)iOJO = ;Ch In r_c (26)

Accordingly, expression gives a difference approximation at the point-well and for
the second layer. Let us assume that the grid spacing for the two layers is the same. In this
case, the following expression can be written for the two layers

2 h 2 h
h2L1 (Ulvp)io,jo + h2L2<0'27p)i07j0 - ;(h In 7’_ * ;qQ n > (27>

(&
Then, taking into account the total flow rate (Qy = ¢1 + ¢2) from two layers, we obtain

h

N
Te

2
WLy (01, D)iejo + W*La(02,D)i0.jo = —Qoln (28)

We construct numerical solutions of the problem (@f@ by the longitudinal-transverse
scheme proposed by Peaceman—-Rachford.
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5 The Peaceman—Rachford method for solving the problem (@f@

Let the grid be square x = ih, y = jh, 1,7 = £1,£2,... Then the left side of the difference
equation inside the domain on a five-point template with an error of O(h?) will have the
form [12]:

hQLk(Um,p)i,j = Okt (Pz'+1,j - Pi,j) + Oki-1,j (pifl,j - Pi,j)

Ok 41 T (Pij+1 — Pij) + O-k,z‘,j—%(pi,j—l — Dij) (29)

here k£ = 1,2 layer numbers.
Let’s write down the boundary conditions on the well

2 h
hQLl(O-bp)io,jO + h2L2(027p)i0,j0 = ;QO In 7’_7
D2,i0,jo = Plio,jo T th' (30)
On the contour r = R of two-layered interlayers
Pk (T> = $o, k= ]-7 2. (31)

Let us write equation with constant hydraulic conductivity coefficient o = const. Let
us introduce the difference operators:

P+1P = P+2P = Pij+1, Ep= Dij-

Let us represent the operator L, as a sum, e.g. for k = 1.

01

2

01

Ly=Ai+ Ay, A= =

(py1 —2E+p_1), A (py2 —2E 4+ p_s).

If p¥ = {pf j} , is known, it is done in two steps through finding the intermediate value
k+1/2
P2 — {pzj / } :

k+1/2 k
Dij  —Pij

w

= RPAPTY2 L R2ApF, 1<i<N-1,1<j<N-1, (32)

the corresponding entry is the same at k = 2.
Condition at the intermediate stage

2 h
AjopP ™2 4 Agop® = Lo(0,p)igjo + ;Qo In r—/h2~ (33)

On the contour of the layers, pfjl/ 2 = .

Similarly, the Peaceman-Rachford method is constructed for the second layer in the
case of the operator Ls(og,p), [15]. The computational algorithm of the problem @—@D
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consists of two stages — internal and external iteration.In the case of internal iteration, the
pressure function in individual formations is determined. And the outer iteration ends when
the nonlocal boundary condition is satisfied.

During the computational process, for example, for the first layer at a well point, from
expression we determine Ly (01, p)4, j, with fixed Lo(o9, p)i, j, and we solve Ly (oq, p); j i.e.
we perform an internal iteration for the first layer. Then we carry out the internal iteration
for the second layer with fixed L;(o1,p)i,,j, and solve La(o2,p); ;. This procedure continues
until condition is satisfied, at which point the outer iteration ends.

Let us briefly dwell on the issue of convergence of the Peaceman—Rachford method [13].
Matrices A; and As are symmetric and negative — definite and have a common complete
orthonormal system of eigenvectors

2sin(imghy ) sin(inlh); k=1,N; —1; [ =1,Ny — 1.

The eigenvalues of the operator A; and Ay are (\)4, = —izsin’ (m), (Aj)a, =

h? 2
—Lsin? (Z2) 1 <i< N —1,1<j< N, — L.

h3

In the case of a tridiagonal matrix, excluding p**1/2

, We can write
(E — (,UAl)(E — WAQ)pk+1 = (E + wAl)(E + (A}A2>pk,

Hence p**! = (E — wAy) " YE — wA)) " (E + wA;)(E + wAs)p®. Tt is known that the
eigenvalues of the transition operator are taken

B = (E — WAl)(E — CL)AQ)(E + CUAl)(E + CL)AQ)

equal
Ou)s — W) L+ wX)a,
’ L—wN)a, 1T—w)a

Since (Ai)a, < 0, (A\j)a, <0, then (\;j)p < 1 and w > 0 for any w > 0. Therefore, the
Peaceman-Rachford method converges.

If the internal iteration associated with the Peaceman-Reckford method converges, then
obviously the external iteration also converges.

In this method, the question of the optimal choice of w is a complex issue that is not
resolved in all cases. You can proceed as follows: for the first N-1 iterations put |14}/15]

B 1
Wk4+1 = ()\1')A1’

Then (\;;)p, 1 <i < N; —1 from will vanish. If at the same time the inequality

(34)

k:O,N1—2.

max - |piyt - pi] <€
1<i< N -1
1<j<Ny—1
then w is then chosen to be equal to
1
wpy=—————, k=N —1,Ny,...,Ny + Ny — 3.

(Ak—NH-Q)Az

R* will be a value of the order of e~ ?~*. The value vy characterizes the quality of the
iterative method. As is known, for the simplest iteration process P! = P* + a(Au* — h2f)
under certain restrictions on a we have vy = 1/N2.



K. Imanberdiyev, A. Karimov 101

Conclusion

The solution of the problem @f@ was carried out with the following parameters. On the
contour of the layers, the same pressure was maintained at 15 MPa, the fluid flow rate from
the two layers was 80 t/day, the thickness of the layers was 10 m, 15 m, and the thickness of
the impermeable interlayer bridge was 0.5 m, the fluid viscosity was 4 Sp, the permeability’s
were different 0.3 D, 0.5 D. The results obtained by finite difference method were compared
with the exact solution. In the filtration area of the radius of influence of the well, the error
averaged 0.1 per cent. However, this error did not exceed 0.05 per cent when approaching the
reservoir contour, i.e. it decreased. For }l area they obtained solutions by formulas f
are shown in Figures 1 and 2. The same pressure of 14 MPa was maintained at the contour
of the two layers, and the well radius was 12 cm. Here, the isobaric surfaces of the pressure
field P(x,y) differ by 0.7 MPa. In Figure 4, the isobaric surfaces are obtained with a contour
pressure of 13 MPa. Naturally, when the contour pressure decreases, the concentric surfaces
occupy less area.

P

1389
139.8
1387
1386
1385
1394
1383
139.2
= 4P 1381

@
R (v

13849
138.8
138,7
138.6
1385
1384
138.3
1382
1381

Figure 3. Pressure field for the first.
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Figure 4. Pressure field for the second layer with permeability of 0.5 D.
Layer with permeability of 0.3 D. The contour pressure is 14 MPa.
The contour pressure is 14 MPa.
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Figure 5. Pressure field for the first layer with a permeability of 0.5 D.
Pressure on the contour is 13 MPa.

Joint development of several formations with one well can be cost-effective, especially
for low-productivity formations that cannot be exploited separately because they are not
economically feasible. The results obtained with the analytical method show the correctness
and high accuracy of the numerical finite difference method.
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RECOVERING A SURFACE IN ISOTROPIC SPACE USING DUAL
MAPPING ACCORDING TO CURVATURE INVARIANTS

The problem of recovering a surface according to its curvature is one of the fundamental problems
of differential geometry. Problems of recovering surfaces in various spaces by their total or mean
curvature have been widely studied in many works.Recovering of a surface by its total curvature
is equivalent to solving the Monge-Ampere equation of elliptic type; such problems are solved
in special cases. When the right part is given concretely. The Monge-Ampere equation is solved
using a dual mapping of isotropic space, in which the dual surface is a transfer surface. Also, some
special cases are used to find the surface equation.The connection between dual mean curvature
and amalgamatic curvature is studied.The equivalence of the problem of recovering by dual mean
and amalgamatic curvature is shown. In particular, the problem of recovering surfaces with total
negative constant curvature, the mean curvature of which is a function of one variable, is solved.
Furthermore, the problems of the recovering surfaces are solved according to their dual mean
curvature, amalgamatic and Casorati curvatures.

Key words: isotropic space, Monge-Ampere equation, dual mapping, amalgamatic curvature,
Casorati curvature.

A. Apreixbaes, II.III. Uemounmor™, I"H. Xoamypoosa
TamkenT MeMiteKeTTIK KOJIiK yHUBepcuTeTi, Tamkent, O30ekcTan
*e-mail: sh.ismoilov@nuu.uz
KucbIKThIK M”HBapUAHTTAPHI OOMBIHITIA AyaJib OeiiHesiey/li KOJIJaHy apKbLJIbI U30TPOIITHIK,
KeHicTikTe OeTTi KaJIbIHa KeJITipy

Berkeiii OHBIH KUCBHIFBIHA Kapall KaJjllblHA KeJTipy Moceseci — auddepeHnuaIblK, reoMeT-
pUSIaFbl HEri3rm MiHAeTTepAiH Oipi OoJbIll TabBLIAABL.OPTYPJl KeHicTikTepae OerTkeitepi
TOJIBIK, HEMECE OpTallla KUCHLIFbIHA Kapall KAJIbIHA KeJITIPy Mocesaeepi KOITereH eHOEKTepIe
KEHiHEH 3epTTe/IreH. BeTKeilli OHbIH TOJIBIK, KMCBHIFbIHA Kapall KaalubiHa KeJaTipy MoHK- AMuepis,
JUTUITUKAJIBIK TUTITEr TeHIeyiH memntyre TeH. MyHait ecentep Keibip »KeKeJiereH Karaaiaap/ia,
OH, KakK, 6eJIiri HaKThl OepiireH Kesze mernijired. MoHk—AMIep TeHeyl M30TPONTH KeHICTIKTerl
IyaJibJbl OeliHe ey apKbLIbI IIEIIIe i, MYHIa J1yasibiabl OeTkeil Oy kemry GeTkeiil OOJIbIT TaObI-
nagpl. Commaiiak GeTkeil Temmeyin Taby VIIiH Keibip Keke Karmaiiaap KOoamaHbLIraH./lyasrbabt
opTalia KUCHIFBIMEH KOHEe aMaJIbraMaJiblK KUCHIFBIMEH OaiiaHbic 3eprTesred. Jlyaabanl opraria
KHACHIK TI€H aMaJblaMaJbIK KHCHIK OOWBIHINA KAJIMbIHA KEeJITIPy MOCeJIeCiHiH SKBUBAJIEHTTLIIT
KepceTiired. Aran afiTKaHIa, TOJBIK TEPiC TYPaKThl KUCHLIKKA Me OeTKeMIep/i, oJapablH OpTala
KHCBHIFBI OIp aiffHbIMAJIBIFA, TOYe i OOJIFaH XKarmaiia, KaJmmbiHa KeJaTipy ecebdi mermiaren. CoHbIMEH
KaTap, OeTKeilyiep/ii Jyasbibl OpTallla KUCHIFBIHA, aMajblaMaJjblK, koHe Kacoparum KuCHIFBIHA
colfKec KAJIIIBIHA KeJITIpY ecenTepi Jie KapacThIPhLIFaH.

Tyitia cesmep: Msorpontsr kenicrik, Momxk—Amuep Tenueyi, ayajib OeliHeley, aMajbraMaTUK
KUCBHIKTBHIK, KacopaTru KUCHIKTHIFHI.
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TamkeHTCKUil TOCYIAPCTBEHHbBIN TPAHCIOPTHBIN yHUBEPCUTET, TaIKeHT, ¥Y30eKucTaH
*e-mail: sh.ismoilov@nuu.uz
BoccraHoBseHNE TIOBEPXHOCTU B M30TPOITHOM MPOCTPAHCTBE C UCIOJIb30BAHUEM BONCTBEHHOTO
0TOGparkeHNsl TI0 MHBAPUAHTAM KPUBU3HBI

© 2025 Al-Farabi Kazakh National University


https://orcid.org/0000-0001-6228-8749
https://orcid.org/0000-0002-4338-3852
https://orcid.org/0009-0000-8131-8405

A. Artykbaev et. al. 105

SBajiaua BOCCTAHOBJIEHUSI IIOBEPXHOCTHU 110 €€ KPUBU3HE SIBJISIETCs OJ[HOM M3 OCHOBHBIX 3aJ1a4 -
depeHnnaIbHOM TeoMeTprr. 38191 BOCCTAHOBJIEHUS [IOBEPXHOCTEN B PA3JINYHBIX ITPOCTPAHCTBAX
10 UX IOJIHON WJIM CpeJiHell KPMBU3HE IMIMPOKO M3YYaJMCh BO MHOrHX paborax. BoccranoBsenme
[TOBEPXHOCTH TI0 €€ TIOJTHONU KPUBU3HE SKBUBAJIEHTHO peIleHnio ypasHenust MoHKa- AMiiepa 3J11ut-
THUYECKOI'0 THUIIa, TaKHUe 3a/la9i pellleHa B YaCTHBIX CIydasx, KOorJia IIpaBasd 4acT JlaHa KOHKPETHO.
VYpasuenue MomxKa-AMilepa pelaercss ¢ IIOMOINBIO JIBOWCTBEHHOI'O OTOOpParKeHUsi M30TPOIIHOIO
IIPOCTPAHCTBA, B KOTOPOM JIBOHCTBEHHAS IIOBEPXHOCTH SABJISIETCS TTOBEPXHOCTBIO TTepeHoca. Takxke
JIJISI HAXOXKJIeHUE YPABHEHUIO TIOBEPXHOCTHU UCIIOJIB30BaHa HEKOTOPhIE YacTHBIE ciiydae. 3ydaercs
CBA3b MEXKJy JyaJIbHOW CpefqHell KPUBU3HON W aMajbraMaTHdecKoil kKpususHoi. Ilokazama
9KBUBAJIEHTHOCTDb 33/1a4ld BOCCTAHOBJIEHUS IIO JIBOHCTBEHHOMY CpeJlHeMy U aMaJjblaMaTHieCKOn
KpuBu3He. B yacTHOCTH, pelena 3a/7a1a BOCCTAHOBJIEHUs IIOBEPXHOCTEH C TIOJTHOM OTPHUIIATETHHOM
[TIOCTOSIHHOW KPUBU3HOMN, CpeJHsisi KPUBU3HA KOTOPBIX SBJISIETCH (DYHKIMEH OHON IIepeMeHHOA.
Kpome Toro, 3ajadm BOCCTAHOBJIEHUsI MTOBEPXHOCTEH PENIAIOTCsT B COOTBETCTBUU C WX JIBOMHOM
cpeJiHell KpUBU3HOMU, amMaJbraMaTndeckoil nu kpusuanoit Kacoparn.

Kurouesbie ciioBa: I13orponHoe npocrpancTso, ypasHerune Momxka-Amuepa, JyajabHOe 0Tobpa-
JKeHre, aMaJiblraMaThHiecKasi KpuBU3Ha, KpuBn3Ha Kacoparu.

1 Introduction

K.Strubecker studied the basic concepts related to isotropic geometry [1,2|. Currently, many
mathematicians are conducting scientific research on isotropic space. M.E. Aydin studied the
types of transfer surfaces by a given constant curvature in isotropic space [3,4]. Z.M. Sipus
found equations of transfer surfaces by a given constant Gaussian and mean curvature in
3-dimensional isotropic space.Also she studied transfer Wiengarten surfaces in this space [5].
M.Karacan ,B.Bukcu, D.Yoon and N.Yuksel investigated transfer and ruled surfaces satisfying
6,/7]:
AJQJi = )\zxz

A.Cakmak, S.Kiziltug, M.Karacan found dual surface for the surface z = f(u)+g(v) satisfying
the condition
Azt = N\

in 3-dimensional isotropic space. Besides that they solved the recovering problem of the
transfer dual surface by given non-zero total and mean curvatures [8]. Several mathematicians
solved the Monge-Ampere equation for transfer surfaces in some special cases. In the article
[9], M.S.Lone,M.K.Karacan solved the problem of recovering a given dual transfer surface
with total curvature being constant. Sh. Ismoilov solved this problem by given total curvature
being the product of two functions with separate variables |10]. Moreover, in the article of
A.Artykbaev and Sh. Ismoilov [11,|12], the connection of total curvatures between the given
surface and dual surface is proved. In Euclidean space, A.D.Alexandrov solved the problem
of existence and uniqueness of a surface by a given external curvature [13]. I.Y.Bakelman
presented a solution to the Dirichlet problem for the elliptic Monge-Ampere equation related
to this geometric problem [14].

In addition to the problem of recovering a surface from its total curvature, one of the
important problems of differential geometry is also the problem of recovering it from its
mean curvature. In many works, the problem of recovering a surface by its total or mean
curvature was solved in different special cases. However, in addition to these geometric
characteristics, the problem of surface recovering can be considered by other curvature
invariants. In surface theory, there are the amalgamatic and Casorati curvatures, which are
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associated with principal normal curvatures that differ from the total and mean curvatures.
Amalgamatic curvature in Euclidean space was studied by Suceava and a calculation formula
was found [15]. Decu and Verstraelen investigated isotropic Casorati curvature |16]. The
problem of recovering a surface in isotropic space by amalgamatic and Casorati curvatures
was solved, where these curvatures are equal to zero and constant for surfaces with a total
curvature of —1 [17]. In this work, we find the surface equation by solving the Monge-Ampere
equation, in the case of that the dual surface is a transfer surface. Also, by studying the
connection between the amalgamatic curvature of a surface and the mean curvature of its
dual surface, we find the equation of the surface for surfaces with total curvature of —1 in
isotropic space, where the mean curvature is a differentiable function of one variable.

2 Preliminaries

2.1 Geometry of isotropic space and duality

Let there be given an affine space Az with the coordinate system Oxyz. We consider
X A{x1,y1,21} and Y {xg, y2, 22} vectors in Aj.

Definition 1 If the scalar product of the two wvectors X{xl,yl,zl} and ?{IQ,yQ,ZQ} 18
defined by the following formula:

{(X, V), =mr+yiy: if (X,Y), #0
(X,Y), =212 if (X,Y);=0

then, the affine space As is the isotropic space and denoted by R3.

Two types of spheres are defined in isotropic space [1§|. The first is the metric sphere, which
is given by the following formula:

22 4y = (1)

where (0,0, z) is the center, r is radius.
The second sphere in isotropic space is defined as follows |18§]:

v+ =22 (2)

It is called the isotropic sphere. Consider a plane II in this space. Let this plane not be
parallel to the axis Oz. The section of this sphere by the plane II, forms a closed curve .This
curve is an ellipse and denote it by 7 [11]. Pass tangent planes to the isotropic sphere
through the points P € . We denote the set of these planes to points ® by {IT}. We get the
following;:

Theorem 1 All planes belonging to the set {I1} intersect at one point (11].

If the plane Il is as follows:
z = Aox + Boy + Cy (3)

then the intersection point of these planes belonging to the set {II} is (Ag, By, —Cp).
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Definition 2 The point (Ao, By, —Cy) is a dual point to the plane (3) with respect to the
isotropic sphere in the isotropic space [11).

Let there be given a plane z = T. And 7 be the section of this plane on the isotropic sphere.
Consider a surface ® that is given by the following:

®:{z=f(z,y)l (x,y) € D} (4)

And the curve 7 be the boundary of the surface . The surface (4)) is convex and it is located
inside the part of the isotropic sphere bounded by the plane.

Let us pass a tangent plane IIp to the given surface ® at a point P (xo, 3o, 20). Let us
denote by P* the dual image of the tangent plane IIp with respect to the isotropic sphere
. If the given point P € ® changes on the surface ®, the dual image of this point forms a
surface ®*.

Definition 3 The surface ®* is called the dual surface to the given surface ® in the isotropic
space. If ® has the following form, i.e.:

2= f(z,y)
then the parametric equations for the dual surface ®* are:
. (u7 U) = fu, (u7 U)

*(u,0) = £ (u,0) (5)
* (U,U) =u- fu/(uav) +v- fv/ (U,U) - f(uvv)

The above equation is the dual mapping in isotropic space [10]. Following connection is
valid between the total curvatures for the given surface ® and its dual surface ®*

ST

Theorem 2 For the product of total curvatures K and K*, the following holds [11):

K-K*=1 (6)
From this, the total curvature K* is equal to the following:
1
K= — 7
N (7)

The following equality holds for the mean curvature of a given surface and the mean curvature
of its dual surface:

H
H = — 8
= 0
The question "Can the result obtained from the problem solved for the dual surface be applied
to the ® surface?"is considered important. If we apply a dual mapping to the dual surface
again, then we have the following theorem that the dual image of a dual surface is equal to

the given surface, that is:

Theorem 3 The dual image of the dual surface ®* coincides with the given surface ® [19):
o =0 (9)
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2.2 Transfer surfaces

M.E.Aydin classified transfer surfaces and found equations for these surfaces in the case that
their total and mean curvatures are constant [3]. M.S.Lone, M.K.Karacan found a dual surface
by a given constant total and mean curvatures of this surface |9]. Sh.Sh.Ismoilov solved in
the case that the total curvature for the transfer surface is the product of two functions with
separate variables for this class [12]. In general, the vector equation of the transfer surface
can be expressed as the sum of two isotropic planar curves in isotropic space:

7 (u,v) =p(u)+ 7 (v)

where, p (u) and @ (v) are the vector forms of these curves. The surface is one-valued projected
onto the Oxy plane. Let this surface not be parallel to the axis Oz in the isotropic space,
then we obtain the following:

7 (u,v) = ui+vj+ (f(u) + g(v)) k
where, p (u) = (u,0, f(u)) and 7 (v) = (0, v, g(v)).

3 Solving the Monge-Ampere equation by using duality
The Monge-Ampere equation is generally as follows:

ZazZyy — ziy = p(2,Y, 2, 2, 2y) (10)

where the function ¢(x,y, 2, 2, 2,)— is the given function. In this paper, for
Raxlyy — Ziy = (22, ) (11)
we will find the solution. If a regular surface is given by the following form
z=z(z,y), (x,y) € D C Ry

in the isotropic space R, then the total curvature of this surface is expressed by the following
formula:

Zuatyy — 20y = K (12)

Where, K is the total curvature for the surface, the left side of the formula is the Monge-
Ampere operator. The problem of recovering the surface is equivalent to solve the Monge-

Ampere equation in isotropic space [3]. Equation (|11)) can be solved for transfer surfaces if
the dual mapping of isotropic space is used.

Theorem 4 In the isotropic space, the Monge-Ampere equation is in the form , and the

function on the right side can be written in the form p(zy, z,) = m, then the general

solution of the transfer surface is equal to:

r,y) = - (df) +y- iy (rdy) - / zd (wﬁ (CZT—“T)) - / yd (" (rdy)) (13)

where, T— is const. zy, z, are first-order derivatives of z(x,y).
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Proof of the Theorem 4. Let us assume that the regular surface ® be given by the
z=z(z,y), (x,y) €D C Ry
in the space R2. The Monge-Ampere equation for this surface is as follows:
Raxlyy — Z?cy = (22, 2y)

Let the function on the right side be given in the form ¢(z;,z2,) = 7 We write

1
_ = GG
the Monge-Ampere equation of the dual surface respect to the given surface using a dual

mapping of the isotropic space, that is:

2 1
233 x Zy Yy (Zm Yy ) S0<l.*’y*> ( )
where, the dual mapping is as follows:
Tt =z,
Y=z, (15)

=Tzt Y 2y — 2

We solve the Monge-Ampere equation by the given formula for transfer surfaces for the
case where the total curvature of these surfaces is a product of two separate variable functions.
The vector form of the transfer surface is as follows:

Tt y) =iy (f (@) g () k
If we put it in the formula , we obtain the following:
fa:*x* : gy*y* = % (ilf*> ¢2 (y*)

From this,
Y1 (%) y*y*

T— const.
The above equations are second-order differential equations. By solving these differential
equations, we recover the given dual transfer surface according to its given total curvature.

fcc*:c* —
Ve =7

.f:c*a:*
Y (%)

Integrating again, we get the following:

=T :>faz*a:*:7—'1/}1(x*> éfx*:T/wl(x*)dx*
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=/ E/wz (y*)dy*}dy*

From this, we obtain the following equation for the transfer surface:

" : 2 (2% y) = f(a7)+g(y) /{ /wl dx]dx +/E/wz(y*)dy*]dy* (16)

If we apply the dual mapping (b)) for the points of the surface ®*, we get the following:

From this,

T = 2.

wk ok

Y Sy
*k ok * *
M=ot 2yt Zyr — Z

The parametric equations of the surface ®** are as follows:

o =71 [y (2¥) da*
y* =1 [y (y*) dy*
=gt [ (@) dat +yt L [ (yh)dyt = [ 7 [ (@) dat] dat = [ [1 [ e (y7) dy*]dy
(17)

Finding the following expressions from the first and second equalities of the system ({17
above,

o= ()

v = 3" (rdy)
if we put it in the third equation, we get the following equation of the surface ®**, i.e

R (dx**)—f—y**'%_l(Tdy**)— / x**d<@/)f1 (dﬁ)) [ ray)

(18)

From the Theorem 3 above, the following holds for this surface:
O =@ (19)

From this, the surface equation @ is also calculated according to the formula and we get
the following for this surface:

o) =o vt (F) e vgt ) - [ (o (F)) = [va (05 ()

The theorem is completely proved.

Theorem 5 For the special case of the Monge-Ampere equation

ZuzZyy — ziy = 2, (20)

there is a solution in the family of transfer surfaces and it is as follows:
z—Cq

z(x,y) = gy ~Cypy+pe # +C

Where, p, Cy, Cy, C— const.
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Proof of the Theorem 5. Let there be given a regular surface ® and its equation is z =
2(z,y), (z,y) € D C Ry. Assume that this surface satisfies the special case of the Monge-
Ampere equation . We find the dual surface for the given surface by dual mapping :

* * * 2 ].
il ) e (21)
T
The vector form of the transfer surface ®* is as follows:
F(gj*’y*) — a:*?—i— y*j_‘_ (f (37*) + g (y*))%
FYOHI thls’ fm*z* . gy*y* — L

= fyepe - ¥ = —1— = §1. pu—const.

Jy*y*

fac*ac* i~ :fz*::uln|x*|+01
We obtain the following:
f@)=p-2"(In|z*| — 1) + C1a™ + Cs

1
2) = H 1
y*
y*y* :; = Gy :;4—02
From this: )
g (") = ) Oy 1 O
2
2
Fr: 2@y )=f@)+gW)=p -2 (In|z*| - 1)+ Ciz* + Cs + (yzlu) + Coy* +Cy =
o * * * (y*)2 *
=Uu-x (hl’l" |—1)—|—Cll‘ +W+ng +C

where, C5 + Cy = C'— const. If we also apply dual mapping for the transfer surface ®*, the

following is valid:
z**_cl
e =p-Injz*|+C, =>at=e =
=040 =yt =ply” - G)

koK

z :.CE*'CL'**—FZ/*'y**—Z*

sk [ kk kk 20y B ok 1%
Sy = e T+ ST = Gy + D03 = C (22)

According to the Theorem 3 above:

From this, there exists a solution to the equation and we get the following by simplifying
the constant numbers:

Koo =
2(@,y) =5y = Co-py +pe v +C (23)

Theorem is proved.
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4 Amalgamatic and Casorati curvatures in the isotropic space

For investigating of the theory of surfaces, studying the connection between their total and
mean curvatures is important in solving many geometric problems. We know that in surface
theory, the problems of recovering surfaces with respect to their total curvature K and mean
curvature H were studied in many works [3-5,19,/10,/12]. In addition these characteristics,
studying the %, % ratios also reveals some new features of the geometry of surfaces. The
original idea can be found in the works of Weingarten |20}21]. This ratio % was later called
amalgamatic curvature. The amalgamatic curvature of the surface and the information about
it are given by B. Suceava [22|. The aim of studying amalgamatic curvature is to study
surfaces by analogue the ratio 7 of the torsion to the curvature of curves in higher-dimensional
geometric objects.

Now let us define amalgamatic curvature:

Definition 4 Let £ : G C R? — R2 be a surface given by the smooth mapping &. Then the
amalgamatic curvature at point p 1s:

_ 2kiky
kit ke

To study surfaces through a certain connection between the total curvature K and the mean
curvature H, the concept of Casorati curvature is presented in the following works [15,16},23],
24|. This curvature was introduced by Feliz Casorati in 1890 and is defined as follows [23]:

R+ k3

¢ 2

In isotropic space, the amalgamatic and Casorati curvatures of a surface are respectively as
follows [17]:

kit k H 2
Where, ki, ko— are principal curvatures. We know that the mean curvature of the dual
surface to the given surface is determined by [10]. The problems of surface recovering
using the dual mean curvature are discussed in detail by the authors in the following works
[8H10]. As can be seen from the formula for finding the amalgamatic curvature, it is inversely
proportional to the dual mean curvature. So, from this, we can conclude that the problem
of recovering a surface according to its amalgamatic curvature is equivalent to the problem
of recovering the surface according to its dual mean curvature. The solutions to all problems
when H* = x (u,v) are also the solutions to the problem of recovering a surface according to
amalgamatic curvature. From this, the following theorem holds:

2k k K k2 + k2
K2 021"‘ 2 _of? _ K

Theorem 6 The following connection holds for the amalgamatic curvature of a given surface
and the mean curvature of the its dual surface:

A:

— (24)
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Proof of the Theorem 6. We are given a surface F' and its dual surface F*. The amalgamatic
curvature of the surface I is as follows:

K
A=—
H
For the mean curvature of the surface F™*:
g
K

From this, equality follows. The isotropic Casorati curvature of a dual surface to the
given surface is equal to:

2
S ()

From this,

C

¢ =k

(25)

Thus, this equality shows the connection between the Casorati curvatures of a surface and
its dual surface.

5 Recovering surfaces with constant negative curvature according to their
curvature invariants

Now we will present some properties of the curvatures of surfaces with a given negative
curvature in isotropic space: Let the surface F' be given as:

r(u,v) = (ry (u,v),re (u,v),rs (u,v))

In this,

Let the condition

Mg = f'a’ #0 (26)
be fulfilled and f;, g; € C?, i=1,2, also
fl/ f2/ T3u f1/ le T3u

g g 1| =0 |g" g 13 |=0 (27)
le fQH T3uu 91” 92” 30w

If conditions are valid, then the parametric curves will be asymptotic. From conditions
and (27), the functions a (u,v) and b (u,v) are found one-valued through the r3 (u,v)

raw = afi’ +bfs rs, =ag’ + 09" Tz =afi" + 02" 130 =an” + bg" (28)
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From solving equations , Ayy = by = 0 is valid. From this, a = ay (u) + 1 (v), b
ag (u) + B2 (v) are found. From the previous equation, for arbitrary functions oy, 8;, @ =1
we get:

2,

a'fi' o' fy' =0 Bilg) + Ba'ga’ =0
From this,
o’ =\ (u) o' ==X (u) fil B =96 (v) g2 Bl =0 (v) g1
Then,
rsw =0 (V) (g2 fi — 91" f2)  Tsou = A () (91" fo' — 92" 1)
If, we get A (u) = —0 (v) = const. = Ky

a=ry(fa—g2) + Koy b= —k1(fi —g1)+ ks

As a result, from these expressions
r3u = k1 (fi' fo — [ufo)) + k1 (f'gr — fi'g2) + ko fi' + Kafo

T3 = K1 (92'91 — g2g1") + K1 (91" f2 — 92" f1) + Kagi” + K3go'
T3uww = T3uu 1S valid. By integrating, we obtain:

r3 (u,v) = Ky {(f2/91 — fi'ge) + / (fi'fo— fifo) du+ / (92’91 — 9291") dv}*l-/’fz (f1 + 91)+ks (f2 + g2)+Ka
So, if k1 =1, Ky = k3 = kg = 0, the surface equation is:
r(u,v) = <f1 + 91, fo + g2, (fag1 — f192) + / (fi' fo= fufd) du + / (92'91 — 9291") dU) (29)

In equation ([29)),isotropic total and mean curvatures of the surface are as follows [17]:

A+ flg

f=-t = o' = fi'gd! (30)
Let the following conditions be satisfied in equality , that is:

hi=u fo=f g=v g=4¢ (31)
In this case, the equation of the surface is:

r(uv)=(u+v,f +4,2(f—g)+ v—u) (f+7)) (32)

By calculating the fundamental forms of this surface, the isotropic total, mean, Casorati, and
amalgamatic curvatures are as follows:

1 "o 21 "o1\2 inoorn
K=-1 H:%fgg// C=1+ Ef/;'__fgg)Q) A:1g+f/{.g//
From here, for the total and mean curvatures of the dual surface:
1 " 1
K= _1 H = 1+ 179"
"o f//

Now, let us consider the problem of recovering surfaces with total curvature —1 according to
their different curvature invariants:
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5.1 The problem of recovering the surface by the mean curvature

If H= ¢y (u)or H= ¢y (v) is an arbitrary continuously differentiable function, we consider
the problem of recovering of the surface given by formula by the mean curvature. In this

case, by simplifying the equation lfJ,r,f_l Igg,i/ = ¢ (u), we get:
f,/¢1 (u) —1 "
—————— =g =1 1 =const
[+ ¢1 (u)

We get two ordinary differential equations with separate variables. Solving these equations,
we find the following:

{ fw=[ [f —1;;’(71‘?)18:7) du} du + cou + ¢, (33)
g ) = Z712’—2—|—d0v—|—dl

Even if H = ¢ (v), by using the same method we obtain the following expressions:

f(u):%%—cou%—cl
{ g(v) )

—_ ¢2(v)—1
—f|: %dv}dv—i—dov%—dl

Theorem 7 If the parameterization of the surface F' is defined by formula and the mean
curvature is given by H = ¢1 (u) or H = ¢o (v) arbitrary continuous differentiable functions,
then the functions f (u) and g (v) are found by expressions (33)) and (34)), respectively.

5.2 Problems of surface recovering from amalgamatic curvature and dual mean
curvature

The amalgamatic curvature of a surface F' with total curvature —1 is:

1
A= _—— 35
H (35)
and for the mean curvature of the dual surface F* is:
1
H'=—=—-H 36
; (36)

Therefore, it can be concluded that if the mean curvature of the surface F' is given by the
arbitrary continuous differentiable functions in Theorem 7, then from formulas and
we will have solved the problems of recovering surface by the amalgamatic curvature and by
the mean curvature of the its dual surface.

5.3 The problem of recovering the surface according to the Casorati curvature

For the Casorati curvature of the surface given by ,

2(1 + f//g//)Q

C=1+
(f" —g")?

(37)



116 Recovering a surface in isotropic space using dual mapping . ..

is valid. If the Casorati curvature is given by positive continuous differentiable functions
C' = 0, (u) or C = 6y (v), then for the functions f(u) and g (v) of the surface given by
equation (32), we find the following equalities: In the case C' = 6, (u), 6; (u) > 1

/01 (u)—1
f (u) — f |:f 1+7;1(1;)_12n du:| du + cou + ¢

g('U):nTvQ—{—do’U—Fdl

f(u) = T~ + cou + ¢
n 92(1;)*1_1
g (U) - f f 92(1))—1+n dv d/U + dov + dl

Corollary 1 The following equality holds for the Casorati curvatures of a surface with total

curvature —1 and its dual surface:
cr=C

Because, from equality , the problem of reconstructing surfaces with total curvature —1
according to the Casorati curvature is equivalent to the problem of recovering its dual surface
by this curvature.

6 Conclusion

In this paper, in the first part of the main results, the application of the dual mapping
of isotropic space to the theory of surfaces makes it possible to solve the Monge-Ampere
equation in a special case. We know that this equation has applications in various fields.
Namely, in the theory of surfaces in differential geometry, the recovering of a surface according
to its total curvature coincides with the solution of this equation. Moreover, the problems of
recovering surfaces according to other curvature invariants are also important in the study of
surfaces. Therefore, in the second part of the results obtained in this work, problems of surface
recovering from curvature invariants are considered. In addition to mathematical problems,
in physics the connection between the Hamiltonian and Lagrange functions is studied using
the dual mapping mentioned above. Putting the energy to the Lagrangian function can be
used to solve extremal problems [25].

The problems solved in the article are a generalization of the problems considered in the
works of M.E.Aydin [3], M. S. Lone and M. K. Karasen 9], A. Artikbaev and Sh. Ismoilov |10].
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ON A SUBSET OF BAZILEVIC FUNCTIONS IDENTIFIED BY THE
THREE-LEAF FUNCTION, MILLER-ROSS FUNCTION, AND
MULTIPLIER OPERATORS

A significant portion of the collection of analytic-univalent functions of the type

o0

hO)=C+ D an"

n=rm-+1

whose definition is found in the unit disk
Q:={z:]7| <1},

is investigated in this work. Several subsets of the well-known set of Bazilevi¢ functions are
included in this new set. The new set and its findings are developed using the Miller-Ross
function, the Schwarz function, some multiplier operators, and some mathematical ideas such
as subordination, set theory, infinite series generation, and convolution of some geometric
expressions. Among the main achievements are the estimates for the coefficient bounds and the
Fekete-Szegd functional. Generally speaking, the new set reduces to a number of known subsets
with some supposedly unique results when some parameters are altered inside their declaration
intervals.

Key words: analytic function, Miller-Ross function, Schwarz function, Bazilevi¢ function,
multiplier operator, three-leaf-type function.

N.A. Oekan 1", A.O. Jlacoze 2, O.M. Bagemxko!
!Quyceryna Arary FRIILIM »KoHE TexHosorus yausepenteri, Oxkurunymna, Hurepus
2®emepannapk 6imiv 6epy Komaemxki, nase-Dxutn, Hurepmsa
*e-mail: ea.oyekan@oaustech.edu.ng, shalomfa@yahoo.com
neHreiuti dynknms, Muanep-Pocc dyHKIuschbI XKoHe KOOENTKINT onmepaTropJsjiapbl apKbLJIbI
aHbIKTaJIFaH Ba3zuieBnd QyHKIINAJIAPBIHBIH, iIIKi >KUBIHBIHIA

Tunris aHaTUTUKAJIBIK, 61p MOHII (DYHKITUSJIAPBIH KUHAYIIBIH MAHbBI3IbI 06JTir

o0

hO)=C+ D an"

n=rm+1

OHBIH, aHbIKTaMaChI

O :={z:]z| <1},

OipJTiK JAUCKICiHIEe OCBhI KYMBICTa, 3epTTese . BazumeBud GyHKITUAIAPBIHBIH OT1 KUBIHBIHBIH,
OipHerlle iMKi »KUBIHIAPBI OChI »KAHA YKUBIHFa eHrisiireH. 2KaHa »KUbIH »KOHE OHBIH, HOTHUXKeJepi
Muutep-Pocc dyuknumsicoin, [IBapir hyHKIMsICHIH, KeIOIp KOOEHTKIIIT OrtepaTopJiapabl XKoHe Darbl-
HY, »KUBIH TEOPUSCHI, IMEKCI3 KaTapap/Ibl T€HEPAINsIAY KOHE Keibip reoMeTpHUsJIbIK, O©DHEKTEeP/ I
affHAJIIBIPY CUSKTHI KeH0Ip MaTeMaTHUKAJbIK, UIesJIap/Ibl maiiasana OTeIphin 93ipiaenai. Herisri
KeTicTiKTepaiH, Karapbiaia Kosdduiuenrrep MeH Pekere-Cero yHKIMOHAJIBIH OailjIaHBICTHI-
pbuIFaH Oarajaysiap 6ap.
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2Kaumer aiiTkaH 8, XKaHa XKUBIH KeHOIp napaMeTpJiep Kapusijiay apajbIKTapblHIa 93repreH Kesjie
Keibip 6okaMabl Gipereit HoTmKeaepi 6ap Gerii imKi »KUBIHIAp CaHbIHA JEHiH a3asiIbl.
Tvyiiia cesmep: anasmrukaiabik, Gyukims, Mumtep-Pocc dyukruscer, [Bapr dyrkmuscer, Ba-
crJIeBUY (PYHKITUSCHI, KOOEHTY OmepaTophl, YIII BAJEHTTI (DYHKIINA, KOCBLITY MOIEJI.

.A. Oekau'”, A.O. Jlacone?, O.M. Bazemxo!
'Yuusepcurera nayku u Texsosoruit Ouyceryna Arary, Oxurumnyna, Hurepus
2@enepanbHbIil KOJLTEIK obpasosanus, Mnase-dxkutu, Hurepus
*e-mail: ea.oyekan@oaustech.edu.ng, shalomfa@yahoo.com
O noamuoxkecTBe dyHkIuit BazuineBuya, uaeHTUPUIIUPYEMbIX TpeXJieCTHOM dyHKITHIEl,
dyukimeit Munanepa-Pocca u onneparopaMu MHOXKUTeJIEH

3HauuTeIbHas YaACTh KOJUICKIIUU aHaJIUTUYICCKU-O/JHO3HAYHBIX beHKL[I/IIU/I THUIIa

oo

hO)=C+ > anl"

n=rm-+1

onpe/ie/ieHne KOTOPBIX HAXOJUTCA B €IUHIUIHOM KPyTe
Q:={z:]7] < 1},

nuccenayercs B 93Toit pabore. Heckonbko momMuOX)KeCcTB m3BecTHOrO Habopa dyHknnit basumesnaa
BKJIIOYEHBI B 3TOT HOBBINT Habop. HoBblit HabOp u ero pe3yabTraThl pa3padaThIBAIOTCA C UCIOJIb-
3oBanmeM dyuknun Musmepa-Pocca, dyuxkmnuu [1IBapiia, HEKOTOPBIX OMEPATOPOB MHOXKUTEIEH 1
HEKOTOPBIX MaTeMaTUYeCKUX UJIed, TAKUX KaK IOIIMHEHNe, TeOPHs MHOXKECTB, reHepaliusi 6eCcKo-
HEUYHBIX PsIJIOB U CBEPTKA HEKOTOPBIX N€OMETPUIECKUX Bhiparkennit. Cpesin OCHOBHBIX JIOCTUXKEHUH
— oreaku rpanur] koddduruentoB nu dyukimonans Pexere-Cero. Boobie roBopsi, HOBbIN HAOOD
CBOJIUTCH K Psi/ly U3BECTHBIX OIMHOXKECTB C HEKOTOPBIMU IPEIIOI0KUATEHHO YHIKAIBHBIMA Pe-
3yJIbTATAMU, KOTJ[@ HEKOTOPhIE [TapaMeTPbl U3MEHSIOTCS BHYTPH UX HHTEPBAJIOB OObSIBICHUSI.
KuaroueBble ciioBa: anajuTudeckas pynkius, dyakiusa Munnepa-Pocca, dynkmusa [Isapia,
dyuknus BazuieBnya, ornepaTop yMHOXKeHUsI, (PDYHKIIAST TPEXJIUCTHOTO THIIA.

1 Preliminary

In this study, the set of analytic functions of the series type

WO =C+ Y anl" ((€Q:={(eC: (| <1}). (1)

is represented by A. The nature of this function agrees with the fact that h(0) = 0 = A’(0)—1.
One of the fundamental principles in geometric function theory is the subordination principle.
The principle states that if we have two analytic functions h(¢) in and

H(C)=(+ ) bu(" (CeQ), (2)

then h is subordinate to H (usually expressed in notational h < H) if there is another analytic
function

d(¢) =) d(" €A ((€Q) (3)
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such that |d(¢)| < 1, d(0) = 0, and
B(Q) = Hd(Q) (C € Q).

Suppose H is also univalent in €2, then the definition improves to say that
h<H <= h(0)=H(0) and h(Q2) C H(Q).

The Hadamard product (or convolution) of two functions h in and H in is the
third analytic function declared as

(hxH)(Q) = (H*h)(Q) =2+ Y (an xb,)¢" (( €Q).

1.1 Bazilevi¢ Functions

An analytic functions of the integral type

1
z n+iy

b(z) = 4 (+ i) / p(r)s(r )=y (4)

0

such that n > 0, v have real value, s is a starlike function, and p € g are called Bazilevi¢ 2]
functions. This set was shown to be the ’largest’ subset of the set of univalent functions that
is currently known. Numerous scholars have examined different properties of the subsets of
the set of Bazilevi¢ functions by varying the parameters in ; for instance, see [8},9,/17,/18|.

Indeed, an important subset of analytic functions are Bazilevi¢ functions. These functions
have been thoroughly examined in a large body of research and are distinguished by their
geometric features. Olukoya and Oyekan’s work in [12] is noteworthy since it offers some
polynomial bounds for functions in the set of modified hyperbolic tangent functions. The
behavior of the various analytic functions in certain subsets of the Bazilevi¢ functions was
better understood as a result of these findings.

Another related study involved some results on Chebyshev polynomial bounds for sets
of analytic-univalent functions, presented in [14]. The work extends the understanding of
the geometric properties of Bazilevi¢ functions, shedding more light on their analytical
characteristics. Additionally, Oyekan and Awolere |15] explored the polynomial bounds for
bi-univalent functions associated with the probability of generalized distribution defined by
generalized polylogarithms via Chebyshev polynomial.

Gandhi [3] presented the analytic function

4 1
3UC) =1+ =0+ gc“ (5)

in 2020 called a ’three-leaf-type function’ and studied the analytical properties of a certain
set of starlike functions defined by the conditions
W(z)
h(z)

2 <3l(z) (CeQ)
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so that by using in , we get

3(d(0)) = 1+ 3a(Q) + £ (d(C))"

to give
3(d(C)) = 1+ 2diC + (gd - %d?) G (6)

1.2 Some Analytic Functions and Operators
In 1993, Miller and Ross |11} p. 88] introduced the special function

n

n+v (C

nzz(]rn+v+1 <C7/U7<€ )
This special function is famously called Miller-Ross function. The Miller-Rose function is
a generalization of many special functions, see [6]. The work of Eker and Ece |5, Eq. 2]

introduced the normalized form of E., defined by

C+Z T+ 1) (v>-1; ¢, €Q). (7)

v+n

For h € A of type (1)), the multiplier operator [fh ., that maps A to A and introduced by
Hameed et al. |7] was defined on h as

é
Hah© =+ 3 (ARG e e ®

for the parameters: 6 € No = NU {0}, 1 =2 1, and 0 < ¢ < ¢. More so, Oyekan [13]
investigated the operator D? that maps A to A by

=(+) L a ((eQ) (9)
where
san_1 _ (0+n—=1\ (+1)0+2)---(0+n—1) (6+1)n
a1 1) T W )

In 2023, Oyekan [13] modified function A € A and showcased the analytic function b €
A(r,m) as

o0

hO) =C+ D al" ((€Q) (11)

n=rm+1
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where r is fixed and r,m € N. Observe that if r =1 = m in , then h = h in and if
r =1 (or m = 1), then we will have the function studied by Hameed et al. [7]. Now in the
likes of , we have expressed in the form

_ = M T(w+1)
5C,U<C) - C + n;—’—l F(U + n) C )

the multiplier operator defined as

00 I — é
fo0-cr 3 (LRl o e

n=rm+1
and the multiplier operator @D modified as

DH) =C+ Y, LTl (€9

n=rm+1

where .,Z;H"_l is as defined by . Likewise, for b of the series type , Hameed et al. |7]
studied the operator R , that maps A(r,m) to A(r,m) and defined by

1+ (a+x)(—1)
1+e(l-1)

0o )
RS (C) = T B(ODB(C) = ¢+ 3 zﬁ”*( ) 0 (CEQ).

n=rm+1

Now, we declare the analytic function

TEH(C) = Een(Q) * RE, ,6(C)

e N (U § IS4 N (ST N (A D
:Hn:%:ﬂ F(U(Jrn) % ( 1(§+g2(gl)—(1> )> W (e f) 1)

where all parameters are as aforementioned.

2 A Set of Lemmas
Let the function d be as defined in , then the following lemmas hold for the main results.

Lemma 2.1 ( [4]) Let d € A, then |d,| = 1, Vn € N. Equality occurs for functions d(¢) =
e (9 € [0,2m)).

Lemma 2.2 ( [1]) Let d € A, then for complex number &,
|dy — &di| < max{1; [¢]}.

Equality holds for functions d(z) = ¢ or d(z) = (*.
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3 Main Results

3.1 A Novel Class of Analytic Functions
Definition 3.1 A function b € A(r,m) of the form belongs to the set Vo<° (30), if it

0,681,582
satisfies the subordination condition

(T3e0(0) (T3e0(¢)”
Cafl

where we declare the parameters: ¢, € Q, § € Ng, v > —1, 0 ¢ S ¢, and 0 £ 0 < 1, for
functions jg‘g;(g“) and 30(C) defined in and (), respectively.

This study aims to explore and analyze a subset of Bazilevi¢ functions characterized by
the Miller-Ross function and a certain multiplier operator in the space of a three-leaf function,
a nuanced area in geometric function theory. Some achieved results are the upper estimates
for |am+1], |aom+1], and |agmi1 — &aZ,, | functionals; see [9,[10L[12-14,/16] for some details on
bounds. Several (presumably) new results are reported as corollaries and remarks.

=< 3((C) (13)

3.2 Coefficient Estimates

Theorem 3.2 Let b € A(r,m) belong to the set V2¢¥_(3(). Then

551,52
2

5
T (v+1l) cpé+m [ 1+(s1+s2)(—1)
5(0 + m) F(v—&-m-i—l)"?% < 12@2—1) )

(14)

’am+1| g

and
1

5
mT(v+1) ps+2m [ 1+(si+s2)(1=1)
5(U+2m)r(y+2m+1)°§“ﬁ6 ( 12@2—1) >
4

6
2l (v+1 s+2m [ 1+(sit+s2)(1—1
25(c + m)(0 + 2m) frrfeth e (Laal(on)

do(m + 1)

1
c2mD(p+1 m 1 -1
25(0 + m)2(o + 2m) Sl ggm (Llutalh)
20(0c — 1)

§
2m (p4-1 m m [ 1 -1
25( + m)2(o + 2m) b AL e i (e n)

|a2m+1| §

+

+

. (15)

Proof. Since h € Vi‘éﬁQ (3¢), then by the principle of subordination, we can express (|13])
such that

(T252(0)) (T3er ()™
Cafl 5

1
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or in a simplified form

(550N
C (o (o)) (2249) "
T2 5

and

¢

Putting and into with some simplifications yields

rm 1
(C + (f,«m + 1)FC F(U + 1) 9%54—7‘7% (1 + (§1 + CQ) (l - 1)) arm+1€rm+1>

d,c,v 7
<u@$«W<Zﬁ49):=Q+§mo+§wxwﬂﬂﬁ$«»- (16

(v+rm+1) 1+l —1)
WA s (L+ (0 +9) (=D’
1 rm Tm
8 { +UF(zH—anr1)"% 1+6(—-1) Grm+16

o0 =1) AL+ s (1+ @ +2)(=D\* 5
2 [Hv+mn+nf£% ( 1+6(-1) ) brm416 *“”}

2 2 1
= (1 + gd1§+ [gdz - gd%KQ‘{“")

rm J
. (HFC D(v + 1) %M(H(m@ (l—l)) amﬂcmH)

(v+rm+1) 1+ql—-1)

Now, for r € {1,2,3,...} we have a simplified series

"I(v+1) m (14 (1 +c)(l—1) ’ m+1
ot m ) (P ) ™
AP+ oo (14 (a+e)(—D\? ,
e e () e
oo —1) AT+ D] gem (14 (@ +o) =D\,
L [T(v+m+ 1) 2¢’+< 1+a(l-1) )b’”“

+(c+2m+1)

Flv+2m+1)77° L+ —1)

L2 5 T4 s (1@t (=D
=0+ gl +F(U+m+l)$5 1+e(l-1) @16

2 1 2 "T(v+1) 14 (o + ) (-1’
Zdo — _d2 3 2d —$6+m . m+2
+<5 5 1>C T3 "Two+m+1)""° ( 1+ —1) Q16

FTWAD)  giom (14 (0 +9) (=D’
_gpd+2m (Il 1
T Tt < 1+6(l—1) > Gam41 G (17)

2m — J
FLW+Y) s (1 +(a+e)( 1)) a2m+1] i
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Clearly, taking the first corresponding coefficients in ((17)) shows that

(64+m+1) TOFY  gsim <1+ (1 +%)( = 1)>5am+1

T(v+m-+1)"° 1+l —1)

2 mP(y + 1 1 1—1)\°
= Zd + w%ﬂm Flate) =Dy
5 F(v+m+1) 1+ ol —1)
so that
2d
1 = T(v+1) 51 1+ (a+e) (-1 )° (18)
cmI'(v +m S11¢:
S+ w4 (M)
and
2|d, |
[ ] = MD(41) psim [(1+(s1+)(—1) ) °
Cc v m S S —
5(0 + m) bt g (e llel)

so that applying Lemma gives the result in . Next, taking the second corresponding
coefficients in shows that

U(m—i—l)c [(v+1)]2 6+m<1+(§1+§2)(l—1))26b72n+1

Cw+m+ 1)) % 1+q(—1)
oo —1) ™ [[(v+1) S S S A
T [C(v 4 m + 1)]2"%65+ ( 1+ql—1) ) I
AW+ 1) siom {1+ (s +6) (1 —1)
F(v+2m+1)$5 ( 1+l —1) > Gamt1 ¥

<5d2 1d>+2d&Jﬂ))gﬂm(1+(<1+<2)(l—1)>5am“+m

+ (o +2m)

5 5 T(v+m+1 14+ q(l—1)
so that
2d2 — ld2
Ao2m+1 =
2mtl (0+2 )c2mr(v+1) $¢+2m <1+(§1+<2)(l 1)>(S
T'(v+2m+1) T+62(1-1)
40l2
+ 2T (v+1) cps+2m [ 1+(s1+s2)(1—1) b
25(0 +m)(o + 2m) T(v+2m+1) j < I+c2(l-1) )
N 4o(m + 1)d3
)
2T (v+1) cps+2m [ 1+(si+s2)((—1)
25(0 +m)*(0 + 2m) e 2 (fic—ﬁl)>
20(0 —1)d?

_ (19)

d
c2mT (v 1 m m (1 -1
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and
2|dy — 33|

|a2m+1’ é 5
(O’ + 2m) 2T (v+1) $¢+2m <1—|—(q+g2)(l—1)>

T(v+2m+1)<%6 I+e(i-1)
4]dy)?
5
2'm1" 1 m 1 -1
25(0 +m) (0 + 2m) ey L4+ <—+§3$3)—(n )>
4o(m +1)|dy|?

25(0 + m)2(0 + 2m) S Ledl) cpi+am (—H(“JFQ)(Z_I))(S

+

+

T(v+2m+1)=74 T+e2(1-1)
20(c — 1)|dy|?

5
c2mT(v+1 m 1 1—1
25(0 4+ m)2(o 4 2m) —F(v+2(m++1)) gédﬂr 5/066+2m ( +§2g+2??1(1) ))

so that applying Lemmas and gives the result in (15]).
Theorem 3.3 Ifh € V2%°_(3(), then for a complex value &,

0,61,62
2

5
L +l) gpstam (14(ste)(l-1)
5<U + Qm) T(v+2m+1)=7¢ ( 12@2—1) >

|Cl2m+1 - §afn+1| <

X max{l,x}

where

2 ~ 20(m+1) o(c—1) 1

X5 1m) 5o +m)25o+ mEgem(s) 2

2(g +2m)T(v + 2m + 1).Z7 ™

5|
I(v+1) S+m [ 14(s1+s2)(I=1)
5(0 + m)Q—[F(v+m+1)]z L5 " ( 129271) )

S

Proof. Using and means

2dy — d?
A2m+1 — €a3n+1 = S—— 2 : 1 —— .
el +2m s1462) (1=
5(0 + 2m) et (1+1<2—5_1)>
n 4d?
0
2l (v+1 s+2m [ 14+(s1+s2)(1—1
25(0 +m) (0 + 2m) ey L5 ( el >>
4o(m +1)d3
B é
c2m(v+1 m [ 1 -1
25(0 + m)*(0 + 2m) gt s L7 (%)
20(0 —1)d?
a é
c2m(v+1 m m 1 -1
25(0 + m)2(0 + 2m) fropams L3 LT < Horta)( ))
2
2d,
—¢

s
T (v+1) cpd+m [ 1+(s1+s2)(—1)
5(U+m>r(u+m+1)°§’€5 < 12@2271) )
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where further simplification gives

a — &l = :
2m+1 m+1 5( 49 Mg&—lﬁm H(ate)(=1) g
0+ 2M) F g I4e(i-1)
X < dy + 2 20(m + 1) (o —1) !
T slotm) Blo+mP 5o +mzgltt 2
¢ 2(0 +2m)T(v + 2m + 1) £+ ] d2}
- .
5(c + m)QM (129—2—1)>
Therefore,
2
—£a? <
Aom a,, =
| om+1 — § +1| . om 2mD(v+1) $5+2m 1+(s1+s2)(I-1) B
(0 +2m)samy T lte(-D
X |dy + 2 20(m + 1) (o —1) L
24 |5 S mE e s mpgp 2

2(o +2m)I(v + 2m + 1).Z5 2™

)
I'(v+1) S+m [ 1+(s1+s2)(1-1) ]
(o + m)? e (—fi@i_l) )

2|,

S

so that applying Lemma gives the result in the theorem.
Putting m = 1 in Theorems [3.2] and [3.3] gives the following results.

Corollary 3.4 If h given by belongs to the set V35r (3(), then

|a2\ §

I‘(v+1) 541 [ 14(c1+e)(I—1)
5(c +1) F(v+2)$ ( 12@2 i) )

|a3| <

F(v+1) 6+2 ( 1+(s1+s2)(1—1)
5(U+2 F(v+3)$ < 12{23 1) )

* 5
25(0 +1)(0 +2)1 ZI§>$5+2 <1+§<+1§+23>_<i)—1)>
8c
+
I'(v+1 1 -1
25(0 4 1)2(0 + 2)F§;3§$5+2 (%)
2000 — 1
. (0 - 1)
I'(v+1 1 -1
25(c + 1)%(0 + 2)FE IS;$6+1$5+2 ( Jﬁi:;z?)(l) ))
and
2 < 2
|as — §a3| = x max{1, x}

5(0 + 2)

1
642 [ 1+(si+s2)(1-1)
"E/ﬂ < 1-¢§2(?—1) )
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where
B 2 4o oo —1) 1
X)) 5o+ 12 soampgt 2
. 2(0 + 2)T'(v + 3).4"* i
5(c + 1)2[5(:;1 2 (%ﬁ)‘%—lv

Remark 3.5 Corollary[3.4 presumably holds new results.
Putting ¢; = 0 = ¢ in Corollary gives the following results.

Corollary 3.6 If h given by belongs to the set Vg’,%’f)o(?)é), then

2
Qa2 § )
el 5(0 + 1) iag L3+
1 4
|as| = Tt o2 T T(v+l) cpit2
5(o +2)F(v .,% 25(0 + 1)(o—+2)r( 55
8o 20(0c — 1)

+ + :
25(c + 1)2(0 + 2) ,,%5“ 25(c + 1)2(o + 2) ot 35“35“

and
las — €03 < = x max{L, [x}
5( + 2) $5+2
where
2 4o o(o—1) 1 g2(a +2)T(v + 3).20+2
X = - 2 RS T(v+1 :
Slo+1) Blo+ 1) s+ 12 2 T5(o 4 1) g g

Remark 3.7 Corollary 3.6 presumably holds new results.
Putting v = 0 in Corollary [3.6] gives the following results.

Corollary 3.8 If h given by belongs to the set V},’y(l)”g(?)é), then

2
|a2] S ————5
5(c +1).%
2 8
| 3’ = 542 + 5+2
~5(0 +2).Z; 25(0 + 1) (0 + 2).%;

N 160 N do(o — 1)
25(0 + 1)2(0 +2).Z01%  25(0 + 1)%(0 + 2).L T L

and

4
lag — €a3| <

———— X max{l,
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where

2 4o o(oc—1) 1 4(oc+2)20"

XT50+1) Blo+12 5o+ 1240 2 55(a +1)2.25+0

v
=
=

1
— =1 and =

(3

~—

5.

3
>
—

Remark 3.9 Corollary [3.8 presumably holds new results.

Putting o = 0 in Corollary [3.8] gives the following results.

Corollary 3.10 If h given by belongs to the set v8;8;3(3€), then

|as| = o001 |as| = PG
540 504712

18 1 8Lt
10 Tér o

and |az — £a3| < = 5T
25

W max< 1

)

Remark 3.11 Corollary presumably holds new results.
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AN INVERSE PROBLEM FOR PSEUDOPARABOLIC EQUATION WITH
MEMORY TERM AND DAMPING

In this paper, we study the inverse problem of determining, along with solution w(z,t) of a
pseudo-parabolic equation with memory (convolution term) and a damping term, also an unknown
coefficient f(t) determining the external effect (the free term). In the investigating inverse problem,
the overdetermination condition is given in integral form, which represents the average value of a
solution tested with some given function over all the domain. By reducing the considering inverse
problem to an equivalent nonlocal direct problem. The applicability of the Faedo-Galerkin method
to the inverse problem is analyzed. The damping term ~ |u|q*2 u affects as nonlinear source in the
case v > 0, and an absorption, if v < 0. In all these cases, we establish the conditions on the
range of exponent ¢, the dimension d, and the data of the problem for the global and local in time
existence and uniqueness of a weak solution of the studing problem.

Key words: inverse problem, nonlinear pseudoparabolic equation, memory term, solvability.

Iokip Aitmoct?
19n-Dapabu areiEgarel Kazak yaTTeK yHuBepcuTeri, Amvarel, Kasaxcran
2MareMaTHKa YKoHe MATEMATHKAJILIK MOJENIICY HHCTUTYTH, AmMaTsl, Kasakcran
e-mail: ajdossakir@gmail.com
2Kanpl 6ap >kK9He ChI3BIKThBI €MeC MYIIeJIi TIceBonapabosalbiK, TeHaey YIIiH Kepi ecenn

Byun xymbicra )aapl myrreci 6ap (yilpTki Typinzeri) KoHE CBI3BIKTBI €eMeC MyIlesii IICeBIoIa-
pabonanbik TeHaeyaiH u(z,t) meniMiMen Katap ChIPTKBI 9cepi cumaTTaifiTeiH (60¢ MyIe) KOChI-
JrblThiH () KoaddurmenTin anbikTay Kepi ecebi seprresinred. KapacTbIpbLIbn OTBIPFaH Kepi
ecenTe KaliTa aHBIKTAy KOCBIMIINA IIAPTHl MHTETPAJIILIK, TYpe OeplireH, aj oJi ©3 Ke3eriHie Iie-
IIiMHIH OpTalia MoHI TypaJsbl aknapar o6epesi. Bepisren kepi ecenri SKBUBAJIEHTTI JIOKAJIIBI €MeC
Typa ecemnke KeJTipy apKbLIbl mmerntiMuin 6ap 6omysr Pasgo-Tamepkun omicimen momenmendi. Tew-
JI€YJIeTi ChI3BIKTHI eMeC Y |u|q7 u myteci v > 0 xkKargaiiga KUty Ke3i, v < 0 xkarmgaiiga abcopoiust
KOCBLJIFBIII peTiHe Karbicapl. CoHmali-aK, ¢ KOpCceTKilriHe, d KeHICTIK eJIIeMiHe KoHe DaCTaIKbI
Gepliiren (byHKIUsIIApFa XKETKIJTIKTI MapTTaphbl HEri3iHIe Kepi ecenTiH 9JICi3 MentiMiHiH, JIOKAJIIbI
KoHe T7106a a6l 6ap 60TybI, COHBIMEH KATap 9JICI3 MENTMIHIH KaJFBI3IBIFLI TOJICIICHI].

Tyitin ce3aep: kKepi ecel, CHIBBLIKTHI €MeC TCEBI0MapadoIaIbIK TeHIEY, MHTEIPAJILIK, MYIIIe, TITe-
MTMTTIK.

Mlakup Aitmoc'?

IKazaxckuit HAaIMOHAIbHBIA yHUBepcuTeT nMenn aib-Papabu, Anvarsr, Kazaxcram
2MucTuTyT MaTeMATHKH M MAaTeMaTHYecKoro Mojesmposanns, Amvarsr, Kasaxcran
e-mail: ajdossakir@gmail.com
ObOparHas 3a/1a4a A8 ICEBAONAPabOIMIECKOTO YPABHEHNUS C MAMATHIO U 3aTyXaHUEM

B nannoit pabore usydaerca obpaTHas 3aja4a OIpeleseHns Hapsiay ¢ pernenueM u(x,t) nceBro-
napabo/InIecKoro ypaBHEHUs C IIaMATBIO (YWIEHOM CBEPTKHU) U 3aTyXAIONIUM YJIEHOM TaKXKe HeM3-
BecTHOrO Koabdunmenta f(t), onpesessomero BHermHee Bo3zeiicTere (cBOOOMHBIN wieH). B ne-
cresiyeMoil oOpaTHOM 3aJiatde yC/IOBUE IEPEOIPe/IeJIeHIsT 3a/IaeTCs B MHTErPaJIbHON (hopme, Tpe/-
CTaBJISIONIE COOOI cpejiHee 3HAYEHUE PEIeHNs], IPOBEPEHHOI0 C HEKOTOPO 3aJJaHHON (DyHKITei
mo Bceil obsactu. Ilyrem cBemenmnst paccMarpuBaeMoil OOpATHON 3a7aun K SKBUBAJEHTHOU HEJIO-
KAJIBHON MPSAMON 3a/ade aHaau3upyercss npuMeHnMocTb Meroma Pasmo-lamepkuna K oOpaTHOIM
3ajiade. 3aTyXalomuil WieH -y |u|‘k2 U JIeHCTBYeT KaK HeJIMHEMHBII NCTOYHHK B ciIydae v > 0 1 Kak
rorsionenue, ecau vy < 0.
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Bo Bcex aTmx ciyvasXx yCcTaHABJIMUBAIOTCS YCJIOBHUS HA JUANA30H M3MEHEHUs MOKA3aTess (, pa3-
MepHOCTh d W JaHHBIE 3aJia9u Jjisl TVIODAJBLHOTO U JIOKAJBHOTO 10 BPEMEHU CYIIeCTBOBAHUSI U
€/INHCTBEHHOCTH CJIa00r0 PEIeHUs] M3y IaeMOil 3a1a4n.

KiroueBbie ciioBa: obOparHasi 3ajiada, HEJUHEHHOE ICEBIONapadOInIecKOe ypaBHEHUE, HHTE-
TpajIbHBII UJIeH, Pa3penInMOCTb.

1 Introduction

A coeflicient inverse problems for differential equations have been called problems in which,
together with the solution of the corresponding differential equation, it is also necessary to
determine coefficient of the equation itself or the coefficient of the right-hand side (external
influence). Such problems naturally arise in the mathematical modeling of physical, biological,
etc. processes occurring in environments with previously unknown characteristics, since it
is the characteristics of the environment that determine coefficient of the corresponding
differential equation. This work devoted to study one of these kind of problem.

The statement of problem. Let 2 be a bounded domain in R¢, d > 2 with smooth
boundary 02, and Qr = {(z,t) : x € Q, 0 <t < T} is a cylinder with lateral I'r. Let us
consider the following inverse problem of finding the pair of functions (u(x,t), f(¢)), which
satisfy the pseudoparabolic equation with memory term and damping

u — KAu; — AMAu — /K(t — s)Au(z, s)ds =y u|* Fu+ f(t) - glz,t), in Qr, (1)
0

the initial condition

u(z,0) = up(x) in Q, (2)
the boundary condition

u(z,t) =0 on I'p, (3)
and the integral overdetermination condition

/u(x,t)w(w)dw = h(t), te[0,T]. (4)

Q

Here, the coefficient s, A are given positive numbers, v is the coefficient of the damping term
might be positive v > 0 either negative v < 0. The functions g(z,t), ug(x), w(z) and h(t)
are given. The exponent ¢ is given positive number such that

1 < qg<oo. (5)

Pseudo-parabolic equations can be used to describe various important physical processes, such
as hydrodynamics, filtration theory, continuum mechanics, the heat conduction involving two
temperature systems, dispersive, viscous flow in materials with memory and so on. One of
the examples is furnished by the Kelvin-Voigt (Navier-Stokes-Voigt) equations. We refer the
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reader to the works |1H7] and the references therein, in which these issues were discussed in
detail for the model equation .

In the absence of the memory term (K (t) = 0), the equation in (1)) reduces to the pseudo-
parabolic equation with damping. In corresponding equation if the coefficient of the external
term f(¢) is given, then we will obtain an initial boundary value (IBV) problem. Various IBV
problems for nonlinear pseudo-parabolic equation have been extensively studied in [4}8-14]
and results concerning existence and uniqueness of solution, and asymptotic behavior like
blow up have been established. In the presence of the memory term (K (t) # 0), the various
IBV problems have been considered and many results were obtained, such as the existence
and uniqueness of classical and weak solutions, and finite-time blow up, asymptotic behavior
of solutions in [15-19] and so on.

Next, we focus on the inverse problems posed for the pseudo-parabolic equation and their
different modification. Since the pioneer works of [20-23] in the field of the inverse problem
brought the authors international fame. In |24], a class of abstract pseudoparabolic equations
of the form

{Aout(t) — Ayu(t) = k* Au(t) + f(£), te[0,T)
u(0) = ug

for the operators A;,j = 0, 1,2, were investigated. The main focus was to pay attention to
the recoverving the kernel and finding solution in the Volterra operator integral equation.
Lyubanova and coauthors in [25,126] proved existence and uniqueness, regularity results for
strong solutions to the pseudoparabolic equation of the operator form

ug + nMuy + k(t) Mu, + g(x, t)u = f,

where M is a linear differential operator of the second order in the space variables. Yaman [27]
discussed the coefficient inverse problem for Eq. with K (t) = 0 and the special external
source term

F(a,t) = f(t) (w - Aw), (6)

where the test function w replaced by w — Aw in the overdetermination condition . It
may restrict the statement of the problem from both of mathematical and physical view, he
derived the upper bound for the blow-up time under some assumptions about the initial data.
The equation consisting relation between the damping term and p-Laplacian was considered
by Antontsev and et. [29] with the special right-hand side and overdetermination condition
such as in [27]. The authors proved in 29| the local existence of weak solution (without the
uniqueness). This work was later improved by Khompysh et al. [30] established global and
local in time existence and uniqueness result. Recently, Aitzhanov and et. in |28] considered
Eq. with v = b(x,t) variable coefficients and instead of (4]) assumed overdetermination
condition (@ The authors showed that existence and uniqueness of weak and strong solutions
under certain conditions and initial data of the corresponding inverse problem. In the present
work overdetermination condition (4}) cause some difficulties, thus author has to develop other
techniques to overcome these difficulties.

The present paper is organized as follows. In Section [2, we introduce some auxiliary
lemmas that we use in this work. In Section , we prove that the initial inverse problem —
is equivalent to the direct problem — containing the nonlinear nonlocal operator
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of u. The global and local in time existence of a weak solution to the direct problem —
(17) is established in Section [4| in the case v > 0, and in Section [5| in the case v < 0. For
that we construct Galerkin’s approximations u™ and derive their priori estimates. Next using
compactness arguments we realize a passage to the limit as n — oo. The Section [] is devoted
to the study the uniqueness of the weak solution to the problem — in both case of
v >0 and v < 0.

2 Preliminaries

In this section, we introduce some auxiliary lemmas that will be used throughout the paper.
For the definitions, notations of the function spaces and for their properties, we address the
reader to the monographs [31,[32]. In particular, the norm in the Lebesgue spaces L?(£2) and
LP(Qr) are denoted as follows, respectively:

T
o= | [lu@Pds | Julhor = { [ [ 1uteordode
Q 0

Q

We use the classical and the following nonlinear Gronwall’s inequality ( [31]) to establish
the first and second local estimates.

Lemma 1 Ify: RT — [0,00) is a continuous function such that

t

y(t) < C’l/y“(s)ds +Cy, teRT, u>1

0
for some positive constants C7 and Cy, then

1
(=15

y(t) < Co (1= (n—1)CLCE ) 7 for 0 <t < tyax ==

The following another very important auxiliary lemma (see [33] (Lemma 2.2., p. 1809.)
will be used to prove the uniqueness and passage to the limit in the Galerkin approximation.

Lemma 2 For all p € (1,00) and 6 > 0, there exist constants Cy and Cs, depending on p
and d, such that for all €&, n € RY d > 1, it
|I€1772€ — [n[P=*n| < Chlg =l (l€] + [nl)P=>7° (7)

and

(I€P72¢ = [nlPn) - (€ —n) = Cal€ — 0T (€] + [n])P >+ (8)
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3 Weak formulation.

Assume that the data of the problem satisfy the following conditions

ug(w) € Wy () N LU(9), (9)

lg0(t)] := /g(:c,t)w(a:) dz| > 1o >0 forall t>0, (10)

g(z,t) € C(0,T; L*()), (11)

h(t) € W2((0,T]) and / wo(z)w(x)dz = h(0). (12)
Q

w(x) € W, (Q) N LYQ). (13)

Lemma 3 Under the conditions (@) and @-, the inverse problem - 1S equivalent
to the following problem for a nonlinear pseudoparabolic equation with nonlinear nonlocal
operator of the function u

t
up — kAU — AAu — /K(t — s)Au(z, s)ds = v [u|" P u+ f(t,u) - g(z,t), n Qp, (14)
0

u(@,0) = up(z), = € Q, (15)
u(z,t) =0 on I'r, (16)
where
ft,u) = 1(75) B (t) +/<:/Vutid:c+)\/Vqud:c+
9o

t
/K(t — $)(Vu, Vw)z ods — 'y/ |9 wwdx
0 0
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Proof 1 1. Let the pair (u(x,t), f(t)) be a solution of the inverse problem -. Multiplying
both sides of by w, and integrating over €2 and applying the formula of integrating by parts,
we have

t
/utwdm+/£/Vutid3:+)\/Vquda:~l—/K(t— s)/Vu(s)dea:ds =
Q 0 0 0

g (15)
v TP u - wdz + f(2) | gla, t)wde.
/ /
Using
/utwdx = h/(t) (19)
Q

which follows from the overdetermination condition , and the assumption @, we get

from (@ the equality .

2. Let now u(z,t) be a solution to the direct problem (14)-(16) with (17). It means that
the pair of functions (u, f) is satisfied the equations —(@). Thus, the pair (u, f) to be
a solution of the inverse problem — it is sufficient to prove that the function u(x,t)
satisfies the overdetermination condition . Let us assume that for contradiction, i.e. the
overdetermination condition doesn’t hold. Suppose that

/uwd:c =hi(t), t>0 (20)

where hy(t) # h(t) for all t > 0. Thus, by the conditions and (@), we have hy(t) €
W5 ([0,T]) and

hy(0) = /uowdx = h(0) (21)

Q
Multiply by w and integrating by parts and using ,we get

t
Ri(t) + K / Vug - Vwdr+A / Vu - Vwdx + /K(t —5)(Vu, Vw)s ods—
Q 0 (22)
3 [l e = (6w
Q

Q

where f(t,u) is defined in (17). Plugging into (29), we obtain

t
hy(t) + /@/Vut Vwdz + )\/Vu Vwdz + /K(t — $)(Vu, Vw)a ods — ’y/ u|'* wwdz =
Q 0

Q Q

¢
R (t) + /@/Vut Vwdzr + )\/Vu Vwdz + /K(t —5)(Vu, Vw)s ods — 'y/ |u|?% uwwd.
0 0 0 Q
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(23)
implies that the following Cauchy problem for H(t) = hy(t) — h(t):
H'(t) =0, H(0) = hy(0) — h(0) =0 (24)
which yields that hy(t) = h(t) for all t > 0.
Definition 1 A function u(z,t) is a weak solution to the problem —, if:
1. uwe L0, T; Wy () N LIQ)),ue € L0, T; Wy (Q)).
2. u(0) = ug a.e. in Q
3. The following identity

t
% (up + kVuV)dx + A / VuVodr+ / K(t —s)(Vu,Vp)aads =
Q Q 0 (25)
7/ Jul " updz + /f(t, u)gpdz
Q Q
holds for every ¢ € Wy*(Q) N LUQ) and for a.a. t € [0,T].
4 Global and local existence: a nonlinear source case.
In this section we consider the problem —. Let
1 <qg<o0. (26)
Now we present our mean result for
v >0 (27)

First we state the global existence theorem.

Theorem 1 (Global ezistence) Let the conditions (@-, are fulfilled and assume,
that

1<g<2 (28)
Also exists a positive constant m such that

K 2 2
2 sup [lg(®)]zq IVwllzq < m < 2. (29)
0 t€[0,T]

Then there exists a global weak solution to the problem - in the sense of Definition
[ Moreover, the weak solutions satisfy the following estimates

Sup (IVu@ll30 + lu®lige) + lull o, + Vel o, < C, (30)
€|0,

where C' 1s positive constant depending on data of the problem.
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In this theorem we establish local existence of the weak solution to the problem —.

Theorem 2 (Local existence) Let the conditions (9)-(13), (27), ([29) are fulfilled and assume
that the following condition holds

2d
T i d>22 = (l,00) if d=2 (31)

Then there exists a time 7} € (0,7 defined at (48)), below such that the problem (L4)-
has, at least, a weak solution u(x,t) in the sense of Definition [1} with 7} instead of
T'. Moreover, these weak solutions satisfy the estimate for all ¢ € (0,7}] with another
positive constant C' depending on data of the problem.

2<q< 2t 2 =

Remark 1 The condition assures the passage to the limit as n — oo below, see .
We have assumed that the condition 15 fulfilled, because we return to the statement of
the[1 in case q < 2.

Proof 2 The proof of these theorems consists of the steps: construction of Galerkin’s
approximations; obtain energy estimates; passage to limait.

4.1 Galerkin’s approximations.

Let {¢x}ren be an orthonormal family in L?(Q2) and their linear combinations are dense in
V= Wy (Q) N LI(Q). Given n € N, let us consider the n-dimentional space V" spanned by
Y1, ..., ¥,. for each n € N, we search for approximate solutions

n

uat) =Y G Os(e), v e VT (32)

Jj=1

where the coefficients c}(¢), ..., cl'(t) are defined as the solutions of the following n ordinary
differential equations derived from

/ (uir, + KVu Vi) de+\ / Vu"Viy dx + /K (t —s)(Vu", Vipg)aads =

“ (33)
/’un’q U g dr+ f(tu )/!ﬂﬂkdfﬂ
Q
for k=1, 2, ..., n. The system of ODEs is supplemented with the following Cauchy
data
u"(0) =u; in (34)

and assume that
ul — ug(x) asn — oo in Wy 2(Q) N LYQ). (35)

According to the general theory of nonlinear ODE, the problem (33)-(34) has a solution c?(t)
in [0, ¢o], where t5 € (0, 7. The solution can be extended to [0, 7] by a priory estimate which
we shall obtain below.
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4.2 Global priori estimates

Let us consider the case . In this case we obtain the global a priori estimates.

Proof 3 Multiplying both sides of (.) by di’;t , and summing on k, and adding %% ||u"||ZQ
on both side, we have

d n Y n n n 27 d . .,
7 (—IIV 5.0 + Ellu IIZ,Q) +luplsg + £Vl g = [ llge +hi+ L (36)
where

t
L= / K(t = 8)(Vu'(s), Vi (t))s.0ds, (37)

0

1
I = 0 h’(t)+m/Vu?~dex+)\/Vu”~Vw dz+

9o

. (38)

/K(t — $)(Vu", Vw)s ads — ’y/ 172" - wda | (g(t), uf (1), -
0 0

Now we estimate each term on the right hand side of (@) by using the Hélder and Cauchy
inequalities with €y together with the assumptions in . Thus, we have

Dt =2 [l e < 25 4l I 1 0 <
(39)
D o+ Cleooa) 0130 0 < 2 130 + Cleo 7,0, 9) (V0 120) "
Also the Cauchy inequality with some €, gives us
2 t
HE / K(t = V0 O [V o ds < 5 1967130+ 5> [ IV l3ads.  (10)
0

Exploiting the Holder integral inequality and Cauchy inequality with eo > 0, we estimate the
third term iy in (@)

1 n n
Bl < & (W(t)! TR [VUllyo [Vl o + A VU ly0 VWl o +

n n|qg—1 n
/|K(t—8)| IVu"(s) o0 [Vwllo g ds + 7 llwll o w50 | 9ll0 Uil dt <

2
€2 2 K 2 2
2 [ B adr + 2 V6l sup l9®l30 IVulag + Z a3 +
/ 0c2 te[0,7]
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]' n
o sup [lg(t) 30 (1M + X2 [V 3o IVell3 0 +

lea t€[0,T]

2 n 2 2 n|2(g—1
K3 [Vl / IV (5) g ds +9° ol o o757 | <

2 2 1 2 2 (41)
|| upllg + ||vw||2Q sup |[|g(t )Ilz,QIIVU?IIQ,Qer— sup [lg(t)[l5.q (10 (6)1+
0 (0,7 0€2 tef0,T]
n n2(g—1
A2V HRG Vel [ 196 (5) 30 ds + O la Va4
Plugging (@)- mto (@, we get
d 1 n Y nq ni2 ni2 <
p + 5 ”V “29 E Ju Hq,Q + a[|u ”29 + B Vuy HQQ >
t
ni2 a2 )41 n 2
OV g+ Ca (IV120)" + o [ IV (s)2gds +Ci <
(42)

e (142 1902+ Lo y) + 6 (14 2 19+ L rleg)
I+ IV lae + o llwlln ) + G (14 5 IV a0 + lletllae )+

t
A
e [ (1+ 319+ 2 1l ) ds + Co
0

2
where o :=1— %2 3= — & — lg—EQ ||VW||§Q sup ||9(t)||§ﬂ7

)\2 2 2 Kg Kg 2
Cri= - lIVwllzg sup flg@)llyg. Coi= 5 e IVwll3 sup lg(t)llsg -
0€2 t€[0,T) t€[0,T)

Cy? 2 2 1 2
Cs = Cleo.1.0.9) + 2 ol sup la(®l 0. Cai= o sup [lg0) B WO
0€2 te[0,T) 2 t€0,T)
Now we choose €;, i = 0,1,2 such that a, 8 > 0, and C;, j = 1,2,3,4 to be finite. It is
possible by (@)

However €1,e9 cannot be chosen such that m > 2, because €9 < 2 due to a > 0. Thus,
choosing €;, 1 = 0, 1,2 with suitable values and in case g —1 < 1 integrating (@ with respect
to T from 0 to t and using , we obtain

t t

y(t) "‘/ (a ||UZ||§Q + ||VUZ||§Q> dr < Cs /?J(T)dT + Cs, (43)

0 0
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nl12 n
where y(t) := 1+ % [Vu ”29 + % [[u Hg,ﬂ’
Cs = Cy+ o+ G5T; Gy o= AT + 2 [V 20 + 2 !
5:= 01 2 343 6= L4 9 Uoll2,0 q tollge -

Omitting the integral terms on left hand side and applying classical Grénwall’s lemma,
inequality implies that

y(t) < Cee®t. (44)
Thus, substituting into and taking suppremum, we obtain the estimate @

t
s (G190 0+ 2l )+ [ (oo + 81902 50) ds < 0y < +oc, (45)
0

te[0,T
where My := My (T, Cs, Cg).

4.3 Local a priori estimates

Let now be g < 2*. In this case we obtain the local a priori estimates.

Proof 4 Choosing e;,1 = 0,1, 2 with suitable values as we did in obtaining a priory estimates
above and in case q—1 > 1 integrating @ with respect to T € (0,t) and using , we have

t

t
A0+ [ (alatlin + 8IVaIEa) dr < Cs [ 217 (r)dr + G (46)
0

0

Omitting the second and third terms on left hand side (@) and applying Grinwall’s Lemma
we obtain

2(t) < Co [1— (g — 2)C5C8 %] 77 (47)

for

1
(¢ —2)CsCE*

Using and mazximizing by t € (0,T1], we have

0<t< T :=

A n 2 ,Y n||lq n 2 n 2
s (5 IVu 0+ 2 Nl ) + a5, + BV 5, < Mo <00, (49)

where My := My (T, Cs, Cp).
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4.4 Passage to the limit

By means of reflexivity and up to some subsequences, the estimate implies that

u® — u  weakly-+ in L=(0,T; W, *(Q) N LYQ)) as n — oo, (50)
ul —u; weakly in L*(0,T; W,*(Q)) as n — oo. (51)
On the other hand, implies the existence of function R such that
|9 %" —~ R weakly in L7 (Qr), asn — oo, (52)
where ¢’ = E ] is the Holder conjugate of ¢q. By the compact and continuous embedding

Wy (Q) = L'(Q) = L*(Q), Vr:2<r<?2
and by Aubin-Lions compactness lemma, and imply that

u" — u strongly in L*(0,T; L"(Q)), 2<r <2" asn — oo, (53)
and in particular,

u" — u strongly in L*(0,T; L*(Q)) asn — oo, (54)

where 2* is the Sobolev conjugate of 2, i.e. 2* = d% with d > 2.
As a consequence of and Riesz-Fischer’s theorem, we have up to some subsequence,

u" — u a.e. in Qp asn — oo, (55)
which together with yields (see Lemma 1.3 in [32} p. 12])

[u™|9 U™ — |ulT %y weakly in LY (Qr), asn — oo. (56)
Under the assumption and , , we have also that

u" — u strongly in LY Qr) as n—oo, for ¢<2°
and consequently

[ o0, — lullug, as  n— oo. (57)

Let n(t) be a continuously differentiable function on [0, 7], where T is the maximal time such
that above first and second estimates are hold. Multiplying by n and integrating by
t € [0,T], we obtain

T ¢
/(u:‘zk + ﬁVu?Vsz;t:dt%—A/Vu"Vzk dxdt + //K (t — s)(Vu", Vz)aadsdt =

Qr Qr 0
T

1
7/ lu™ |7 20" 2, dmdt—i—/ 0 h'(t) +/€/VU?V¢U da:—l—)\/Vu”Vw dr+ (58)
9o

0

/K(t—s)(Vu",Vw)Zst—7/|u”|q_2unwdx /gzk dxdt
Q 0
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and using above convergence results , and , we obtain

T ¢
/(utzk + kVu Vzg)dxdt + A / VuVz, dedt + //K(t —5)(Vu, Vzi)2qdsdt =
Qr Qr 0 0
’ 1
7/ lu| 2uz, dmdt+/ G h'(t) + /i/Vuti dr + )\/VUVw dr+ (59)
go
Qr 0 Q Q

t
/K(t —5)(Vu, Vw)s ods — 'y/ |u|? " ?uwdz /gzk dxdt
0 0 Q

for all z = Wp(x)n(t), k € {1,...,n}. By linearity and by a continuity argument, the
equation is still true for any

zeZ ={z=yC: eV, (€C;0,1)}.

5 Global and local existence: an absorption case.
In this section we present existence of weak solution to the problem - for

7 <0. (60)
For existence of the weak solution the following theorems hold.

Theorem 3 (Global existence) Let the conditions (@—, (@, (@), (@) are fulfilled.
Then there exists a global weak solution to the problem — in the sense of Definition .
Moreover, the weak solutions satisfy the estimate (@) for all t € [0,T] with another positive
constant C' depending on data of the problem.

Theorem 4 (Local existence) Let the conditions (@-, (@), , (@) are fulfilled. Then
there ezists To € (0,T] and at least one weak solution to the problem (14)-(17) in the sense

of Definition |1| and satisfies the estimate (@) in Qr,, where Ty depending on data of the
problem.

Proof 5 The proof of Theorems|[3 and[] are similar to the Theorems[1] and[3

6 Unigeness
Theorem 5 Assume that the following conditions

Vw € L*(), (61)

2 d>2 (62)
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hold. Moreover, there exists a positive constant m such that

K
Z S lg@)ll5.0 IVwllsq <m < 2. (63)
0 te0,T

If v <0, assume addition to (ﬂ) (@) that all conditions of Theoremsl and@ are fulfilled.

If v > 0, assume addition to (ﬂ) (@) that all conditions of Theorem@ andl are fulfilled.
Then the weak solution of (-) (.) 1S unique.

Proof 6 Let u; and uy be two weak solutions to the problem - in the sense of
Definition . Using Oyu := Oyu; — Oyus as a test function in , it follows, by subtracting
the equation for us to the equation for uy, that

Ad
2 \Vull g + lulq + 5 IVl = D+ G+ P (64
where
¢
D=~ [ K(t = s)(Vus). Vus(t)sads. (65
0
G ’y/(\ull [ug|? ) -y da (66)
0
F= 0 R/Vut-Vw dx—i—/\/Vu-Vw dx—i—/K(t—s)(Vu,Vw)g,st
9o

(67)
[l o el 2 ) - e | [ gt 0pud
Q Q

Using Hélder’s and Minkovskii inequalities and (@ m Lemma with 6 = 0, we estimate D,
G and F

t
2
DI < Z1Vula+ 52 [ IVuliads (09
0

Gl = 7 [ (" s = fual"™ w2) e < | [ Jul (] + Jual)" o <
Q
q—2 (69)
s S WIC? (Vg + [Vuzllyg)

A 2d
2 2
HVUHQ,Q HvutHz,Q < E ||Vut||2,§z + §b0 HVUH2,Q7 ¢ 5

7] lallye o Wfun ] + full1f, 24 g [l

d—2
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2hyPC2ce-2

where by := 3

1
71 < 7 gl el

+ A HVUH2Q HVWHz,Q +

[ (=5 190l IVelaqds + 1 [ (ul (] + ) o] do) | <

1
i Iallog lluels o [H Vully o [[Vwllyq +AVullyq [[Voll o +

q—2
s (I + 1wl o) Il

<

2¢.0

[ (= 5) 1 9ulq 1Vl ds + ol
0

€1 2 1 2 2
— |l Vw su Vu Vw su X
3 Il + g 19la sup lola I Vudia + g IVl sup fllf

€[0,7) ’ (70)

A IVul2 o+ K2 [ Va2 ds +~2C2 (|© \V vl | <
[Vull3 o + Ko || ully0ds + [Vurllyq + [Vuzll,q [Vull36 ] <
0

t

€1 2 K2 2 2 2 A 2 A 2

Sl + 5 IVelia sup llglq IVurlo+ b1 1 Vulig+ 5be [ [Vuliqds
0€1 te[0,T)

where
1= d2—d2’ (q_22)d = d2—d2 =T eas dQTdQ’
b= g 17l 3 Il 07+ 22C°CT),
by = 2522 IVwli3q S[up lgll5.c -

)

Furthermore, taking into account Sobolev’s inequality we derive

1
IVullo > gy (ke +19ul30) = (o), (1)

where y(t) := [ulo + | VulZq and = b

Using estimates for u;, i = 1,2, and choosing €;,1 = 0, 1,2 with suitable values as we did
as obtaining a priory estimates above, we can make a, B to be positive and finite constants,
and it is possible due to the assumption %tsup Hg(zf)H;Q HVngQ <m < 2.

)

Plugging (68)—(70) into in the case v <0, and (68), (70) and (69) into (??) in the

case y > 0, using and integrating by T € (0,t) we arrive to the following Cauchy problem
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(72)
y(0) =0,
where
Y b1 + b1 + by
: —77 )

Due to the conditions to the Theorem [J and then by the Gronwall’s lemma, it follows from
that y(t) = 0 for all t € [0, Tyaz], and consequently that u; = ug, where Ty is a
maximal time such that the weak solution to the problem — exists.

7 Conclusion

In the paper, the space of a weak generalized solution of inverse problem for the
pseudoparabolic equation with memory term and damping is defined. Under suitable
conditions on the data of the problem, the global and local in time existence and uniqueness
theorems are obtained and proved.
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PREDICTION OF DRILL STRING VIBRATIONS USING MACHINE
LEARNING TOOLS

The objective of this work is to apply machine learning algorithms for the analysis of dynamic
vibrations of drill strings. As part of the research, a mathematical model describing the vibrations of
the drill string was developed; a finite difference scheme was implemented, and numerical modeling
was carried out using the three-point sweep method. Based on the data obtained from the numerical
solution, a machine learning model was created. The numerical modeling was implemented using
C++, while data collection and the construction of the machine learning model were performed
using the Python programming language. As a result, a predictive model was obtained, capable
of accurately forecasting the dynamic vibrations of the drill string and determining optimal
parameters, thereby improving the efficiency and safety of drilling operations.

Key words: drill string, vibrations, machine learning, linear regression, random forest.
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Byprbulay 6araHIapbIHBIH, TepOeicTepiH MAIMHAJIBIK, OKBITY KYpaJlJapbl apKbljibl 00J2Kay

Byn xymbicThiH MakcaTsl OYpFbLIAY OaraHIAPBIHBIH AUHAMUAKAJBIK T€POETICTEpiH Tagay YIIiH
MAIUHAJBIK, OKBITY aJrOPUTMJEPIH KOJJIaHy. 3epTTey OapbIChIHIa OYyprbliay OaraHbIHBIH Tep-
OesricTepiH CHUIATTAWTBIH MAaTEMATHUKAJBIK MOJEIb 93IpJIEHII; aKbIPJIbI-aflbIPBIMIBIK CYI0aChI
KYPBLJIBIIL, VI HYKTE KyaJay 9/IiCiH KOJJIAaHy apKbLIbl CAHJBIK MOJeJbey »Kyprisiyg. Casmapik
IIENTMHEeH aJIbIHFAH MoJIiMeTTepre cyiieHe OTBIPBII, MAIUHAJBIK OKBITY MOjesni Kypbuiabl. Can-
OBk Mozenbaey yuria C++ Timiage OarmapiiaMaliblK, KOJT YKACAJIIbI, aJl JIEPEKTEPl KUHAY YKOHE
MAaIMHAJIBIK, OKBITY MOJEIH Kypy mporectepi Python 6armapiamasay Tii apKpLIbl )Ky3ere acbl-
poutael. Hotmkecinge 6yprouray 6araHachIHBIY JIUHAMUKAJBIK TEpPOETiCTEPIiH KOFaphl IR/ IIKIICH
OoJKall alaThIH 2KOHE OYTailIbl apaMeTpJiep/li aHbIKTANTHIH OOJI2KaMIbl MOJIEb aJIbIHJIbI, OYJI
OYpFBLIAY »KYMBICTAPBIHBIH TUIMJIJII MEH KAyIlCI3IiriH apTThIpyFa BIKIIAJI eTesli.
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OpMAH.
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paspaboTaHa MaTeMaTHIecKasl MOJEJb, OIMUCHIBAIONIAs KoJiebaHusi OypHIIbHOM KOJIOHHBI; PeaJiu-
30BaHa KOHEYHO-PA3HOCTHAS CXEMa U IIPOBEJICHO UNCJIEHHOE MOJEJINPOBAHUE C HCIIOJIH30BAHUEM
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B pesynbrare ObuIa IMOJIyUeHA TPOTHO3HAST MOJIEJIb, CIOCOOHAS C BBICOKON TOYHOCTBIO IPEJICKa-
3bIBATh JUHAMUYECKHE KOjiebaHust Oy pPUIbHON KOJIOHHBI U OIIPEJIEJISITh ONTUMAJIbHBIE TapaMeTpPhl,
9TO CIIOCOOCTBYET MOBBIIIEHUIO 3(MHEKTUBHOCTH U GE30MACHOCTU ITPOBOIUMBIX Oy POBBIX OIIEPAITHii.
KiroueBsbie ciioBa: OypuiibHasi KOJOHHA, KOJIEOAHNS, MAITUHHOE 00y YeHre, JIMHeHHAS PErPeCcCus,
Cay4JaiHblIil Jiec.

1 Introduction

Oil and gas constitute a significant portion of the world’s energy resources, and the drilling
industry plays a key role in their extraction. Drilling is a complex technological process
that involves penetrating rock formations to access hydrocarbon reservoirs. During the
drilling process, various types of vibrations frequently occur in the drill string, which are
an undesirable side effect. Excessive vibrations can damage drilling tools, cause premature
equipment wear, reduce drilling efficiency, and increase overall costs. Therefore, monitoring,
analyzing, and minimizing drill string vibrations have become a critical area of research in
the drilling industry.

Machine learning, as part of modern technological advancements, offers extensive
opportunities for addressing this challenge. These methods enable the analysis of large
datasets, the identification of hidden patterns, and the prediction of complex system behavior
in real time. In recent years, numerous studies have been conducted on the application of
machine learning for vibration analysis and control in drill string operations.

For instance, Saadeldin et al. [1| developed machine learning models for detecting drill
string vibrations during horizontal drilling using surface sensor data. The study utilized
radial basis functions (RBF), support vector machines (SVM), adaptive neuro-fuzzy inference
systems (ANFIS), and functional networks (FN). These models successfully identified
axial, torsional, and lateral vibrations with high accuracy, achieving correlation coefficients
above 0.9 and a mean absolute percentage error (MAPE) of less than 7.5%. The results
demonstrated that using surface data for vibration monitoring can significantly reduce costs
by eliminating the need for expensive downhole sensors.

Another study by Saadeldin et al. |2] focused on predicting vibrations during the drilling
of curve sections using real field data from multiple wells. The models were built using
the same algorithms (RBF, SVM, ANFIS, and FN), but the emphasis was placed on
curved well sections. The models showed impressive results, with ANFIS and SVM models
achieving correlation coefficients of up to 0.99 and an error rate of less than 2.8%. The study
confirmed that machine learning applications can significantly improve drilling performance
in challenging conditions.

In the work [3]|, the authors investigated the application of different neural network
architectures for predicting drill string vibrations. The tested models included fully connected
networks, physics-informed neural networks, and long short-term memory (LSTM) networks.
The results indicated that incorporating physical constraints into neural network structures
enhanced prediction reliability, particularly in the context of nonlinear interactions between
drilling equipment and rock formations.

Etaje [4] employed principal component analysis (PCA) and decision tree algorithms
to identify optimal drilling zones with minimal vibrations. The proposed approach allowed
for real-time adjustments of drilling parameters, thereby minimizing vibration-related risks.
Notably, the study demonstrated high efficiency when using only surface data without
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requiring additional downhole measurements.

Hegde et al. [5] developed a model for classifying stick-slip vibrations using a random
forest algorithm. The model was trained on historical data, including drill string rotation
speed, bit load, and torque measurements. During testing, the model achieved 90% accuracy,
highlighting its potential for integration into rate of penetration (ROP) optimization systems
to improve the safety and efficiency of drilling operations. The authors in [6] investigated the
application of machine learning for predicting drilling complications in oil and gas wells.
Using historical data from 67 wells, they analyzed key drilling parameters such as standpipe
pressure, hook load, rotary table torque, and rate of penetration to classify potential risks.
Eight machine learning algorithms with gradient boosting (GB) demonstrating the highest
accuracy in anomaly detection were tested. The study concluded that ML-based models
can significantly enhance drilling efficiency by providing early warnings of complications,
reducing non-productive time, and optimizing decision-making for drilling engineers. Future
work suggests integrating geomechanical parameters to improve prediction accuracy. The
authors in [7|] developed a new machine learning-based model for predicting the rate of
penetration (ROP) in vertical wells. The study compared physic-based models and data-
driven methods, concluding that data-driven techniques provide better accuracy.

Despite significant progress in applying machine learning to analyze drill string vibrations,
research in this area remains relevant. The complex dynamic processes that arise during
interactions between drilling equipment and rock formations require the development of more
accurate models capable of considering a wide range of influencing factors. An essential task
is to create efficient algorithms capable of reliably predicting vibrations in real production
environments and assisting operators in making informed drilling decisions.

The outcome of this work is a predictive model capable of accurately forecasting drill
string vibrations and determining optimal drilling parameters. The implementation of this
model contributes to improving the efficiency and safety of drilling operations by reducing
downtime, minimizing accident risks, and optimizing operational parameters in real-time
production conditions.

2 Materials and methods

2.1 Linear mathematical model

The linear model of the dynamics of a rotating drill string, compressed from both ends with
a longitudinal load N (z,t), is given by [8]:

2u “u tu u
pSg?jLE[m%—pm%—{—%(N(;E,t)g—x) — pSQ*u = 0. (1)

The parameters of the linear model are as follows: p is the density of the drill string
material, which is typically made of steel or duralumin; S is the cross-sectional area of the
transverse section; F is Young’s modulus, a physical quantity that characterizes the elastic
properties of the material, defining the relationship between stress and strain during tension
or compression; I is the principal moment of inertia, describing the distribution of mass
around the axis of rotation; N(x,t) is the axial load that occurs during drilling, directed
along the drill string and influenced by the string’s weight, tensile forces, soil resistance, and
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dynamic loading; € is the angular speed of the drill string, representing its rotation around
its own axis.

Taking into account the method of fixing the upper end of the drill string and its
interaction with the rock at the bottom, as well as the fact that only rotational motion
is possible while longitudinal and transverse movements are constrained, the boundary
conditions are presented as follows:

u(z,t) =0 (x=0,2=1), (2)
Pu(z,t) B B
EI“W =0 (z=0,2=1). (3)

These conditions correspond to a hinged support.
The initial conditions are defined as follows:

u(z,t) =0 (t=0), (4)
ou(z,0)
—5 = (=0, (5)

where C represents the displacement rate of the drill string in the Ox;x3 plane at the initial
moment in time.

The numerical solution of equation (1) was obtained by discretizing it in a finite difference
form. The finite difference scheme of equation (1) is given as follows:

ultt — 2ul 4l ul o — 4ul |+ 6ul — dul |+ ul,
pS z +EIQ;1 1— 11— 1 1+ 1+
At? Azt
I U?jll - 2“?“ + U?—Jrll — 2(uy uityy = 20+ ug 1)+ uz+1 + 2u ! u?_*ll
Pln At2Az?
1 n n n n n n n
4A IA2 (Nz+1< uiy —uit) — Ni'(uff — Uiﬂ)) — pSPuit = 0. (6)

Since the scheme is semi-implicit, the three-point Thomas algorithm was applied.

2.2 Application of machine learning
2.2.1 Data collection and processing of vibration information

Machine learning data is a fundamental component of the training process for machine
learning models and algorithms. The data was collected through numerical solutions of the
mathematical model of drill string vibrations. Three parameters of the drilling process —
initial velocity, longitudinal load, and angular velocity — were used as features, while the
maximum vibration value at the exact center of the drill string was taken as the data point.
The dataset consists of 300 data points and 3 features. The min-max normalization method
was used to avoid difficulties when building the model. Data collection and processing were
implemented using the Python programming language. The collected data was split into 75%
training data and 25% test data using the train test split function from the Scikit-learn
library. Figures 1 and 2 illustrate the training and test datasets.
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Figure 1: Training dataset Figure 2: Test dataset

2.2.2 Random forest

The Random Forest algorithm is a machine learning method that uses an ensemble of decision
trees for classification and regression tasks. The Random Forest algorithm operates as follows:

1. A random subset of objects (bootstrap sample) and a random subset of features (feature
subset) are selected from the training dataset.

2. For each selected feature subset, a decision tree is built using an information criterion.

3. Steps 1 and 2 are repeated k times, where k is the number of trees in the forest.

4. For classifying a new object, each tree in the forest makes a prediction, and the final
decision is determined by majority voting.

5. For regression tasks, each tree predicts a value, and the final prediction is calculated
by averaging the results across all trees.

To build the Random Forest model, the number of trees (the n_estimators parameter)
was set to 100. These trees are built independently of each other, and the algorithm selects a
random subset of features for constructing each tree. To build a tree, a bootstrap sample is
first created from the training dataset: from n_samples examples, n_samples examples are
randomly selected with replacement. As a result, the sample has the same size as the original
dataset, but some examples may be missing, while others may appear multiple times.

Next, a decision tree is built based on the generated bootstrap sample. The node-splitting
algorithm selects a subset of features at each split and determines the best split using one of
the selected features. The number of features to consider is controlled by the max_features
parameter [9].

Let us visualize the decision boundaries of the first 10 trees and the aggregated prediction
provided by the Random Forest model. Each plot in the graph corresponds to a decision tree
trained on the training dataset. Including all three features results in a 3D graph (Figure
3).The model built using all decision trees is shown in Figure 4.

The "feature importance"function in the Random Forest algorithm was used to determine
the importance of each feature. This metric indicates how significant each feature is in the
decision-making process. The importance of the features in the dataset is shown in Figure 5.
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Figure 3: Decision trees model Figure 4: Random Forest model
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Figure 5: Visualization of feature importance

2.2.3 Linear regression

Linear regression is a machine learning method used to predict numerical values based on a
linear relationship between features and the target variable. The general prediction formula
for linear regression is as follows:

g = w[0] - z[0] + w[1] - z[1] + w[p] - z[p] + b (7)

where z[0] to z[p] are the features. In our case, p = 3. w and b are the model parameters,
while g is the prediction generated by the model [10].
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The model is trained by finding the optimal coefficients w and b that minimize the mean
squared error (MSE) between the predicted and actual target values. The parameters are
adjusted to minimize the MSE, ensuring the best possible predictive performance. The 3D

linear regression model is illustrated in Figure 6.

U max

04 =

U max

Figure 6: The 3D linear regression model

Figure 7 shows the visualization of the linear model predicting the initial velocity based

on vibration values.
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Figure 7: Visualization of the linear model

3 Results and discussions

The parameters obtained from [8] in Table 1 were used to obtain the results of the numerical
solution of the linear mathematical model.

Table 1: Parameter values of the drilling system

Young’s modulus 2.1 x 10 Pa
Drill string density 7800 kg/m?
Drill string length 200 m
Inner diameter of the drill string 0.12m
Outer diameter of the drill string 0.20 m
Cross-sectional area of the string | 2.1 x 1072 m?
Angular velocity of the string 0.083 rad/s
Longitudinal load 1200 N
Initial velocity 0.01 m/s
Spatial step 0.1m
Time step 2x107°

Figure 8 shows the vibration graphs at different parts of the drill string. As a result,
we observe that the largest vibrations occur in the middle of the drill string.This is due
to the resonance vibrations caused by the interaction of the elastic properties of the drill
string material, gyroscopic forces, and external loads, including friction against the wellbore
walls. The maximum vibration amplitudes occur in the middle of the drill string due to the
distribution of mass, length, and boundary fixation conditions [11].
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3.1 Evaluation of machine learning model performance

To evaluate the performance of the developed models, 25% of the dataset was set aside as test
data before model training. This test dataset will be used to assess the model’s performance
by generating predictions for each test sample based on the provided features. The predicted
values will then be compared with the actual observed values. For this purpose, the score
method of the trained model object will be applied. Figures 9, 10 illustrate the comparison
of the Random Forest model and the Linear Regression model with the test dataset.

Predictions vs. actual values Predictions vs. actual values
e Linear Predictions 1.0 -gmamm RFR Predictions
—— Actual values = Actual values \
0.8 0.8 -
0.6~ 0.6 -
0.4 - 04 -
0.2- \J m 02- \J N
0.0 - 0.0 -
0 10 20 30 a0 50 60 70 0 10 20 0 2 50 60 70
Figure 9: Comparison of the linear Figure 10: Comparison of the random
regression model with actual data forest model with actual data

As observed, the predicted values closely align with the actual values, with only minor
discrepancies in certain areas. The x-axis represents the 75 test samples, while the y-axis
corresponds to their respective values. The results indicate that the model demonstrates
high accuracy in predicting vibration characteristics.

Table 2 presents a comparison of the results obtained from the Random Forest model,
the Linear Regression model, and the numerical solution of the mathematical model under
various conditions.

Table 2: Comparison of model predictions with actual values

C N L | Random Forest U,,,, | Linear Regression U,,., | Actual Value U,,q,
0.46 | 3000 | 0.15 0.28344 0.286592 0.28610
0.30 | 2800 | 0.05 0.18170 0.18549 0.18639
0.15 | 3800 | 0.33 0.09693 0.09369 0.09355
0.70 | 2500 | 0.25 0.44384 0.438285 0.435873

Table 3 presents the results of the second linear regression analysis, where the initial
velocity serves as the independent variable and the vibration amplitude as the dependent
variable. Additionally, the table includes the corresponding results obtained from the
mathematical model.
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Table 3: Comparison of the model’s predicted initial velocity with the actual value

U max | Linear Regression, C | Actual Value, U max
0.33 0.5 0.31
0.0025 0.0093 0.005
0.085 0.13 0.084
0.22 0.34 0.21
0.75 1.14 0.70

The linear regression model demonstrated better performance than the random forest
model, making it the preferred choice for this task. Random forest offers high accuracy,
robustness to large datasets, and feature importance evaluation but suffers from complex
interpretability and high computational cost. Linear regression, on the other hand, provides
simplicity, efficiency, and clear result interpretation while being sensitive to outliers and
limited in capturing nonlinear relationships. Given its reliable performance on the given
dataset, linear regression is recommended for predicting drill string vibrations.

4 Conclusion

The results of this study demonstrate that the application of machine learning techniques
significantly improves the accuracy of drill string vibration predictions. Three models were
developed and tested. Two models were designed to predict the maximum vibration amplitude
based on input parameters: one using the random forest algorithm and the other using linear
regression. Comparative analysis showed that linear regression performed better on new data
due to the linear dependency between initial velocity and maximum vibration amplitude.
However, with larger datasets, the performance of linear regression may decline, making
the random forest algorithm more suitable for such cases. The third model predicts the
initial velocity required to keep the vibration amplitude below a specified threshold, aiding
in optimizing operational parameters and ensuring wellbore stability. Linear regression was
chosen for this model due to its simplicity and accuracy with the given dataset. The use
of machine learning techniques in this context offers several advantages, including faster
and more accurate predictions, process optimization through reduced preparation time, and
automated data analysis for real-time decision-making. However, the models require high-
quality data and sufficient sample size for reliable performance, which can be challenging
when dealing with complex drilling conditions. Future work could involve expanding the
dataset with more diverse parameters and exploring advanced models to capture nonlinear
relationships more effectively. Overall, the study confirms the potential of machine learning
techniques for predicting drill string vibrations and optimizing drilling operations in the oil
and gas industry.
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