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ON PROPER EXPANSIONS AND PROPER CONTRACTIONS OF
NONLINEAR OPERATORS REPRESENTED IN THE FORM OF A

PRODUCT
Today there are many works devoted to the questions of expansion and contraction of operators
[1–12]. In all these works the questions of expansion of the additive “minimal” operator and the
questions of contraction of the additive “maximal” operator are considered. In this paper it is
shown that these restrictions on the additivity of the corresponding operators are not essential.
In [10] the questions of proper contraction of a maximal operator represented as a product are
considered, i.e., the relationship between the set of proper contractions of the operator A = LM
and the sets of proper contractions of the operators L and M is established. Here, an abstract
theorem is proved which allows us to establish the relationship between the set of proper extensions
of the operator A0 = L0M0 and the sets of proper extensions of the operators L0 and M0. In this
connection, we prove an abstract theorem that allows us to describe the correct contractions of
one class of nonlinear operators represented as a product.
Key words: operator, correct expansion, correct contraction, regular expansion, Bitsadze-
Samarskii type problem.

Абдухали Шыныбеков
Ал-Фараби атындағы Қазақ ұлттық университетi, Алматы, Қазақстан

e-mail: abd.shyn@gmail.com
Көбейтiндi түрiнде берiлген сызықтық емес операторлардың дұрыс кеңейтiлiмдерi мен

дұрыс тарылымдары туралы.

Осы таңда операторлардың дұрыс тарылымы мен дұрыс кеңейтiлiмi бойынша көптеген жұ-
мыстар жарық көрген [1–12]. Бұл жұмыстарда аддитивтi "минимальды" операторлардың
кеңейтiлiмдерi мен аддитивтi "максимальды" операторлардың тарылымдары қарастыры-
лған. Бұл жұмыста қарастырылатын операторлардың аддитивтiлiгi маңызды болмайтыны
көрсетiлген. Автордың [10] еңбегiнде көбейтiндi түрiнде берiлген сызықтық максимальды
операторлардың дұрыс тарылымдары қарастырылған, яғни аталмыш еңбекте A = LM опе-
раторының барлық дұрыс тарылымдары жиыны мен L және M операторларының барлық
дұрыс тарылымдары жиындары арасында өзара бiрмәндi сәйкестiк орнатылған. Бұл жұ-
мыста A0 = L0M0 операторының барлық дұрыс кеңейтiлiмдерi мен L0 және M0 операторла-
рының барлық дұрыс кеңейтiлiмдерi арасында тығыз байланыс барын көрсететiн абстрак-
циялы теорема дәлелденген. Осы орайда дәлелденген теорема көбейтiндi түрiнде берiлген
қайсыбiр сызықтық емес операторлар санатынаның дұрыс кеңейтiлiмдерiн сипаттауға бола-
тыны мысал арқылы көрсетiлген.
Түйiн сөздер: оператор, дұрыс кеңейтiлiм, дұрыс тарылым, регулярлы кеңейтiлiм, Бицадзе-
Самарский типтес есептер.
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4 On proper expansions and proper contractions of nonlinear operators . . .

На сегодня имеются множество работ, посвященных вопросам расширения и сужения опе-
раторов [1–12]. Во всех этих работах рассматриваются вопросы расширения аддитивного
"минимального" оператора и вопросы сужения аддитивного "максимального" оператора. В
данной работе показано, что эти ограничения аддитивности соответствующих операторов не
существенны. В работе [10] рассмотрены вопросы корректного сужения максимального опе-
ратора, представимого в виде произведения, т.е. установлено взаимосвязь между множеством
правильных сужении оператора A = LM и множествами правильных сужении операторов
L и M . Здесь доказана абстрактная теорема, позволяющая установить взаимосвязь между
множеством правильных расширении оператора A0 = L0M0 и множествами правильных рас-
ширении операторов L0 иM0. В этой связи, доказывается абстрактная теорема, позволяющая
описать правильные сужения одного класса нелинейных операторов, представимых в виде
произведения.
Ключевые слова: оператор, корректное расширения, корректное сужение, регулярное рас-
ширение, задача типа Бицадзе-Самарского.

1 Introduction

In this work we consider following PDE

u2n
∂2u

∂x∂y
+ 2n · u(2n−1)∂u

∂x
· ∂u
∂y

= f(x, y), f(x, y) ∈ C(G)

A condition of univariate solvability of one problem of Bitsadze-Samarsky type is shown.
Here C([0, 1]× [0, 1]) ≡ C(G).

Keywords: operator, proper extension, proper restriction, regular extension, Bitsadze-
Samarsky type problem.

Let us briefly recall some provisions of [10].
Let the operator A = LM act in the Banach space B. Here, L is a certain additive closed

operator for which D(L) ⊂ B and R(L) = B. In the domain of definition D(L), we introduce
the norm

‖u‖M = ‖u‖B + ‖Lu‖B, u ∈ D(L). (1)

The closure of the manifold D(L) in the norm (1) will be denoted by M. It is evident
that M is a Banach space. Now, let the operator M map the manifold D(M) onto the space
M, i.e., R(M) = M. Then, we define the operator A by the equality A = LM . Clearly,
D(A) = D(M) and R(A) = R(L) = B. If L̃ and M̃ are certain proper restrictions of the
operators L and M , respectively, then the following holds:

Theorem 1 The operator Ã−1 = M̃−1L̃−1 is invertible, and its inverse Ã is a proper
restriction of the operator A.

Additionally, the following lemma is proven:

Лемма 1 kerA = B, where

B = {g = M̃−1g1 + g2, g1 ∈ kerL, g2 ∈ kerM}.

4



Abdukhali Shynybekov 5

Using this lemma, an abstract theorem is proved, which provides a complete description of
the set of all proper restrictions of the operator A in terms of the sets of all proper restrictions
of the operators L and M .

Now, we will show that this method can also be applied to a certain class of nonlinear
operators that can be represented as a product.

Within the previously used notation, let us additionally consider a (generally nonlinear)
bijective mapping N : B→ B such that N(0) = 0. Then, we can define the product

A = LMN (2)

Clearly, D(A) = D(MN) = D(M) and R(A) = R(L) = B. Let L̃ and M̃ still be certain
proper restrictions of the operators L and M , respectively. Then, the following holds:

Theorem 2 The operator Ã−1 = N−1M̃−1L̃−1 is invertible, and its inverse Ã is a proper
restriction of the operator A.

Proof 1 The product N−1M̃−1L̃−1 defines a certain operator Ã−1. Indeed, by definition,
we have R(L̃) = D(L̃−1) = B and R(L̃−1) = D(L̃) ⊂ M, D(N−1M̃−1) = D(M̃−1) = M.
Therefore, the operator Ã−1 = N−1M̃−1L̃−1 is well-defined with domain D(Ã−1) = B and
range R(Ã−1) = N−1M̃−1D(L̃) ⊂ B.

Now, if for some f ∈ B the equality Ã−1f = 0 holds, then

f = LMN(N−1M̃−1L̃−1f) = A(Ã−1f) = 0,

which means that the operator Ã−1 has an inverse operator Ã. Since the operator Ã−1 is
continuous, it follows that Ã is a proper restriction of the operator A. The theorem is proved.

Previously, we considered proper restrictions of operators that can be represented as a
product. Now, we will show that it is also possible to consider proper extensions of such
operators.

Let L be a certain closed additive operator with domain D(L) ⊂ B and range R(L) = B,
where B is a Banach space. Let L0 be a restriction of the operator L, which has a continuous
inverse L−10 on R(L0) and satisfies R(L0) 6= B , i.e., the operator L0 has a continuous left
inverse.

By taking the closure of the manifold D(L) in the norm (4), we obtain the Banach space
M. Let M0 denote the closure of the manifold D(L0) in the norm (1).

Let the operator M0 satisfy the following conditions:
a) D(M0) ⊂ B,R(M0) ⊂M0;
b) On the set R(M0), the operator M0 has a continuous inverse M−1

0 .
Then, the product A0 = L0M0 is well-defined, and we have
D(A0) = D(M0) ⊂ B, R(A0) = R(L0) ⊂ B.
Clearly, the inverse operator A−10 =M−1

0 L−10 is well-defined on the set R(A0).
Let L̃ be a regular extension of the operator L0, i.e., L0 ⊂ L̃ ⊂ L. Let M̃ be a proper

extension of the operator M0. Then, the following holds:

Theorem 3 The operator Ã−1 = M̃−1L̃−1 is invertible, and its inverse Ã is the correct
extension of the operator A0.

5



6 On proper expansions and proper contractions of nonlinear operators . . .

Proof 2 It is evident that the operator Ã−1 is defined on the entire space B. Now, let us
show that the operator Ã−1 is invertible. Indeed, if for some f ∈ B we have Ã−1f = 0, then
M̃−1L̃−1f = 0. Since the operators M̃−1 and L̃−1 have inverses, we obtain L̃−1f = 0, which
implies f = 0. Therefore, the operator Ã = (Ã−1)−1 exists. Now, it is sufficient to show that
A0 ⊂ Ã.

Indeed, if u0 ∈ D(A0), then L0u0 ∈ D(M0), i.e., there exists an element f0 ∈ R(A0) such
that f0 = A0u0 and u0 = A−10 f0. Then,

Ã−1f0 = M̃−1L̃−1f0 = M̃−1L−10 f0 =M−1
0 L−10 f0 = u0.

Therefore, u0 ∈ D(Ã), i.e., Ãu0 = f0. The theorem is proven.

Next, using this theorem, as an example, let’s consider the proper extensions of a certain
nonlinear differential operator.

In the space C([0, 1]× [0, 1]) ≡ C(G), we consider the following differential equation:

u2n
∂2u

∂x∂y
+ 2n · u2n−1∂u

∂x

∂u

∂y
= f(x, y), f(x, y) ∈ C(G), (3)

Let L denote the operator acting as the differential expression u′y with the domain of
definition:

D(L) = {u ∈ C(G) : ∂u
∂y
∈ C(G)}

Let M denote a Banach space obtained by closing the manifold D(L) with respect to the
norm:

‖u‖M = ‖u‖C(G) + ‖Lu‖C(G). (4)

Let L0 be the restriction of the operator L with the domain of definition:

D(L0) = {u ∈ D(L) : u(x, 0) = 0, u(x, 1) = 0}.

Then,

R(L0) = {f(x, y) ∈ C(G) :
∫ 1

0

f(x, τ)dτ = 0} ⊂ C(G).

In the set R(L0), there exists a continuous inverse L−10 :

L−10 f =

∫ y

0

f(x, τ)dτ.

Let M0 denote the Banach space obtained by closing D(L0) with respect to the norm (4).
Let M0 denote the operator M0 : D(M0)→ R(M0), where D(M0) ⊂ C(G), R(M0) ⊂ B0,

and:
D(M0) = {u ∈ C(G) : u2n

∂u

∂x
∈ B0, u(x, 0) = u(x, 1) = 0},

R(M0) = {f ∈ B0 :

∫ 1

0

f(t, y)dt = 0}.

6



Abdukhali Shynybekov 7

In the set R(M0), there exists a continuous inverse M−1
0

M−1
0 f =

√
2n+ 1

[∫ x

0

f(t, y)dt

]1/(2n+1)

.

Let the operator L̃ be generated by the following boundary value problem:

{
∂u
∂y

= f(x, y), f(x, y) ∈ C(G),
u(x, 0) = 0,

(5)

The operator L̃ is a regular extension of the operator L0: L0 ⊂ L̃ ⊂ L, and:

L̃−1f =

∫ x

0

f(x, τ)dτ.

Also, the operator M̃ , generated by the following boundary value problem:{
u2n ∂u

∂y
= f(x, y), f(x, y) ∈ B,

u(0, y) = 0,
(6)

is a proper extension of the operator M0, and its inverse is:

M̃−1f =
√
2n+ 1

[∫ x

0

f(t, y)dt

]1/(2n+1)

.

Лемма 2 The unique solution to the boundary value problem{
u2n ∂2u

∂x∂y
+ 2n · u2n−1 ∂u

∂x
∂u
∂y

= f(x, y), f(x, y) ∈ C(G),
u(x, 0) = 0, u(0, y) = 0,

(7)

has the form:

u(x, y) =
√
2n+ 1

[∫ x

0

∫ y

0

f(t, τ)dtdτ

]1/(2n+1)

. (8)

Proof 3 According to Theorem 3, the operator

Ã−1 = M̃−1L̃−1

is invertible, and its inverse operator Ã is a proper extension of the operator A0 = L0M0.
Therefore, from (5) and (7), we conclude that the boundary value problem

u2n
∂2u

∂x∂y
+ 2n · u2n−1∂u

∂x

∂u

∂y
= f(x, y), f(x, y) ∈ C(G), (9)

u(0, y) = 0, (10)

7



8 On proper expansions and proper contractions of nonlinear operators . . .

∂

∂x
u2n+1(x, 0) = 0 (11)

has a unique solution of the form (8). The boundary value problems (7) and (9)–(11) are
equivalent. Indeed, integrating the condition (11) with respect to x, we get u2n+1(x, 0) −
u2n+1(0, 0) = 0, and from (8), we have u(0, 0) = 0, so we obtain that u(x, 0) = 0.

Now, let L10 be the operator generated by the following boundary value problem:

∂u

∂x
= f(x, y), f(x, y) ∈ C(G),

a1(y)u(0, y) + a2(y)u(φ(y), y) + a3(y)u(1, y) = 0,

∂u(0, y)

∂x
= 0,

where x = φ(y) is a smooth curve located in the region G, ai(y) ∈ C[0, 1], and

a∗(y) = a1(y) + a2(y) + a3(y) 6= 0, y ∈ [0, 1] (12)

It is clear that:

L−110 f =

∫ x

0

f(t, y)dt− a2(y)

a∗(y)

∫ φ(y)

0

f(t, y)dt− a3(y)

a∗(y)

∫ 1

0

f(t, y)dt, (13)

and
R(L10) = {f(x, y) ∈ C(G) : f(0, y) = 0}.

As a regular extension of the operator L10, we take the operator L1, generated by the
following boundary value problem:

∂u

∂x
= f(x, y), f(x, y) ∈ C(G),

a1(y)u(0, y) + a2(y)u(φ(y), y) + a3(y)u(1, y) = 0.

For this problem to have a unique solution, it is necessary and sufficient to fulfill the
condition (12) (i.e., a∗(y) 6= 0), and the unique solution is given by (13).

As the operator M0, we take the previously considered operator, i.e., the operator M0 :
D(M0)→ R(M0), where D(M0) ⊂ C(G), R(M0) ⊂ B0, and:

D(M0) = {u ∈ C(G) : u2n
∂u

∂x
∈ B0, u(x, 0) = u(x, 1) = 0}.

We also consider the operator M̃ , generated by the boundary value problem (6). This
operator is a proper extension of the operator M0, and:

M̃−1f =
√
2n+ 1

[∫ x

0

f(t, y)dt

]1/(2n+1)

.

Then, by Theorem 3, we have that the operator A1 = L1M̃ is a proper extension of the
operator A10 = L10M0. Thus, we have proven the following theorem:

8



Abdukhali Shynybekov 9

Theorem 4 In order for the problem

u2n
∂2u

∂x∂y
+ 2n · u2n−1∂u

∂x

∂u

∂y
= f(x, y), f(x, y) ∈ C(G),

a1(y)u(0, y) + a2(y)u(φ(y), y) + a3(y)u(1, y) = 0,

u(x, 0) = 0,

to be uniquely solvable, it is necessary and sufficient to fulfill the inequality a∗(y) 6= 0, y ∈
[0, 1], and its unique solution is given by:

u(x, y) =
√
2n+ 1

[∫ y

0

∫ x

0

f(t, τ)dtdτ −
∫ y

0

a2(τ)

a∗(τ)

∫ φ(τ)

0

f(t, τ)dtdτ

]1/(2n+1)

−

−
√
2n+ 1

[∫ y

0

a3(τ)

a∗(τ)

∫ 1

0

f(t, τ)dtdτ

]1/(2n+1)

,

where
a∗(y) = a1(y) + a2(y) + a3(y) 6= 0, y ∈ [0, 1].

Remark 1 : The results of Theorem 4 can also be obtained by applying Theorem 2. In this
case, as the bijective map N : C(G)→ C(G), we take the operator N acting as N(u) = u2n+1,
u ∈ C(G).

2 Conclusion

In this work an abstract theorem is proved which allows us to establish the relationship
between the set of proper extensions of the operator A0 = L0M0 and the sets of proper
extensions of the operators L0 and M0. In this connection, author proves an abstract
theorem that allows us to describe the correct contractions of one class of nonlinear operators
represented as a product.
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OPTIMAL APPROXIMATION OF SOLUTIONS OF POISSON EQUATION
BY INITIAL DATA IN THE FORM OF ACCURATE AND INACCURATE

INFORMATION OF TRIGONOMETRIC FOURIER COEFFICIENTS

Partial differential equations along with a function, derivative, and integral are basic mathematical
models. Therefore, the problem of their approximation by accurate and inaccurate information with
the construction of optimal computational aggregates (approximation methods) of approximation
is relevant and many articles are devoted to this issue.
In the article is considered the problem of approximation of solutions of Poisson equation with
the right-hand side f from the Nikol’skii classes Hr

2 (0, 1)
s in the Lebesgue metrics L2(0, 1)s and

L∞(0, 1)s. The orders of error of approximation of solutions of the Poisson equation by accurate
and inaccurate information in the form of trigonometric Fourier coefficients of f are obtained.
Namely, a lower bound for the approximation error based on accurate information is found for all
possible computational agregates using an arbitrary finite set of trigonometric Fourier coefficients.
A computational agregate (approximation method) by the trigonometric Fourier coefficients of the
right-hand side f of the equation is constructed that confirms this lower bound. The boundaries
of ε̃N of inaccurate information preserving the order of error of approximation by accurate
information are established.
Key words: Poisson equation, approximation by accurate and inaccurate information, Nikol’skii
classes, optimal computational aggregate, boundaries of inaccurate information.

А. Арыстанғалиқызы1∗ , А.Ж. Жубанышева2
1Қ. Жұбанов атындағы Ақтөбе өңiрлiк университетi, Ақтөбе, Қазақстан
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Тригонометриялық Фурье коэффициенттерiнен алынған дәл және дәл емес бастапқы
ақпарат бойынша Пуассон теңдеуiнiң шешiмдерiн оптималды жуықтау

Дербес туындылы дифференциалдық теңдеулер функция, туынды және интегралмен қатар
негiзгi математикалық модельдер қатарына жатады. Сондықтан, дәл және дәл емес ақпарат
бойынша оларды жуықтаудың оптималды есептеу агрегаттарын (жуықтау әдiстерiн) құру
мәселесi өзектi болып табылады және осы мәселеге көптеген мақалалар арналған.
Мақалада f оң жағы Hr

2 (0, 1)
s Никольский класында жататын Пуассон теңдеуiнiң шешiм-

дерiн L2(0, 1)s және L∞(0, 1)s Лебег метрикаларында жуықтау есебi қарастырылады. f функ-
циясының тригонометриялық Фурье коэффициенттерi түрiнде берiлген дәл және дәл емес
ақпарат бойынша Пуассон теңдеуiнiң шешiмдерiн жуықтау қателiгiнiң ретi алынды. Атап ай-
тқанда, тригонометриялық Фурье коэффициенттерiнiң кез келген ақырлы жиынын қолдана-
нып, барлық мүмкiн есептеу агрегаттары үшiн дәл ақпараттарға негiзделген жуықтау қателi-
гiнiң төменнен бағалауы алынды. Төменнен бағалауды растайтын есептеуiш агрегат (жуы-
қтау әдiсi) теңдеудiң оң жақ тригонометриялық Фурье коэффициенттерi бойынша құрылды.
Дәл ақпарат бойынша жуықтау қателiгiнiң ретiн сақтайтын дәл емес ақпараттың ε̃N шека-
ралары анықталды.
Түйiн сөздер: Пуассон теңдеуi, дәл және дәл емес ақпарат бойынша жуықтау, Никольский
класстары, тиiмдi есептеу агрегат, дәл емес ақпарат шекаралары.
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Оптимальное приближение решений уравнений Пуассона по исходным данным в виде

точных и приближенных значений тригонометрических коэффициентов Фурье

Дифференциальные уравнения в частных производных наряду с функцией, производной, ин-
тегралом относятся к основным математическим моделям.
Следовательно задача их приближения по точным и неточным данным с построением опти-
мальных вычислительных агрегатов (методов приближения) является актуальной и данно-
му вопросу посвещено множество статей. В статье изучается задача приближения решений
уравнения Пуассона с правой частью f из классов Никольского Hr

2 (0, 1)
s в Лебеговой метри-

ках L2(0, 1)s и L∞(0, 1)s. Получены порядки погрешности приближения решений уравнения
Пуассона по точным и неточным данным в виде тригонометрических коэффициентов Фурье
функции f . Именно, найдена оценка снизу погрешности приближения по точным данным по
всем возможным вычислительным агрегатам, использующим конечный набор тригономет-
рических коэффициентов Фурье. Построен вычислительный агрегат (метод приближения)
по тригонометрическим коэффициентам Фурье правой части f уравнения, подтверждающий
данную оценку снизу. Установлены границы ε̃N неточной информации, сохраняющие поря-
док убывание по точной информации.
Ключевые слова: уравнение Пуассона, приближение по точным и неточным данным, клас-
сы Никольского, оптимальный вычислительный агрегат, границы неточной информации.

1 Introduction

Solutions of partial differential equations, even when expressed explicitly by means of Fourier
series in the eigenfunctions of the corresponding differential operator or convolution with the
corresponding kernels, being represented by series or integrals, in fact again infinite objects.
Therefore, the problem of approximating them with finite objects again arises. In the article
is considered the problem of approximation of solutions of Poisson equations in the sence of
computational (numerical) diameter (denoted by C(N)D). Poisson equation has an various
applications. One of them is that it describes the distribution of an electrostatistics, potential
theory, scalar field, such as an electric potential or gravitational potential, in space. Thus, its
physical meaning is that it relates the distribution of field sources to the field itself. Therefore,
it is important to take this equation into account. Let at first consider the definition of
computational (numerical) diameter problem.

In computational (numerical) diameter the initial definition is (see, for example, [1]- [2])

δN(εN ;DN)Y ≡ δN(εN ;T ;F ;DN)Y ≡ inf
(l(N);ϕN )∈DN

δN(εN ; (l(N);ϕN))Y

where
δN(εN ; (l(N);ϕN))Y ≡ δN(εN ;T ;F ; (l(N);ϕN))Y ≡

≡ sup
f∈F,{

γ
(τ)
N

}N
τ=1

,
∣∣∣γ(τ)N

∣∣∣≤1,
(τ=1,...,N)

‖Tf(·)− ϕN(l
(1)
N (f) + γ

(1)
N ε

(1)
N ; ..., l

(N)
N (f) + γ

(N)
N ε

(N)
N ; ·)‖Y .

Here, a mathematical model is given by the operator T : F → Y. X and Y are the
normalized spaces of functions defined on ΩX and ΩY respectively, F ⊂ Y is a class of
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functions. Numerical information l(N) ≡ l(N)(f) = (l
(1)
N (f), ..., l

(N)
N (f)) of volume N(N =

1, 2, ...) about f from class F is taken by linear functionals l(1)N (f), ..., l
(N)
N (f) (in general, not

necessarily linear). An information processing algorithm ϕN(z1, ..., zN ; ·) : CN × ΩX → C is
a correspondence, which for every fixed (z1, ..., zN) ∈ CN as a function of (·) is an element of
Y and ϕN(0, ..., 0; ·) = 0. If the class of functions under consideration is centrally symmetric,
then the last condition ϕN(0, ..., 0; ·) = 0 can be ignored. The record ϕN ∈ Y means that ϕN
satisfies all the conditions listed above, and {ϕN}Y is a set composed of all ϕN ∈ Y . Further,
(l(N);ϕN) is a computational aggregate of recovery from accurate information for the function
f ∈ F acting according to the rule ϕN(l

(1)
N , ..., l

(N)
N ; ·). The recovery of Tf by inaccurate

information is proceeding as follows. At first the boundaries of the inaccuracy are set: a vector
εN = (ε

(1)
N , ..., ε

(N)
N ) with non-negative components. Then, the accurate values l(τ)N (f) are

replaced with a given accuracy ε(τ)N ≥ 0 by approximate values zτ ≡ zτ (f), |zτ− l(τ)N (f)| ≤ ε
(τ)
N

(τ = 1, ..., N), numbers zτ ≡ zτ (f) (τ = 1, ..., N) are processed using the algorithm ϕN
up to the function ϕN(z1(f), ..., zN(f); ·), which will constitute the computational aggregate
(l(N);ϕN) ≡ ϕN(z1(f), ..., zN(f); ·) constructed according to information of the precision εN =

(ε
(1)
N , ..., ε

(N)
N ).

Let DN ≡ DN(F )Y be a given set of complexes (l
(1)
N , ..., l

(N)
N ;ϕN) ≡ (l(N), ϕN), we

emphasize, operators of recovery by accurate information.
For nonnegative sequences {AN} and {BN}, we write AN � BN (or, equivalently AN =

O(BN)) if there exists a positive constant c > 0 such that, for all N(N = 1, 2, . . . ) hold
AN ≤ cBN . Furthermore, we write AN � BN if both AN � BN and BN � AN hold
simultaneously.

Within the framework of given notations and definitions, the problem of optimal recovery
by inaccurate information, framed under the name computational (numerical) diameter,
according to the [1]- [2], consists in a collective sense in sequential solution of the following
three problems: C(N)D-1, C(N)D-2 and C(N)D-3.

For given T ;F ;Y ;DN :
C(N)D-1: an order of � δN(0;DN)Y ≡ δN(0;T ;F ;DN)Y is found with the construction

of a specific computional aggregate (l
(N)
, ϕN) from DN ≡ DN(F )Y supporting ordering

� δN(0;DN)Y ;

C(N)D-2: for (l
(N)
, ϕN) is considered the problem of existence and finding a sequence

ε̃N ≡ ε̃N(DN ; (l
(N)

;ϕN))Y with non-negative components such that

δN(0;DN)Y � δN(ε̃N ; (l
(N)

;ϕN))Y ≡

≡ sup{‖Tf(·)− ϕN(z1, ..., zN ; ·)‖Y : f ∈ F, |lτ (f)− zτ | ≤ ε̃
(τ)
N (τ ∈ {1, ..., N})}

with simultaneous satisfying the following expression

∀ηN ↑ +∞(0 < ηN < ηN+1, ηN → +∞) :

lim
N→+∞

δN(ηN ε̃N ; (l
(N)
, ϕN))Y /δN(0;DN)Y = +∞;
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C(N)D-3: massiveness of limiting error ε̃N is set: as huge as possible set MN(l
(N)

;ϕN)

from DN (usually associated with the structure of the (l
(N)

;ϕN)) of computional aggregates
(l(N), ϕN) is found, such that for each of them the following relation holds

∀ηN ↑ +∞(0 < ηN < ηN+1, ηN → +∞) :

lim
N→+∞

δN(ηN ε̃N ; (l(N), ϕN))Y /δN(0;DN)Y = +∞.

In the article is considered the following concretization of computational (numerical)
diameter problem. Tf = u(x, f) – the solution of Dirichlet problem of Poisson equations

∆u ≡ ∂2u

∂x21
+
∂2u

∂x22
+ ...+

∂2u

∂x2s
= f(x), (1)

on a unit cube [0, 1]s, where f(x) = f(x1, ..., xs) ∈ F = Hr
2 – Nikol’skii class, Y are Lebesgue

metrics L2 and L∞ and recovery is performed over all computational aggregates, in which
numerical information is specified by trigonometric Fourier coefficients with an arbitrary
spectrum:

DN = ΦN = {l(1)N (f) = f̂(m(1)), ..., l
(N)
N (f) = f̂(m(N)) : m(j) ∈ Zs(j = 1, ..., N)} × {ϕN}Y ,

where Y is L2 or L∞,

f̂(m) =

∫
[0,1]s

f(x)e−2πi(m,x)dx

are trigonometric Fourier coeficients, (m,x) = m1x1 + ... + msxs, m = (m1, ...,ms), x =
(x1, ..., xs).

In this article, the computational (numerical) diameter problem in the specified
concretization is solved in parts C(N)D-1 and the first part of C(N)D-2. Let’s move on
to a brief overview of the issue.

One of the first result, when f is odd, approximation of solution to Poisson
equation is considered by N.M.Korobov in [3, p. 187-189]. There are approximation
operator is constructed on the value of the function f (initial condition) at the points({

a1k
N

}
, ...,

{
ask
N

})
, k ∈ 1, ..., N, ({b} – fractional part of b). If a1, ..., as are the optimal

coefficients (see definition of optimal coeffitients in [3, p. 96]) modulo N and β index, then

the approximation of error is O
(

(lnN)
rβ
2 +s

N
r
2−

1
2+1

s

)
.

The authors of [4] were achieved sharp estimates in the power scale for the approximation
error, which is almost square times better in comparison with previous result of Korobov.
More precisely, with accuracy O

(
(lnN)(r+2/s)(s−1)

Nr−(1−1/p−2/s)

)
and O

(
(lnN)r(β+s)+s

Nr

)
in cases 1− 1

p
− 2

s
> 0

and 1− 1
p
− 2

s
≤ 0 respectively.

For practical purposes, however, in [5] got the result about sampling on sparse grids by the
Smolyak’s algorithm. In [6] considered the approximation of a function in the Besov class and
used it to approximate solutions of Laplace equation. As well as, approximate the solution of
2D and 3D Poisson’s equations by the Haar wavelet method is considered in [7]. Research on
the problem of approximating solutions of the Poisson equation with accurate information
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in anisotropic Korobov classes Er1,...,rs(0, 1)s has been studied recently in the papers [8]-
[9]. The problem of approximation of solutions to Poisson equation with right-hand side
from Nikol’skii-Besov classes Br

2,θ(0, 1)s and anisotropic Korobov classes Er1,...,rs(0, 1)s by
the value of the function at the points

({
a1k
N

}
, ...,

{
ask
N

})
, k ∈ 1, ..., N is considered in [10].

Approximation by inaccurate information of solutions of Poisson equations with right-hand
side f ∈ Er1,...,rs is considered in [11] and f ∈ Er

s and W r
2 cases are considered in [12]-

[13] respectively. There are obtained upper bound of error of approximation by innacurate
information from values at the points of f in uniform metric. In [12], the author approximates
the solutions of the Poisson equation in the L2 metric using an approximation operator
constructed from a finite set of Fourier coefficients of the function with right hand side
f ∈ Er

s . Here is given a complete solution for C(N)D problem.

2 Necessary definitions and statements

Definition 1 (see [14], p. 75-76). The Nikol’skii class Hr
q (0, 1)s (s = 1, 2, ...; r > 0; 1 < q <

+∞) is the set of all functions f(x) ∈ Lq(0, 1)s that 1-periodic in each of their variable
satisfying the inequality

sup
j=0,1,...

2jr

∥∥∥∥∥∥
∑

[2j−1]≤‖m‖<2j

f̂(m) · e2πi(m,x)
∥∥∥∥∥∥
Lq(0,1)s

≤ 1, (2)

where the square bracket [...] means the integer part. For everywhere below for m =
(m1, ...,ms) we set ‖m‖ = maxj=1,...,s |mj|.

Let F be some class of f(x) = f(x1, ..., xs) functions 1-periodic in each variable whose
trigonometric Fourier series converges absolutely.

Assume that f̂(0) 6= 0. It is easy to verify that, for any boundary condition there exists a
function ω(x) depending on this condition such that ω(x) is continuous on [0, 1]s and ∆ω ≡ 1
on [0, 1]s. Moreover, solution of (1) has the form

uω(x, f) = ω(x) · f̂(0)− 1

4π2

∑
m∈Zs

∗ f̂(m)

(m,m)
e2πi(m,x). (3)

If f̂(0) = 0, then for a solution of (1) to exist, it is necessary that the boundary condition
u|G = h(x) on the boundary of G satisfies

h(x) = − 1

4π2

∑
m∈Zs

∗ f̂(m)

(m,m)
e2πi(m,x)(x ∈ G).

If f(x1, ..., xs) is odd in each of the variables x1, ..., xs then the function (see, [3], p.187-189)

u(x, f) = − 1

4π2

∑
m∈Zs

∗ f̂(m)

(m,m)
e2πi(m,x)

is a solution of (1) with zero boundary condition on [0, 1]s. Here and everywhere below the
asterisk “∗” over the sum means that m = (0, ..., 0) is dropped in the summation.
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3 Main result and its proof

Theorem 1. Let are given positive integer s and r > s/2. Then the following statements
hold (N = (2n+1 + 1)s, n = 1, 2, ...)

C(N)D-1:
δN(0;DN)L2 ≡

≡ inf
m(1)∈Zs,...,m(N)∈Zs;

ϕN

sup
f∈Hr

2

∥∥∥uω(·, f)− ϕN(f̂(m(1)), ..., f̂(m(N)); ·)
∥∥∥
L2(0,1)s

� N−
r+2
s , (4)

upper bound is sharps on computational aggregate

ϕN(f̂(m(1)), ..., f̂(m(N));x) = ω(x)f̂(0)− 1

4π2

∑
m∈I2n

∗ f̂(m)

(m,m)
e2πi(m,x), (5)

here in (5) the set {m(1) = 0,m(2), ...,m(N)} is some ordering of the set I2n , i.e.

I2n = {m = (m1, ...,ms) ∈ Zs : |mj| ≤ 2n(j = 1, 2, ..., s)} = {m(1) = 0,m(2)...,m(N)}. (6)

C(N)D-2 (first part): For computational aggregates ϕN(f̂(m(1)), ..., f̂(m(N)), x) from
(5) and for the numerical sequence

ε̃N �


N−

r+2
s , ifs < 4,

(lnN)−
1
2 ·N− r+2

4 , ifs = 4,

N−
r
s
− 1

2 , ifs > 4.

(7)

satisfy
δN(0;DN)L2 � δN (ε̃N ;DN)L2 �

� inf
m(1)∈Zs,...,m(N)∈Zs,

ϕN

sup
f∈Hr

2 ,

{γ(τ)N }
N
τ=1,|γ

(τ)
N |≤1,

(τ=1,...,N)

∥∥∥uω(x, f)− ϕN(f̂(m(1)) + ε̃
(1)
N γ

(1)
N , ..., f̂(m(N))+

+ε̃
(N)
N γ

(N)
N ;x)

∥∥∥
L2
� sup

f∈Hr
2 ,

{γ(τ)N }
N
τ=1,|γ

(τ)
N |≤1,

(τ=1,...,N)

∥∥∥uω(x, f)− ϕN(f̂(m(1)) + ε̃
(1)
N γ

(1)
N , ..., f̂(m(N))+

+ε̃
(N)
N γ

(N)
N ;x)

∥∥∥
L2
� N−

r+2
s . (8)

Proof. Let f belongs to Nikol’skii classes Hr
2 . Then since r > s/2 from the definition of

class Hr
2 follows uω(x, f) ∈ L2(0, 1)s. Let n be a given positive integer, we set N = |I2n| =

(2n+1 + 1)s. According to the definition of DN , we set

BN = {m(1) = 0;m(2); ...;m(N)}, BN = I2n ,

l
(m(1))
N (f) = f̂(m(1)) = f̂(0), l

(mj)
N (f) = f̂(m(j)), j = 2, 3, ..., N.
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Let’s start with an upper bound for the value of δN (ε̃N ;DN)L2 from C(N)D-2. Let are
given {γ(τ)N }Nτ=1 ≡ {γ

(m)
N }m∈I2n , |γ

(τ)
N | ≤ 1(τ = 1, ..., N). By (3) and (5), we have (L2 ≡

L2(0, 1)s) ∥∥∥uω(x, f)− ϕN(f̂(m(1)) + ε̃
(1)
N γ

(1)
N , ..., f̂(m(N)) + ε̃

(N)
N γ

(N)
N ;x)

∥∥∥
L2
≤

≤
∥∥∥uω(x, f)− ϕN(f̂(m(1)), ..., f̂(m(N));x)

∥∥∥
L2

+

∥∥∥∥∥ω(x)ε̃Nγ
(0)
N −

1

4π2

∑
m∈I2n

∗ ε̃Nγ
(m)
N

(m,m)
e2πi(m,x)

∥∥∥∥∥
L2

≤

≤

∥∥∥∥∥∥− 1

4π2

∑
m∈Zs/I2n

f̂(m)

(m,m)
e2πi(m,x)

∥∥∥∥∥∥
L2

+

∥∥∥∥∥ω(x)ε̃Nγ
(0)
N −

1

4π2

∑
m∈I2n

∗ ε̃Nγ
(m)
N

(m,m)
e2πi(m,x)

∥∥∥∥∥
L2

≡

≡ ‖I1‖L2 + ‖I2‖L2 .

Estimating from above for ‖I1‖L2 gives upper bound for δN(0;DN)L2 in C(N)D-1. We will
evaluate upper bound of the error of approximation in L2 metric by using (2), (3), (5) and
Parseval’s equality:

‖I1‖2L2 ≡
∥∥∥uω(x, f)− ϕN(f̂(m(1)), ..., f̂(m(N));x)

∥∥∥2
L2(0,1)s

=

=

∥∥∥∥∥∥− 1

4π2

∑
m∈Zs/I2n

f̂(m)

(m,m)
e2πi(m,x)

∥∥∥∥∥∥
2

L2

=
+∞∑

j=n+1

∑
2j≤‖m‖<2j+1

|f̂(m)|2

16π4(m,m)2
�

�
+∞∑

j=n+1

∑
2j≤‖m‖<2j+1

|f̂(m)|2

(m2
1 + ...+m2

s)
2
�

+∞∑
j=n+1

∑
2j≤‖m‖<2j+1

|f̂(m)|2

(maxj=1,...,s |mj|2)2
�

�
+∞∑

j=n+1

1

24j

 ∑
2j≤‖m‖<2j+1

|f̂(m)|2
 · 22(j+1)r · 2−2(j+1)r � 1

24n

+∞∑
j=n+1

2−2(j+1)r �

� 2−4n−2nr � N−
2(r+2)
s .

Further,
sup
f∈Hr

2

∥∥∥uω(x, f)− ϕN(f̂(m(1)), ..., f̂(m(N));x)
∥∥∥
L2
� N−

r+2
s

and

δN(0;DN)L2 ≡ inf
m(1)∈Zs,...,m(N)∈Zs,

ϕN

sup
f∈Hr

2

∥∥∥uω(x, f)− ϕN(f̂(m(1)), ..., f̂(m(N));x)
∥∥∥
L2
� N−

r+2
s .

which is the upper bound in (4).
Then let’s evaluate ‖I2‖L2 (see(7))

‖I2‖L2 ≡

∥∥∥∥∥ω(x)ε̃Nγ
(0)
N −

1

4π2

∑
m∈I2n

∗ ε̃Nγ
(m)
N

(m,m)
e2πi(m,x)

∥∥∥∥∥
L2

� ε̃N +

( ∑
m∈I2n

∗
ε̃2N

1

(m,m)2

) 1
2

�
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� ε̃N

1 +

n−1∑
j=0

∑
2j≤‖m‖<2j+1

1

(m2
1 + ...+m2

s)
2

 1
2

� ε̃N

1 +

n−1∑
j=0

1

24j

∑
2j≤‖m‖<2j+1

1

 1
2

�
� ε̃N

1 +

(
n−1∑
j=0

2−4j · 2js
) 1

2

 � ε̃N

1 +

(
n−1∑
j=0

2j(s−4)

) 1
2

 .

If s < 4, then

‖I2‖L2 � ε̃N

1 +

(
n−1∑
j=0

2j(s−4)

) 1
2

 � ε̃N � N−
r+2
s .

If s = 4, then

‖I2‖L2 � ε̃N

1 +

(
n−1∑
j=0

1

) 1
2

 � ε̃N ·n
1
2 � ε̃N ·(lnN)

1
2 � (lnN)−

1
2 ·N−

r+2
4 ·(lnN)

1
2 � N−

r+2
4 .

If s > 4, then

‖I2‖L2 � ε̃N

1 +

(
n−1∑
j=0

2j(s−4)

) 1
2

 � ε̃N · 2
n(s−4)

2 � ε̃N ·N
1
2
− 2
s � N−

r
s
− 1

2 ·N
1
2
− 2
s � N−

r+2
s .

Then, for f ∈ Hr
2 and {γ(τ)N }Nτ=1, such that |γ(τ)N | ≤ 1 (τ = 1, ..., N) satisfies∥∥∥uω(x, f)− ϕN(f̂(m(1)) + ε̃

(1)
N γ

(1)
N , ..., f̂(m(N)) + ε̃

(N)
N γ

(N)
N ;x)

∥∥∥
L2
� ‖I1‖L2 +‖I2‖L2 � N−

r+2
s .

Further, by the arbitrariness of the function f ∈ Hr
2 and{γ(τ)N }Nτ=1, |γ

(τ)
N | ≤ 1 (τ = 1, ..., N)

sup
f∈Hr

2 ,

{γ(τ)N }
N
τ=1,|γ

(τ)
N |≤1,

(τ=1,...,N)

∥∥∥uω(x, f)− ϕN(f̂(m(1)) + ε̃
(1)
N γ

(1)
N , ..., f̂(m(N)) + ε̃

(N)
N γ

(N)
N ;x)

∥∥∥
L2
� N−

r+2
s .

In the end, we obtain the required upper bound in C(N)D-2

δN(ε̃N ;DN)L2 ≡ inf
m(1)∈Zs,...,m(N)∈Zs;

ϕN

sup
f∈Hr

2 ,

{γ(τ)N }
N
τ=1,|γ

(τ)
N |≤1,

(τ=1,...,N)

∥∥∥uω(x, f)− ϕN(f̂(m(1)) + ε̃
(1)
N γ

(1)
N , ...,

f̂(m(N)) + ε̃
(N)
N γ

(N)
N ;x)

∥∥∥
L2
� N−

r+2
s

and, by the definition of δN(0;DN)L2 and δN(ε̃N ;DN)L2 ,

δN(0;DN)L2 � δN(ε̃N ;DN)L2 � N−
r+2
s . (9)
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Let’s evaluate lower bound for δN(0, DN)L2 . Now, let us prove the lower bound in the
case of approximation from accurate information. Let are given an integer N ≥ 1 and set
AN = {m(1), ...,m(N) : m(j) ∈ Zs(j = 1, ..., N)}. According to the choice of DN , we define the
functionals l(1)N (f) = f̂(m(1)), ..., l

(N)
N (f) = f̂(m(N)). Let ϕN(τ1, ..., τN ;x) also be an arbitrary

algorithm for processing information, such that ϕN(0, ..., 0;x) = 0. We define an integer
n = n(s,N) ≥ 1 from the conditions |I2n| ≥ 2N and |I2n| � N.

Let consider the function

g(x) =
∑

m∈I2n\AN

∗
a(m)
n e2πi(m,x), (10)

where a(m)
n = kj(m) ≡ k(j, n, s) when [2j(m)−1] ≤ ‖m‖ < 2j(m), m ∈ I2n \ AN , j = 0, 1, ..., n.

For the number of points of I2n \ AN :

N � |I2n| ≥ |I2n \ AN | ≥ |I2n| − |AN | ≥ 2N −N = N,

therefore
|I2n \ AN | � N.

By using Parseval’s equality, let define the norm of g

‖g‖Hr
2

= sup
j=0,1,...,n

2jr‖
∑

[2j−1]≤‖m‖<2j ,
m/∈AN

∗
kje

2πi(m,x)‖L2 =

= sup
j=0,1,...,n

2jr

 ∑
[2j−1]≤‖m‖<2j ,

m/∈AN

∗
|kj|2


1
2

= sup
j=0,1,...,n

2jr · kj

 ∑
[2j−1]≤‖m‖<2j ,

m/∈AN

∗
1


1
2

�

� sup
j=0,1,...,n

2jr · kj · 2
sj
2 = sup

j=0,1,...,n
2j(r+

s
2
) · kj.

kj is defined from the condition ‖g‖Hr
2
� supj=0,1,...,n 2j(r+

s
2
) · kj � 1 (in that case g belong

to Hr
2 class)

kj = 2−j(r+
s
2
), j = 0, 1, ..., n. (11)

By putting (11) into (10), there are exist a positive constant c(s) such that

g(x) = c(s)g(x) = c(s)
∑

m∈I2n\AN

∗
a(m)
n e2πi(m,x) = c(s)

n∑
j=0

∑
m∈I2n\AN ,

[2j−1]≤‖m‖<2j

∗
2−j(r+

s
2
)e2πi(m,x).(12)

Then, according to definition of g(x) satisfies l(1)N (g) = ĝ(m(1)) = 0, ..., l
(N)
N (g) = ĝ(m(N)) =

0, so it should be ϕN(ĝ(m(1)), ..., ĝ(m(N)); ·) = 0. Then for the lower bound of error of
approximation by accurate information we have

sup
f∈Hr

2 (0,1)
s

∥∥∥uω(x, f)− ϕN
(
f̂(m(1)), ..., f̂(m(N));x

)∥∥∥
L2
≥
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≥
∥∥uω(x, g)− ϕN

(
ĝ(m(1)), ..., ĝ(m(N));x

)∥∥
L2 = ‖uω(x, g)‖L2 .

By definition of function g satisfies ĝ(0) = 0. Let calculate the error by using Parseval’s
equality.

‖uω(x, g)‖2L2 =

∥∥∥∥∥∥ω(x) · ĝ(0)− 1

4π2

∑
m∈I2n\AN

∗ a(m)
n

(m,m)
e2πi(m,x)

∥∥∥∥∥∥
2

L2(0,1)s

�

�

∥∥∥∥∥∥− 1

4π2

∑
m∈I2n\AN

∗ a(m)
n

(m,m)
e2πi(m,x)

∥∥∥∥∥∥
2

L2(0,1)s

�
∑

m∈I2n\AN

∗ |a(m)
n |2

(m,m)2
�

�
n−1∑
j=0

∑
2j≤‖m‖<2j+1,

m/∈AN

∗
(

2−2j(r+
s
2
) 1

m2
1 + ...+m2

s

)2

�

� 2−2n(r+
s
2
)

n−1∑
j=0

∑
2j≤‖m‖<2j+1,

m/∈AN

∗
(

1

maxj=1,...,s |mj|2

)2

�

� 2−2n(r+
s
2
)

n−1∑
j=0

1

24(j+1)

∑
2j≤‖m‖<2j+1,

m/∈AN

∗
1�

� 2−2n(r+
s
2
)−4n−4 ·

n−1∑
j=0

∑
2j≤‖m‖<2j+1,

m/∈AN

∗
1 � 2−2n(r+

s
2
)−4n−4 · |I2n \ AN | �

� 2−2nr−ns−4n · 2ns � 2−2nr−4n � N−
2r
s
− 4
s .

Finally, for (4) we have

sup
f∈Hr

2

∥∥∥uω(x, f)− ϕN(f̂(m(1)), ..., f̂(m(N));x)
∥∥∥
L2
� N−

r+2
s . (13)

Then, due to the arbitrariness of m(1), ...,m(N) from Zs and the information processing
algorithm ϕN , satisfies

δN(0, DN)L2 ≡ inf
m(1)∈Zs,...,m(N)∈Zs;

ϕN

sup
f∈Hr

2

∥∥∥uω(x, f)− ϕN(f̂(m(1)), ..., f̂(m(N));x)
∥∥∥
L2
� N−

r+2
s .(14)

As a result, by (9) and (14) we have (8)

δN(0, DN)L2 � δN(ε̃N , DN)L2 � N−
r+2
s .

Theorem 1 is proven.
Theorem 2. Let are given positive integer s and r > s/2. Then the following statements

hold(N = (2n+1 + 1)s, n = 1, 2, ...)
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C(N)D-1:
δN(0;DN)L∞ ≡

≡ inf
m(1)∈Zs,...,m(N)∈Zs;

ϕN

sup
f∈Hr

2

∥∥∥uω(·, f)− ϕN(f̂(m(1)), ..., f̂(m(N)); ·)
∥∥∥
L∞(0,1)s

� N−
r
s
− 2
s
+ 1

2 .(15)

C(N)D-2 (first part): For the computational aggregates ϕN(f̂(m(1)), ..., f̂(m(N)), x)
from (5) and for the numerical sequence

ε̃N �


N−r−

3
2 , ifs = 1,

(lnN)−1 ·N− r+1
2 , ifs = 2,

N−
r
s
− 1

2 , ifs > 2.

(16)

satisfy

δN(0;DN)L∞(0,1)s � δN (ε̃N ;DN)L∞(0,1)s � N−
r
s
− 2
s
+ 1

2 . (17)

Proof. The proof will be carried out similarly by Theorem 1. Let are given f ∈ Hr
2 positive

integer n, N = |I2n| = (2n+1 +1)s and {γ(τ)N }Nτ=1 ≡ {γ
(m)
N }m∈I2n , such that |γ(τ)N | ≤ 1. Then for

the error of approximation by computational aggregates (5)-(6) by inaccurate information
(L∞ ≡ L∞(0, 1)s)∥∥∥uω(x, f)− ϕN(f̂(m(1)) + ε̃

(1)
N γ

(1)
N , ..., f̂(m(N)) + ε̃

(N)
N γ

(N)
N ;x)

∥∥∥
L∞
≤

≤
∥∥∥uω(x, f)− ϕN(f̂(m(1)), ..., f̂(m(N));x)

∥∥∥
L∞

+

+

∥∥∥∥∥ω(x)ε̃Nγ
(0)
N −

1

4π2

∑
m∈I2n

∗ ε̃Nγ
(m)
N

(m,m)
e2πi(m,x)

∥∥∥∥∥
L∞

≡ ‖I3‖L∞ + ‖I4‖L∞ .

Let’s estimate from above ‖I3‖L∞ and ‖I4‖L∞

‖I3‖L∞ ≡
∥∥∥uω(x, f)− ϕN(f̂(m(1)), ..., f̂(m(N));x)

∥∥∥
L∞

=

=

∥∥∥∥∥∥− 1

4π2

∑
m∈Zs\I2n

f̂(m)

(m,m)
e2πi(m,x)

∥∥∥∥∥∥
L∞

�
+∞∑

j=n+1

∑
2j≤‖m‖<2j+1

|f̂(m)|
|(m,m)|

�

�
+∞∑

j=n+1

∑
2j≤‖m‖<2j+1

|f̂(m)|
m2

1 + ...+m2
s

�
+∞∑

j=n+1

∑
2j≤‖m‖<2j+1

|f̂(m)|
maxj=1,...,s |mj|2

�

�
+∞∑

j=n+1

2−2j
∑

2j≤‖m‖<2j+1

|f̂(m)|.

Applying Holder’s inequality and (2), we will get required upper bound

‖I3‖L∞ � 2−2n
+∞∑

j=n+1

 ∑
2j≤‖m‖<2j+1

|f̂(m)|2
 1

2

·

 ∑
2j≤‖m‖<2j+1

1

 1
2

�
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� 2−2n
+∞∑

j=n+1

2−j(r−
s
2) · 2jr

∥∥∥∥∥∥
∑

2j≤‖m‖<2j+1

f̂(m)e2πi(m,x)

∥∥∥∥∥∥
L2

� 2−2n−nr+
ns
2 = N−

r
s
− 2
s
+ 1

2 .

From the upper bound for ‖I3‖L∞ , we obtain the upper bound for (15) the approximation
by the accurate information

δN(0;DN)L∞ ≡

≡ inf
m(1)∈Zs,...,m(N)∈Zs;

ϕN

sup
f∈Hr

2

∥∥∥uω(·, f)− ϕN(f̂(m(1)), ..., f̂(m(N)); ·)
∥∥∥
L∞(0,1)s

� N−
r
s
− 2
s
+ 1

2 .(18)

Then evaluate of ‖I4‖L∞ (see also (16))

‖I4‖L∞ � ε̃N+
∑
m∈I2n

∗
ε̃N

1

4π2(m,m)
� ε̃N

1 +
n−1∑
j=0

1

22j

∑
2j≤‖m‖<2j+1

1

� ε̃N

(
1 +

n−1∑
j=0

2j(s−2)

)
.

If s = 1, then
‖I4‖L∞ � ε̃N � N−r−

3
2 .

If s = 2, then

‖I4‖L∞ � ε̃N

(
1 +

n−1∑
j=0

1

)
� ε̃N · n � ε̃N · lnN � (lnN)−1 ·N−

r
2
− 1

2 · lnN � N−
r
2
− 1

2 .

If s > 2, then

‖I4‖L∞ � ε̃N

(
1 +

n−1∑
j=0

2j(s−2)

)
� ε̃N · 2n(s−2) � ε̃N ·N1− 2

s � N−
r
s
− 1

2 ·N1− 2
s � N−

r
s
− 2
s
+ 1

2 .

Finally, by estimation from above ‖I3‖L∞ and ‖I4‖L∞ we obtain the required upper bounds
in (17)

δN(0, DN)L∞ � δN(ε̃N , DN)L∞ ≡

≡ inf
m(1)∈Zs,...,m(N)∈Zs;

ϕN

sup
f∈Hr

2 ,

{γ(τ)N }
N
τ=1,|γ

(τ)
N |≤1,

(τ=1,...,N)

∥∥∥uω(x, f)− ϕN(f̂(m(1)) + ε̃
(1)
N γ

(1)
N , ..., f̂(m(N))+

+ε̃
(N)
N γ

(N)
N ;x)

∥∥∥
L∞
� N−

r
s
− 2
s
+ 1

2 . (19)

A lower bound in the case of approximation from accurate information gives the
desired relation. Suppose we are given an integer N ≥ 1, N linear functionals l(1)N (f) =

f̂(m(1)), ..., l
(N)
N (f) = f̂(m(N)), {m(1), ...,m(N)} ∈ Zs and a function ϕN(τ1, ..., τN ;x),

ϕN(0, ..., 0;x) = 0. We define an integer n = n(s,N) ≥ 1 from the conditions |I2n| ≥ 2N and
|I2n| � N.
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Let consider the function

g(x) = c(s)N−
r
s
− 1

2

∑
m∈I2n\AN

∗
e2πi(m,x) ∈ Hr

2 .

where c(s) is a positive constant, defined so that g(x) ∈ Hr
2 .

Then, for the lower bound of error of approximation by accurate information

sup
f∈Hr

2

∥∥∥uω(x, f)− ϕN
(
f̂(m(1)), ..., f̂(m(N));x

)∥∥∥
L∞
≥

≥ sup
f∈Hr

2

∥∥uω(x, g)− ϕN
(
ĝ(m(1)), ..., ĝ(m(N));x

)∥∥
L∞
≥

≥ ‖uω(x, g)− ϕN(0, ..., 0;x)‖L∞ = ‖uω(x, g)‖L∞ .

Let estimate from below the norm of the solution.

‖uω(x, g)‖L∞ =

∥∥∥∥∥∥− 1

4π2

∑
m∈I2n\AN

∗N−
r
s
− 1

2

(m,m)
e2πi(m,x)

∥∥∥∥∥∥
L∞

=

= sup
x∈[0,1]s

∣∣∣∣∣∣− 1

4π2

∑
m∈I2n\AN

∗N−
r
s
− 1

2

(m,m)
e2πi(m,x)

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣− 1

4π2

∑
m∈I2n\AN

∗N−
r
s
− 1

2

(m,m)

∣∣∣∣∣∣�
� 2−n(r+

s
2
)

n−1∑
j=0

1

22(j+1)

∑
2j≤‖m‖<2j+1,

m/∈AN

∗
1 �

� 2−n(r+
s
2
)−2n−2 ·

n−1∑
j=0

∑
2j≤‖m‖<2j+1,

m/∈AN

∗
1 � 2−n(r+

s
2
)−2n−4 · |I2n \ AN | �

� 2−nr−2n+
ns
2 � N−

r
s
− 2
s
+ 1

2 .

As a result,

δN(0, DN)L∞ � N−
r
s
− 2
s
+ 1

2 . (20)

Then by (19) and (20) we have

δN(0, DN)L∞ � δN(ε̃N , DN)L∞ � N−
r
s
− 2
s
+ 1

2 .

Theorem 2 is proven.
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4 Conclusion

In the present paper, the problem of the approximation of solutions of the Poisson equation
with right-hand side from the Nikol’skii classes Hr

2(0, 1)s by accurate and inaccurate
information of the trigonometric Fourier coefficients in the sense of C(N)D-1 and the first
part of C(N)D-2 is considered.

Firstly, two-sided estimates for the error δN(0;DN)Y (Y = L(0, 1)s and Y = L∞(0, 1)s) of
approximation by accurate informmation were obtained (C(N)D-1 problem) with indicating
a computational aggregate that confirms the lower bound. For this computational aggregate,
bounds arises of inaccurate information that preserve the order of the error of approximation
by accurate information were found—the first part of problem C(N)D-2.
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SOLUTION OF MULTILAYER PROBLEMS FOR THE HEAT EQUATION
BY THE FOURIER METHOD

The multilayer problems for the heat equation arise in many areas of heat and mass transfer
applications. There are two main approaches to finding exact solutions to multilayer diffusion
problems: separation of variables and integral transformations. The difficulty of applying the
Laplace transform method is redoubled by the difficulty of finding the inverse transform.
The inverse Laplace transform is often performed numerically. The most popular analytical
approach to multilayer problems for the heat equation is the method of separation of variables.
It is very important to obtain analytical solutions to such problems as they provide a higher
level of understanding of the solution behavior and can be used for comparative analysis of
numerical solutions. In this paper, the solution of the multilayer problem for the heat equation
by the Fourier method is substantiated. The solution of the initial-boundary value problem
for the heat equation with discontinuous coefficients by the method of separation of variables
is reduced to the corresponding non-self-adjoint spectral Sturm-Liouville eigenvalue problem.
Such eigenvalue problems do not belong to the ordinary type of Sturm-Liouville problems due
to the discontinuity of the heat conductivity coefficients. In addition, the non-self-adjointness
of the corresponding spectral problem also complicates the solution of the problem. Using the
replacement, the problem is reduced to a self-adjoint spectral problem and the eigenfunctions
of this problem forming an orthonormal basis are constructed. The considered problem
models the process of heat propagation of the temperature field in a thin rod of finite length,
consisting of several sections with different thermal-physical characteristics. In this problem,
in addition to the boundary conditions of the Sturm type, the conditions of conjugation
at the point of contact of different media are specified. The existence and uniqueness of the
classical solution of the considered multilayer problem for the heat conduction equation are proved.

Keywords: Heat equation, Fourier method, spectral problem, orthonormal basis, classical
solution.

С.М. Бармағамбетов∗, У.К. Койлышов
Математика және математикалық модельдеу институты, Алматы, Қазақстан

∗ e-mail: saginish.2000@mail.ru
Жылуөткiзгiштiк теңдеу үшiн көпқабатты есептердi Фурье әдiсiмен шешу

Жылуөткiзгiштiк теңдеуiне арналған көпқабатты есептер жылу және масса алмасудың көп-
теген салаларында туындайды. Көпқабатты диффузиялық есептердiң дәл шешiмдерiн табу-
дың екi негiзгi әдiсi бар: айнымалыларды ажырату және интегралдық түрлендiрулер. Лаплас
түрлендiруi әдiсiн қолданудың қиындығы керi түрлендiрудi табудың күрделiлiгiмен шиеленi-
седi. Көбiнесе керi Лаплас түрлендiруi сандық түрде орындалады. Жылуөткiзгiштiк тең-
деу үшiн көпқабатты есептерге ең танымал аналитикалық тәсiл айнымалыларды ажырату
әдiсi болып табылады. Мұндай есептердiң аналитикалық шешiмдерi өте құнды, өйткенi олар
шешiм тәртiбiн түсiнудiң жоғары деңгейiн қамтамасыз етедi және сандық шешiмдердi са-
лыстырмалы түрде талдау үшiн пайдаланылуы мүмкiн. Бұл ғылыми мақалада Фурье әдiсi
арқылы жылуөткiзгiштiк теңдеуiнiң көпқабатты есебiнiң шешiмi негiзделедi. Коэффициент-
терi үзiлiстi жылуөткiзгiштiк теңдеу үшiн бастапқы-шекаралық есеп айнымалылар ажыра-
ту әдiсi бойынша өзiне-өзi түйiндес емес спектрлiк Штурм-Лиувилль меншiктi мән есебiне
келтiрiледi. Мұндай меншiктi мәндер есептерi жылуөткiзгiштiк коэффициенттерiнiң үзiлуiне
байланысты Штурм-Лиувилль есептерiнiң әдеттегi түрiне жатпайды.

c© 2025 Al-Farabi Kazakh National University
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Сонымен қатар, спектрлiк есептiң өзiне-өзi түйiндес емес болуы да есептi шешудi қиында-
тады. Алмастыру арқылы берiлген есеп өзiне-өзi түйiндес спектрлiк есепке келтiрiледi және
осы есептiң ортонормалдық базисi болатын меншiктi функциялары құрылады. Қарастыры-
лып отырған мәселе әртүрлi термофизикалық сипаттамалары бар бiрнеше бөлiктен тұратын,
ұзындықтары ақырлы жiңiшке таяқшадағы температуралық өрiстiң жылу таралу процесiн
моделдейдi. Штурм типiндегi шекаралық шарттарға қосымша, әртүрлi орталардың жанасу
нүктесiндегi түйiндес шарттары көрсетiлген. Жылуөткiзгiштiк теңдеу үшiн қарастырылып
отырған көпқабатты есептiң классикалық шешiмiнiң бар және жалғыз екендiгi дәлелдендi.

Тү йiн сөздер: Жылуөткiзгiштiк теңдеуi, Фурье әдiсi, спектрлiк есеп, ортонормалдық базис,
классикалық шешiм.

C.М. Бармагамбетов∗, У.К.Койлышов
Институт Математики и Математического Моделирования, Алматы, Казахстан.

∗e-mail: saginish.2000@mail.ru
Решение многослойных задач для уравнения теплопроводности методом

Фурье

Проблемы многослойных задач для уравнения теплопроводности возникают во многих
областях применения процессов тепло- и массообмена. Существует два основных подхода
к поиску точных решений задач многослойной диффузии: разделение переменных и
интегральные преобразования. Трудность применение метода преобразование Лапласа
усугубляется из-за сложности нахождение обратного преобразование. Часто обратное преоб-
разование Лапласа выполняется численно. Наиболее популярным аналитическим подходом
к многослойным задачам для уравнения теплопроводности является метод разделение
переменных. Аналитические решения таких задач очень ценны, поскольку они обеспечивают
более высокий уровень понимания поведения решения и могут быть использованы для
сравнительного анализа численных решений. В данной научной статье обосновано решение
методом Фурье многослойной задачи для уравнения теплопроводности. Решения методом
разделение переменных начально-краевые задачи для уравнения теплопроводности с раз-
рывными коэффициентами сводится к соответствующей не самосопряженной спектральной
задаче Штурма-Лиувилля на собственные значения. Такие задачи на собственные значения
не относится к обычному типу задач Штурма-Лиувилля из-за разрыва коэффициентов
теплопроводности. Кроме того не самосопряженность соответствующей спектральной задачи
также усложняет решение поставленной задачи. С помощью замены поставленная задача
сведена к самосопряженной спектральной задаче и построена собственные функции этой
задачи, которая образует ортонормированный базис. Рассматриваемая задача моделирует
процесс распространения тепла температурного поля в тонком стержне конечной длины,
состоящем из нескольких участков с различными теплофизическими характеристиками.
Дополнительно к граничным условиям типа Штурма задаются условия сопряжения в точке
контакта различных сред. Доказано существование и единственность классического решения
рассматриваемой многослойной задачи для уравнения теплопроводности.

Ключевые слова: Уравнение теплопроводности, метод Фурье, спектральная задача, орто-
нормированный базис, классическое решение.

1 Introduction

Parabolic equations with discontinuous coefficients with one point of discontinuity have been
extensively studied [1]-[3]. In these works, the correctness of various initial-boundary value
problems for parabolic equations with discontinuous coefficients has been proved by using the
Green function and thermal potential methods. In [4]-[8], some boundary value problems for
the heat equation with a discontinuous coefficient, with one and two points of discontinuity,
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have been considered by the method of separation of variables.
The papers [9]-[13] are devoted to the solution of multilayer diffusion problems. Mathematical
models of diffusion in layered materials arise in many industrial, environmental, biological
and medical applications, such as thermal conductivity in composite materials, transport
of polluting chemicals and gases in layered porous media, growth of brain tumors, thermal
conductivity through skin, transdermal drug delivery and greenhouse gas emissions[14]-[17].
The considered problem may arise in describing the process of particle diffusion in turbulent
plasma, as well as in modeling the process of heat propagation of a temperature field in a thin
rod of finite length, consisting of several sections with different thermophysical characteristics.
In addition to the boundary conditions, the conjugation conditions (ideal contact condition)
at the contact boundary of these media with different thermophysical characteristics are
specified. It is a theoretical paper, however, the obtained analytical solution can be used for
numerical calculations.

2 Statement of problem

We consider the initial?boundary value problem for the heat equation with piecewise constant
coefficients

∂ui
∂t

= k2i
∂2ui
∂x2

, i = 1, 2, . . . ,m, (1)

in the domain

Ω =
m⋃
i=1

Ωi, Ωi = {(x, t) : li−1 < x < li, 0 < t < T},

with the initial condition

u(x, 0) = ϕ(x), l0 ≤ x ≤ lm. (2)

The boundary conditions are of the form
α1

∂u1
∂x

(l0, t) + β1 u1(l0, t) = 0,

α2
∂um
∂x

(lm, t) + β2 um(lm, t) = 0,

0 ≤ t ≤ T. (3)

The conjugation conditions are
ui(li − 0, t) = ui+1(li + 0, t),

ki
∂ui
∂x

(li − 0, t) = ki+1
∂ui+1

∂x
(li + 0, t),

0 ≤ t ≤ T, i = 1, 2, . . . ,m− 1, (4)

where the coefficients satisfy ki > 0 and αj, βj ∈ R for i = 1, 2, . . . ,m and j = 1, 2. In
addition, |α1|+ |β1| > 0 and |α2|+ |β2| > 0.
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3 Method of Solution

To solve problem (1)?(4) we employ the Fourier method and seek a separated solution

ui(x, t) = Xi(x)T (t) 6≡ 0.

Substituting into equation (1) and conditions (2)-(4), and separating the variables, we obtain
the following spectral problem:

k2i X
′′
i (x) + λXi(x) = 0, li−1 < x < li, i = 1, 2, . . . ,m. (5)

The boundary conditions{
α1X

′
1(l0) + β1X1(l0) = 0,

α2X
′
m(lm) + β2Xm(lm) = 0,

(6)

and the conjugation conditions are{
Xi(li − 0, t) = Xi+1(li + 0, t),

kiX
′
i(li − 0, t) = ki+1X

′
i+1(li + 0, t),

i = 1, 2, . . . ,m− 1. (7)

The function T (t) satisfies the ordinary differential equation

T ′(t) + λT (t) = 0.

Lemma 1. The spectral problem (5)-(7) is non-self-adjoint in L2(l0, lm).
The proof is carried out by direct calculation.

After the following change of variables

Xi(x) = Yi(y), i = 1, 2, . . . ,m, (8)

where

y =



x− l0
k1

, l0 < x < l1,

x− l1
k2

, l1 < x < l2,

. . .
x− lm−1
km

, lm−1 < x < lm,

(9)

Under the change of variables (8)-(9), the spectral problem (5)-(7) takes the form

Y ′′i (y) + λYi(y) = 0, 0 < y < hi, i = 1, 2, . . . ,m, (10)

with boundary conditions
α1

k1
Y ′1(0) + β1 Y1(0) = 0,

α2

km
Y ′m(hm) + β2 Ym(hm) = 0,

(11)
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and conjugation conditions{
Yi(hi − 0) = Yi+1(0+),

Y ′i (hi − 0) = Y ′i+1(0+),
i = 1, 2, . . . ,m− 1, (12)

where

hi =
li − li−1
ki

, i = 1, 2, . . . ,m.

Lemma 2. The spectral problem (10)-(12) is self-adjoint in

H = L2(0, h1)⊕ L2(0, h2)⊕ · · · ⊕ L2(0, hm).

The proof is carried out by direct calculation.

Next, we determine the eigenvalues and construct the eigenfunctions of (10)-(12). The
general solution of (10) has the form

Y1(y) = c1 cos(
√
λ y) + c2 sin(

√
λ y), 0 < y < h1,

Y2(y) = c3 cos(
√
λ y) + c4 sin(

√
λ y), 0 < y < h2,

. . .

Ym−1(y) = c2m−3 cos(
√
λ y) + c2m−2 sin(

√
λ y), 0 < y < hm−1,

Ym(y) = c2m−1 cos(
√
λ y) + c2m sin(

√
λ y), 0 < y < hm,

where c2i−1, c2i are arbitrary constants, i = 1, 2, . . . ,m.
From the boundary conditions (11) we obtain

α1

k1

√
λ c2 + β1 c1 = 0,(

β2 cos(
√
λhm)− α2

km

√
λ sin(

√
λhm)

)
c2m−1+(

β2 sin(
√
λhm) +

α2

km

√
λ cos(

√
λhm)

)
c2m = 0.

(13)

From the conjugation conditions (12) we obtain

c1 cos(h1
√
λ) + c2 sin(h1

√
λ) = c3,

− c1 sin(h1
√
λ) + c2 cos(h1

√
λ) = c4,

c3 cos(h2
√
λ) + c4 sin(h2

√
λ) = c5,

− c3 sin(h2
√
λ) + c4 cos(h2

√
λ) = c6,

. . .

c2m−3 cos(hm−1
√
λ) + c2m−2 sin(hm−1

√
λ) = c2m−1,

− c2m−3 sin(hm−1
√
λ) + c2m−2 cos(hm−1

√
λ) = c2m.

(14)
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Successively eliminating the constants ci from (14) gives

c1 cos
(
(h1 + h2 + · · ·+ hm−1)

√
λ
)

+ c2 sin
(
(h1 + h2 + · · ·+ hm−1)

√
λ
)

= c2m−1,

− c1 sin
(
(h1 + h2 + · · ·+ hm−1)

√
λ
)

+ c2 cos
(
(h1 + h2 + · · ·+ hm−1)

√
λ
)

= c2m.

Substituting the obtained c2m−1, c2m into system (13), we arrive at
β1c1 +

α1

k1

√
λ c2 = 0,(

β2 cos(sm
√
λ)− α2

km

√
λ sin(sm

√
λ)
)
c1 +

(
β2 sin(sm

√
λ) +

α2

km

√
λ cos(sm

√
λ)
)
c2 = 0,

where

sm =
m∑
i=1

hi =
m∑
i=1

li − li−1
ki

.

The characteristic determinant of the last system has the form

∆(λ) =
(
α1α2λ+ β1β2k1km

)
sin
(
sm
√
λ
)

+
(
α2β1k1 − α1β2km

)√
λ cos

(
sm
√
λ
)

= 0. (15)

We now consider all possible special cases.
1) Suppose α1α2 6= 0, α1β2km − α2β1k1 = 0, β1β2 = 0 (that is, Y ′1(0) = 0, Y ′m(hm) = 0).
Then from (15) we obtain

α1α2 λ sin
(
sm
√
λ
)

= 0.

From sin
(
sm
√
λ
)

= 0 we find the eigenvalues

λn =

(
πn

sm

)2

, n ∈ Z.

The corresponding eigenfunctions are

Yn(y) = C ·



y1n = (−1)n cos
(πn
sm

y
)
, 0 < y < h1,

y2n = cos
(πn
sm

(h2 − y + h3 + · · ·+ hm)
)
, 0 < y < h2,

y3n = cos
(πn
sm

(h3 − y + h4 + · · ·+ hm)
)
, 0 < y < h3,

. . .

ym−1,n = cos
(πn
sm

(hm−1 − y + hm)
)
, 0 < y < hm−1,

ymn = cos
(πn
sm

(hm − y)
)
, 0 < y < hm,

where C is an arbitrary constant.
2) Suppose α1α2 = 0, α1β2km−α2β1k1 = 0, and β1β2 6= 0 (i.e., Y1(0) = 0 and Ym(hm) = 0).
Then, similarly, the eigenvalues are

λn =

(
πn

sm

)2

, n ∈ Z,



32 Solution of multilayer problems for the heat equation by the Fourier method method

with the corresponding eigenfunctions

Yn(y) = C ·



y1n = (−1)n+1 sin
(πn
sm

y
)
, 0 < y < h1,

y2n = sin
(πn
sm

(h2 − y + h3 + · · ·+ hm)
)
, 0 < y < h2,

y3n = sin
(πn
sm

(h3 − y + h4 + · · ·+ hm)
)
, 0 < y < h3,

. . .

ym−1,n = sin
(πn
sm

(hm−1 − y + hm)
)
, 0 < y < hm−1,

ymn = sin
(πn
sm

(hm − y)
)
, 0 < y < hm,

where C is an arbitrary constant.
3) Now let α1α2 = 0, α1β2km − α2β1k1 6= 0, β1β2 = 0. Then from (15) we obtain

(
α1β2km − α2β1k1

)√
λ cos

(
sm
√
λ
)

= 0.

At λ = 0 equation (10) has only the trivial solution. From cos
(
sm
√
λ
)

= 0 we find the
eigenvalues

λn =

(
π(2n+ 1)

2sm

)2

, n ∈ Z.

To determine the eigenfunctions, consider two possible cases.
Case 3.1: α1 = 0, α2 6= 0, β1 6= 0, β2 = 0 (i.e., Y1(0) = 0, Y ′m(hm) = 0). The corresponding

eigenfunctions are

Yn(y) = C ·



y1n = (−1)n sin
(π(2n+ 1)

2sm
y
)
, 0 < y < h1,

y2n = cos
(π(2n+ 1)

2sm
(h2 − y + h3 + · · ·+ hm)

)
, 0 < y < h2,

y3n = cos
(π(2n+ 1)

2sm
(h3 − y + h4 + · · ·+ hm)

)
, 0 < y < h3,

. . .

ym−1,n = cos
(π(2n+ 1)

2sm
(hm−1 − y + hm)

)
, 0 < y < hm−1,

ymn = cos
(π(2n+ 1)

2sm
(hm − y)

)
, 0 < y < hm,

where C is an arbitrary constant.
Case 3.2: α1 6= 0, α2 = 0, β1 = 0, β2 6= 0 (i.e., Y ′1(0) = 0, Ym(hm) = 0). Then the
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eigenfunctions are

Yn(y) = C ·



y1n = (−1)n cos
(π(2n+ 1)

2sm
y
)
, 0 < y < h1,

y2n = sin
(π(2n+ 1)

2sm
(h2 − y + h3 + · · ·+ hm)

)
, 0 < y < h2,

y3n = sin
(π(2n+ 1)

2sm
(h3 − y + h4 + · · ·+ hm)

)
, 0 < y < h3,

. . .

ym−1,n = sin
(π(2n+ 1)

2sm
(hm−1 − y + hm)

)
, 0 < y < hm−1,

ymn = sin
(π(2n+ 1)

2sm
(hm − y)

)
, 0 < y < hm.

4) Consider the case α1α2 6= 0, α1β2km− α2β1k1 6= 0, and β1β2 = 0. Then from (15) we have

α1α2 λ sin
(
sm
√
λ
)
−
(
α1β2km − α2β1k1

)√
λ cos

(
sm
√
λ
)

= 0.

It is easy to check that for λ = 0 equation (10) admits only the trivial solution. Hence the
eigenvalues are given by the roots of

tan
(
sm
√
λ
)

=


km β2

α2

√
λ
, β1 = 0, β2 6= 0

(
Y ′1(0) = 0,

α2

km
Y ′m(hm) + β2Ym(hm) = 0

)
,

− k1 β1

α1

√
λ
, β1 6= 0, β2 = 0

(α1

k1
Y ′1(0) + β1Y1(0) = 0, Y ′m(hm) = 0

)
.

It is not possible to write the eigenvalues in explicit form. However, by Rouche’s theorem one
can obtain their asymptotics. Clearly, the zeros of the equation tan

(
sm
√
λ
)

= 0 are
√
λ =

πn

sm
.

Hence, by Rouche’s theorem the zeros of

tan
(
sm
√
λ
)

=
α1kmβ2 − α2k1β1

α1α2

√
λ

have the form

λn =

(
πn

sm
+ δn

)2

, n ∈ Z,

where |δn| ≤M and, moreover, δn = O

(
1

n

)
.

If β1 6= 0 and β2 = 0, the eigenfunctions are

Yn(y) = C ·



cos
(
(h1 − y + h2 + · · ·+ hm)

√
λn
)
, 0 < y < h1,

cos
(
(h2 − y + h3 + · · ·+ hm)

√
λn
)
, 0 < y < h2,

cos
(
(h3 − y + h4 + · · ·+ hm)

√
λn
)
, 0 < y < h3,

. . .

cos
(
(hm−1 − y + hm)

√
λn
)
, 0 < y < hm−1,

cos
(
(hm − y)

√
λn
)
, 0 < y < hm,
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corresponding to the boundary conditions
α1

k1
Y ′1(0) + β1Y1(0) = 0 and

Y ′m(hm) = 0.

If β1 = 0 and β2 6= 0, the eigenfunctions are

Yn(y) = C ·



cos
(
y
√
λn
)
, 0 < y < h1,

cos
(
(h1 + y)

√
λn
)
, 0 < y < h2,

cos
(
(h1 + h2 + y)

√
λn
)
, 0 < y < h3,

. . .

cos
(
(h1 + h2 + · · ·+ hm−2 + y)

√
λn
)
, 0 < y < hm−1,

cos
(
(h1 + h2 + · · ·+ hm−1 + y)

√
λn
)
, 0 < y < hm,

corresponding to the boundary conditions Y ′1(0) = 0 and
α2

km
Y ′m(hm)+

β2Ym(hm) = 0.
5) In the case α1α2 = 0, α1β2km − α2β1k1 6= 0, β1β2 6= 0, an argument analogous to the
previous one shows that the eigenvalues are the solutions of

cot
(
sm
√
λ
)

=


− kmβ2
α2

√
λ
, α1 = 0, α2 6= 0,

k1β1

α1

√
λ
, α1 6= 0, α2 = 0.

explicit forms for the eigenvalues are not available. By Rouche’s theorem we can, however,

obtain their asymptotics. Since the zeros of cot
(
sm
√
λ
)

= 0 are
√
λ =

π(2n+ 1)

2sm
, it follows

from Rouche’s theorem that the zeros of

cot
(
sm
√
λ
)

=
α2k1β1 − α1kmβ2

α1α2

√
λ

have the form

λn =

(
π(2n+ 1)

2sm
+ δ∗n

)2

, |δ∗n| ≤M, δ∗n = O

(
1

n

)
.

If α1 6= 0 and α2 = 0, the eigenfunctions are

Yn(y) = C ·



sin
(
(h1 − y + h2 + · · ·+ hm)

√
λn
)
, 0 < y < h1,

sin
(
(h2 − y + h3 + · · ·+ hm)

√
λn
)
, 0 < y < h2,

sin
(
(h3 − y + h4 + · · ·+ hm)

√
λn
)
, 0 < y < h3,

. . .

sin
(
(hm−1 − y + hm)

√
λn
)
, 0 < y < hm−1,

sin
(
(hm − y)

√
λn
)
, 0 < y < hm,
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corresponding to the boundary conditions
α1

k1
Y ′1(0) + β1Y1(0) = 0, Ym(hm) = 0.

If α1 = 0 and α2 6= 0, the eigenfunctions are

Yn(y) = C ·



sin
(
y
√
λn
)
, 0 < y < h1,

sin
(
(h1 + y)

√
λn
)
, 0 < y < h2,

sin
(
(h1 + h2 + y)

√
λn
)
, 0 < y < h3,

. . .

sin
(
(h1 + h2 + · · ·+ hm−2 + y)

√
λn
)
, 0 < y < hm−1,

sin
(
(h1 + h2 + · · ·+ hm−1 + y)

√
λn
)
, 0 < y < hm,

corresponding to the boundary conditions Y1(0) = 0

and
α2

km
Y ′m(hm) + β2Ym(hm) = 0.

6) In the case α1α2 6= 0, α1β2km − α2β1k1 = 0, and β1β2 6= 0, equation (15) reduces to(
α1α2λ+ β1β2k1km

)
sin
(
sm
√
λ
)

= 0
(
equivalently

(
α1α2

k1km
λ+ β1β2

)
sin
(
sm
√
λ
)

= 0
)
.

Thus, if sin
(
sm
√
λ
)

= 0, the eigenvalues are

λn =

(
πn

sm

)2

.

The corresponding eigenfunctions have the form: The corresponding eigenfunctions (for
sin(sm

√
λ) = 0) are

Yn(y) = C ·



y1n = cos
(πn
sm
y
)
− β1k1sm

α1πn
sin
(πn
sm
y
)
, 0 < y < h1,

y2n = cos
(πn
sm

(h1 + y)
)
− β1k1sm

α1πn
sin
(πn
sm

(h1 + y)
)
, 0 < y < h2,

y3n = cos
(πn
sm

(h1 + h2 + y)
)
− β1k1sm

α1πn
sin
(πn
sm

(h1 + h2 + y)
)
, 0 < y < h3,

. . .

ym−1,n = cos
(πn
sm

(h1 + h2 + · · ·+ hm−2 + y)
)
−

β1k1sm
α1πn

sin
(
πn
sm

(h1 + h2 + · · ·+ hm−2 + y)
)
, 0 < y < hm−1,

ymn = cos
(πn
sm

(h1 + h2 + · · ·+ hm−1 + y)
)
−

β1k1sm
α1πn

sin
(
πn
sm

(h1 + h2 + · · ·+ hm−1 + y)
)
, 0 < y < hm.

Here we have used the relation

α1β2km − α2β1k1 = 0 =⇒ α1

β1k1
=

α2

β2km
.
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If
α1α2

k1km
λ+ β1β2 = 0, i.e. λ = −β1β2k1km

α1α2

,

and taking into account that

α1β2
k1
− α2β1

km
= 0 =⇒ β1k1

α1

=
β2km
α2

,

we obtain the special eigenvalue

λ =

(
β1k1
α1

)2

=

(
β2km
α2

)2

.

(The explicit form of the associated eigenfunction is given next.) For the special eigenvalue

λ =

(
β1k1
α1

)2

=

(
β2km
α2

)2

,

an associated eigenfunction can be chosen as

Y (y) = C ·



e
−β1k1

α1
y
, 0 < y < h1,

e
−β1k1

α1
(h1+y), 0 < y < h2,

e
−β1k1

α1
(h1+h2+y), 0 < y < h3,

. . .

e
−β1k1

α1
(h1+h2+···+hm−2+y), 0 < y < hm−1,

e
−β1k1

α1
(h1+h2+···+hm−1+y) 0 < y < hm.

7) In the last case, α1α2 6= 0,
α1β2
k1
− α2β1

km
6= 0, and β1β2 6= 0, equation (15) applies.

Introduce the functions

g(λ) = α1α2λ sin
(
sm
√
λ
)
,

ψ(λ) =
(
α1β2km − α2β1k1

)√
λ cos

(
sm
√
λ
)
− β1β2k1km sin

(
sm
√
λ
)
.

By Rouche’s theorem, if |g(λ)| ≥ |ψ(λ)| for large λ, then g(λ) and g(λ) +ψ(λ) have the same
number of zeros.

The eigenfunctions can be written as

Yn(y) = Cn ·



Φ
(
y
√
λn
)
, 0 < y < h1,

Φ
(
(s1 + y)

√
λn
)
, 0 < y < h2,

Φ
(
(s2 + y)

√
λn
)
, 0 < y < h3,

. . .

Φ
(
(sm−2 + y)

√
λn
)
, 0 < y < hm−1,

Φ
(
(sm−1 + y)

√
λn
)
, 0 < y < hm,

(16)
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where sj =
∑j

i=1 hi (with s0 = 0) and

Φ(z) = α1 cos z − β1
k1√
λn

sin z. (17)

A explicit-form expression for the eigenvalues is not available, but Rouche’s theorem yields
their asymptotics. Since the zeros of tan

(
sm
√
λ
)

= 0 are
√
λ =

πn

sm
, it follows that the zeros

of

tan
(
sm
√
λ
)

=
α1kmβ2 − α2k1β1

α1α2

√
λ

− β1β2k1km
λ

tan
(
sm
√
λ
)

have the form

λn =

(
πn

sm
+ δn

)2

, |δn| ≤M, δn = O

(
1

n

)
.

Since {Yn(y)} are the eigenfunctions of the self-adjoint problem (10)-(12) (see Lemma 2), they
form an orthonormal basis [18]. We choose Cn from the normalization condition; equivalently,

Cn =

(
m∑
i=1

1

k2i

∫ li

li−1

Φ2

((
si−1 +

x− li−1
ki

)√
λn

)
dx

)− 1
2

.

Then the solution to problem (1)?(4) has the form

ui(x, t) =
∞∑
n=1

ϕnXi(x) e−λnt =
∞∑
n=1

ϕn Yn(y) e−λnt,

where

ϕn =
m∑
i=1

∫ hi

0

ϕi(kiη + li−1)Yn(η) dη, y is defined by (5).

Making the change of variables

ξ = kiη + li−1, dη =
dξ

ki
,

in the last integral we obtain

ϕn =
m∑
i=1

1

ki

∫ li

li−1

ϕi(ξ)Yn

(
ξ − li−1
ki

)
dξ. (18)

Therefore, rewriting formula (16) we get

Yn

(
x− li−1
ki

)
= Cn ·



Φ
(x−li−1

ki

√
λn
)
, l0 < x < l1,

Φ
(
(s1 + x−li−1

ki
)
√
λn
)
, l1 < x < l2,

Φ
(
(s2 + x−li−1

ki
)
√
λn
)
, l2 < x < l3,

. . .

Φ
(
(sm−2 + x−li−1

ki
)
√
λn
)
, lm−2 < x < lm−1,

Φ
(
(sm−1 + x−li−1

ki
)
√
λn
)
, lm−1 < x < lm,

(19)
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where Φ is given by (17) and sj =
∑j

p=1 hp (with s0 = 0).

We now proceed to prove the main theorem.
Theorem 1. Let ϕ(x) be a twice continuously differentiable function satisfying the

boundary conditions (3) and the conjugation conditions (4), namely,

α1ϕ
′
1(l0) + β1ϕ1(l0) = 0, α2ϕ

′
m(lm) + β2ϕm(lm) = 0, (20)

ϕi(li − 0) = ϕi+1(li + 0), kiϕ
′
i(li − 0) = ki+1ϕ

′
i+1(li + 0), i = 1, 2, . . . ,m− 1. (21)

Then the function

ui(x, t) =
∞∑
n=1

ϕn Yn

(
x− li−1
ki

)
e−λnt, (22)

where the coefficients ϕn are defined by (18), is the unique classical solution of problem
(1)-(4).

Proof. First we prove existence of the solution (22). Since
{
Yn
(x−li−1

ki

)}
are the

eigenfunctions and {λn} are the eigenvalues of problem (1)-(4), it is straightforward to verify
that the function u(x, t) defined by (22) satisfies the equation, the initial condition, the
boundary conditions, and the conjugation conditions of (1)-(4). The series (22) is a sum of
the functions

un(x, t) = ϕn Yn

(
x− li−1
ki

)
e−λnt. (23)

We show that for any fixed ε > 0 the series
∞∑
n=1

un(x, t),
∞∑
n=1

∂un
∂t

(x, t),
∞∑
n=1

∂2un
∂x2

(x, t)

converge uniformly on {(x, t) : l0 < x < lm, t ≥ ε}. Clearly, |ϕ| ≤ K1, hence from (18) it
follows that |ϕn| ≤ K2. Using (23) and the equalities

∂un
∂t

= −λn ϕn Yn
(
x− li−1
ki

)
e−λnt,

∂2un
∂x2

= −λn
k2i
ϕn Yn

(
x− li−1
ki

)
e−λnt,

we obtain, for t ≥ ε,

|un(x, t)| ≤ K3 e
−λnε,

{∣∣∣∣∂un∂t
∣∣∣∣ , ∣∣∣∣∂2un∂x2

∣∣∣∣} ≤ K4 λn e
−λnε,

where the constants Ki > 0 (i = 1, 2, 3, 4) do not depend on n.
Therefore, using the asymptotics λn ∼ (πn/sm)2, we have{

∞∑
n=1

|un(x, t)|,
∞∑
n=1

∣∣∣∣∂un∂t (x, t)

∣∣∣∣ , ∞∑
n=1

∣∣∣∣∂2un∂x2
(x, t)

∣∣∣∣
}
≤

∞∑
n=1

K n2 e−( πnsm )
2
ε,
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for some constant K > 0 independent of n. Since the series on the right-hand side converges
absolutely, the WeierstrassM test implies that the series for u, ut, and uxx converge uniformly

for t ≥ ε; hence u(x, t),
∂u(x, t)

∂t
, and

∂2u(x, t)

∂x2
are continuous for t ≥ ε. Now we must show

that the series (22) converges uniformly on the whole domain Ω. Note that the n-th term of
(22) is majorized by |ϕn|. Integrating by parts the integral in (18), we obtain

ϕn = Cn

[
−β1k1 ϕ1(l0)

λn
+
ϕ1(l0)√
λn

Φ̃
(
s1
√
λn
)
−
∫ l1

l0

ϕ′1(ξ)√
λn

Φ̃

(
ξ − l0
k1

√
λn

)
dξ

]
+

Cn
ϕ2(l2 − 0)√

λn
Φ
(
s2
√
λn
)
− ϕ2(l1 + 0)√

λn
Φ
(
s1
√
λn
)
−∫ l2

l1

ϕ′2(ξ)√
λn

Φ

((
s1 +

ξ − l1
k2

)√
λn

)
dξ

+ · · ·

Cn

[
ϕm−1(lm−1 − 0)√

λn
Φ
(
sm−1

√
λn
)
− ϕm−1(lm−2 + 0)√

λn
Φ
(
sm−2

√
λn
)]
−∫ lm−1

lm−2

ϕ′m−1(ξ)√
λn

Φ

((
sm−2 +

ξ − lm−2
km−1

)√
λn

)
dξ+

Cn

[
ϕm(lm)√

λn
Φ
(
sm
√
λn
)
− ϕm(lm−1 + 0)√

λn
Φ
(
sm−1

√
λn
)]
−∫ lm

lm−1

ϕ′m(ξ)√
λn

Φ

((
sm−1 +

ξ − lm−1
km

)√
λn

)
dξ,

where Φ is given by (17) and

Φ̃(z) = α1 sin z + β1
k1√
λn

cos z. (24)

Taking into account the first relation in (21), ϕi(li− 0) = ϕi+1(li + 0) for i = 1, 2, . . . ,m− 1,
and integrating once more, we obtain

ϕn = Cn

[
− β1k1

λn
ϕ1(l0)−

k1α1

λn
ϕ′1(l0) +

k1
λn

ϕ′1(l1 − 0) Φ(s1
√
λn)−

∫ l1

l0

k1ϕ
′′
1(ξ)

λn
Φ

(
ξ − l0
k1

√
λn

)
dξ

]
+

Cn

[
k2
λn

ϕ′2(l2 − 0) Φ(s2
√
λn)− k2

λn
ϕ′2(l1 + 0) Φ(s1

√
λn)−

∫ l2

l1

k2ϕ
′′
2(ξ)

λn
Φ

((
s1 +

ξ − l1
k2

)√
λn

)
dξ

]
+ · · ·

(25)
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Cn

[
km−1
λn

ϕ′m−1(lm−1 − 0) Φ(sm−1
√
λn)− km−1

λn
ϕ′m−1(lm−2 + 0) Φ(sm−2

√
λn)−

∫ lm−1

lm−2

km−1ϕ
′′
m−1(ξ)

λn
Φ

((
sm−2 +

ξ − lm−2
km−1

)√
λn

)
dξ

]
+

Cn

[
ϕm(lm)√

λn
Φ̃(sm

√
λn) +

km
λn

ϕ′m(lm) Φ(sm
√
λn)−

km
λn

ϕ′m(lm−1 + 0) Φ(sm−1
√
λn)−

∫ lm

lm−1

kmϕ
′′
m(ξ)

λn
Φ

((
sm−1 +

ξ − lm−1
km

)√
λn

)
dξ

]
,

where Φ is given by (17) and Φ̃(z) = α1 sin z + β1
k1√
λn

cos z (cf. (24)). Using the second

relation in (21) together with (17) and (24), one checks that

λn ϕm(lm) Φ̃
(
sm
√
λn
)

+ km
√
λn ϕ

′
m(lm) Φ

(
sm
√
λn
)

= ∆(λn), (26)

i.e., the left-hand side coincides with the characteristic equation evaluated at λn. Hence, using
(20)-(21) and (26) in (25), we obtain

ϕn = −Cn
m∑
i=1

ki
λn

∫ li

li−1

ϕ′′i (ξ) Φ

((
si−1 +

ξ − li−1
ki

)√
λn

)
dξ.

From this representation we derive the estimate

|ϕn| ≤ K
|αn|
n2

, K = max
1≤i≤m

k 2
i , (27)

where αn are the Fourier coefficients of the function ϕ′′(x) on the interval [l0, lm] with respect
to the orthonormal system of eigenfunctions Yn

(x−li−1

ki

)
defined by (19). From (27) it follows

that
∞∑
n=1

|ϕn| ≤ K.

Thus the majorizing series converges absolutely; hence the series (22) converges uniformly on
Ω and defines a continuous function u(x, t) on Ω. This proves existence of a solution.

Uniqueness. Assume there are two solutions ũ(x, t) and û(x, t). Let v(x, t) = ũ(x, t)− û(x, t).
Then v solves

∂vi
∂t

= k2i
∂2vi
∂x2

, (x, t) ∈ Ωi, i = 1, 2, . . . ,m, (28)

with the initial condition

v(x, 0) = 0, l0 ≤ x ≤ lm, (29)
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the boundary conditions
α1

∂v1
∂x

(l0, t) + β1 v1(l0, t) = 0,

α2
∂vm
∂x

(lm, t) + β2 vm(lm, t) = 0,

0 ≤ t ≤ T, (30)

and the conjugation conditions
vi(li − 0, t) = vi+1(li + 0, t),

ki
∂vi
∂x

(li − 0, t) = ki+1
∂vi+1

∂x
(li + 0, t),

0 ≤ t ≤ T, i = 1, 2, . . . ,m− 1. (31)

The solution of (28)-(31) can be expanded in the basis Yn
(x−li−1

ki

)
; namely,

vi(x, t) =
∞∑
n=1

vn(t)Yn

(
x− li−1
ki

)
, (32)

where

vn(t) =
m∑
i=1

1

ki

∫ li

li−1

vi(x, t)Yn

(
x− li−1
ki

)
dx. (33)

Transforming (33) and differentiating with respect to t, we obtain

v′n(t) = Cn

m∑
i=1

ki

∫ li

li−1

∂2vi(x, t)

∂x2
Φ

((
si−1 +

x− li−1
ki

)√
λn

)
dx,

where Φ is given by (17) and Cn are the normalization constants.
Proceeding similarly, integrate twice by parts, using the boundary conditions (30), the

conjugation conditions (31), and the identity

Φ′′
((

si−1 +
x− li−1
ki

)√
λn

)
= −λn

k2i
Φ

((
si−1 +

x− li−1
ki

)√
λn

)
, i = 1, 2, . . . ,m.

We obtain

v′n(t) = −λnvn(t), hence vn(t) = cne
−λnt, n = 1, 2, . . . .

Substituting this vn(t) into (33) gives

vn(t) =
m∑
i=1

1

ki

∫ li

li−1

vi(x, t)Yn

(
x− li−1
ki

)
dx = cne

−λnt. (34)

Passing to the limit in (34) as t → 0 (which is permitted by the continuity of v(x, t) on Ω),
we obtain

lim
t→0

m∑
i=1

1

ki

∫ li

li−1

vi(x, t)Yn

(
x− li−1
ki

)
dx = vn(0) = cn,

and therefore cn = 0 for all n = 1, 2, . . . . It follows from (32) that v(x, t) ≡ 0, whence
ũ(x, t) = û(x, t). This completes the proof of the theorem.
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4 Conclusion

In this paper, the solution of a multilayer problem for the heat equation with a discontinuous
coefficient by the method of separation of variables is substantiated. The existence theorem
of a unique classical solution of this problem is proved. The technique used here can also be
applied to more general boundary problems and more general conjugation conditions.
Analytical solutions to such problems are very useful and necessary because they provide a
higher level of understanding of the solution behavior and can be used for numerical solutions.
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ASYMPTOTIC SOLUTIONS TO INITIAL VALUE PROBLEMS FOR
SINGULARLY PERTURBED QUASI-LINEAR IMPULSIVE SYSTEMS

This paper investigates a singularly perturbed quasi-linear impulsive differential system with
singularities present both in the differential equations and in the impulse functions. The boundary
function method is employed to derive the main results. A uniform asymptotic approximation
with higher accuracy is constructed and a complete asymptotic expansion is obtained. Theoretical
findings are supported by illustrative examples and numerical simulations. The analysis reveals
the presence of boundary and interior layers caused by the singular perturbation and impulsive
effects. Sufficient conditions for the existence and uniqueness of the solution are established. The
results contribute to the theoretical understanding of impulsive systems with complex singular
structures and may be applicable to various problems in applied mathematics.
Key words:singularly perturbed systems, impulsive differential equations with singularities, small
parameter, the boundary function method.
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Сингулярлы ауытқыған квазисызықты импульстi жүйелер үшiн бастапқы есептiң
асимптотикалық шешiмi

Бұл мақала дифференциалдық теңдеуiмен қатар импульстiк функциясында кiшi пара-
метрi бар сингулярлы ауытқыған квази-сызықты импульстiк дифференциалдық жүйенi қа-
растырады. Негiзгi нәтижелердi алу үшiн шекаралық функциялар әдiсi қолданылады. Ше-
шiмнiң кез-келген дәлдiктегi асимптотикалық жуықтауы алынды және толық асимптоти-
калық жiктелуi құрылады. Теориялық тұжырымдар иллюстрациялық мысалдармен және
сандық модельдеу нәтижелерiмен расталады. Зерттеу нәтижесi сингулярлық ауытқу мен
импульстiк әсерлерден туындайтын шекаралық және iшкi қабаттардың болуын анықтайды.
Шешiмнiң бар және жалғыз болуының жеткiлiктi шарттары анықталады. Алынған нәтиже-
лер күрделi сингулярлық құрылымы бар импульстiк жүйелер туралы теориялық түсiнiктiң
дамуына ықпал етедi және қолданбалы математика мәселелерiнде қолдануға болады.
Түйiн сөздер: сингулярлы ауытқыған жүйелер, сингулярлы ауытқыған импульстi диффе-
ренциалдық теңдеулер, кiшi параметр, шекаралық функциялар әдiсi.
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Асимптотические решения начальных задач для сингулярно возмущённых
квазилинейных импульсных систем

В данной работе исследуется сингулярно возмущённая квазилинейная импульсная диф-
ференциальная система, в которой сингулярности присутствуют как в дифференциальных
уравнениях, так и в импульсных функциях. Для получения основных результатов применя-
ется метод граничных функций. Построено равномерное асимптотическое приближение по-
вышенной точности и получено полное асимптотическое разложение. Теоретические выводы
подтверждаются иллюстративными примерами и результатами численного моделирования.
Анализ выявляет наличие как граничных, так и внутренних слоёв, возникающих в результате
сингулярных возмущений и импульсных эффектов.
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Установлены достаточные условия существования и единственности решения. Полученные
результаты способствуют развитию теоретического понимания импульсных систем со слож-
ной сингулярной структурой и могут быть применимы в задачах прикладной математики.

Ключевые слова: сингулярно возмущённые системы, импульсные дифференциальные
уравнения с сингулярностями, малый параметр, метод граничных функций.

1 Introduction

Perturbation methods deal with problems that contain a small parameter, usually
denoted by ε, which perturbs or slightly modifies a simpler, well-understood problem. These
problems arise frequently in applied mathematics [1, 2], physics and engineering [3]. There
are two main types of perturbation problems: Regular perturbation problems – the solution
varies smoothly with ε.

Singular perturbation problems – the small parameter multiplies the highest derivative [4],
causing drastic changes in the nature of the solution as ε→ 0.

Singularly perturbed differential equations represent a challenging and fascinating class of
problems where small parameters significantly impact the solution behavior. These equations
require specialized methods like matched asymptotic expansions to accurately capture the
full dynamics of the solution across different scales.

This work is associated with one of the effective asymptotic methods in the theory
of singular perturbations about the method of boundary functions, the mathematical
foundations of which were laid in the works [5, 6]. The boundary layer method is a powerful
analytical technique used to study differential equations with rapid changes in a small region
of the domain — typically near a boundary. This method is especially useful in fluid dynamics,
applied mathematics, and singular perturbation theory. In many physical systems (especially
fluid flow), variables like velocity or temperature change very sharply near boundaries (e.g.,
surfaces), but slowly elsewhere. The thin region of rapid change is called the boundary layer.
Outside this layer, the solution varies smoothly this is the outer region.

Impulse effects describe the response or reaction of a system to a sudden, short-duration
force or signal. These effects are critical in understanding how systems behave under rapid
or transient conditions. Impulse differential equations (or impulsive differential equations)
are used to model systems that experience sudden changes (impulses) at specific moments
in time [7]. These equations combine continuous dynamics (ordinary differential equations)
with discrete jumps or instantaneous changes.

Singularly perturbed impulsive systems present significant difficulties. An exact solution
of impulsive differential equations with singular perturbations is elusive, which explains the
relatively small number of studies in this area. Major works in this field were performed
before 2000 (see [8–13]), including the research of Kulev (1992) and Bainov et al. (1996) on
uniform asymptotic stability, as well as the work of Zhu et al. (2007) on the exponential
stability of singularly perturbed equations with impulsive delay.

In [14–17], singularly perturbed Tikhonov-type systems with impulsive effects are studied.
These systems are distinguished by the presence of both slow and fast dynamics, as well as
by discrete state discontinuities occurring at fixed time instants. The combination of multi-
scale behavior and impulsive phenomena provides a rigorous mathematical framework for
the analysis and modeling of complex processes exhibiting rapid transitions and time-scale
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separation induced by a small perturbation parameter.
Akhmet and Çağ [18–20] extended the Tikhonov theorem to a class of singularly perturbed

impulsive systems of the form

µż = f(z, y, t), ẏ = g(z, y, t),

µ∆z|t=θi = I(z, y, µ), ∆y|t=ηj = J(z, y),
(1)

with initial condition

z(0, µ) = z0, y(0, µ) = y0, (2)

where z, f and I are m-dimensional vector valued functions, y, g and J are n-dimensional
vector valued functions, θipi=1, 0 < θ1 < θ2 < ... < θp < T, and ηjkj=1, are distinct discontinuity
moments in (0, T ).

Unlike the study referenced in [10], the authors considered systems in which not only the
differential part but also the impulsive parts are singularly perturbed. In this framework,
the impulsive function depends explicitly on the small parameter µ, and the moments of
discontinuity for the functions z and y are not coincident. The extension of Tikhonov’s
theorem to such systems necessitates the treatment of additional complexities arising from
the perturbation of impulses.

In [18], two types of singular behavior are analyzed: single-layer and multi-layers
structures, both arising due to the nature of the impulse functions. The singularities in the
impulsive part are addressed using techniques from singular perturbation theory. Stability
of the reduced system in the fast (rescaled) time is established through Lyapunov’s second
method.

Papers [21–23] are devoted to the study of impulsive systems with singularities. Using
the boundary layer method, the authors constructed a uniform asymptotic approximation of
the solution for 0 < t < T, and obtained higher-order approximations as well as complete
asymptotic expansions for systems with singularly perturbed impulses.

2 Formalities of approximation

Let us consider on the segment [0, T ] the following system

µz′ = F (y, t)z +G(y, t), µ∆z|t=θi = I1(y, µ)z + I2(y, µ),

y′ = f(y, t)z + g(y, t), ∆y|t=θi = J1(y, µ)z + J2(y, µ)
(3)

with initial condition

z(0, µ) = z0, y(0, µ) = y0, (4)

where µ is a small positive real number, z0 and y0 are assumed to be independent of µ,
θi
p
i=1, 0 < θ1 < θ2 < ... < θp < T, are distinct discontinuity moments in (0, T ). We define

∆x|t=θi = x(θi+) − x(θi), assuming that the right-hand limit x(θi+) = lim
t→θi+

x(t) exists and

that the left-hand limit satisfies x(θi−) = x(θi).
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Assume that µ = 0 in equation (3). In this case, system (3) reduces to the following
system

0 = F (y, t)z +G(y, t), 0 = I1(y, 0)z + I2(y, 0),

y′ = f(y, t)z + g(y, t), ∆y|t=θi = J1(y, 0)z + J2(y, 0),
(5)

which is called to as a degenerate system, since its order is lower than that of system (3).
Therefore, for system (5) the number of initial conditions to be less than the number of initial
conditions for (3). For system (5) we should retain only the initial condition for y since no
initial condition for z is needed:

y(0) = y0. (6)

In order to solve system (5), one needs to find z from the equations 0 = F (y, t)z +
G(y, t) and 0 = I1(y, 0)z + I2(y, 0). Then, one selects a root of the system in the form
z = ϕ(y(t), t) = −G(y,t)

F (y,t)
, which satisfies the equations 0 = F (y, t)ϕ(y(t), t) + G(y, t) and

0 = I1(y, 0)ϕ(y(t), t) + I2(y, 0). Substituting this expression into equation (5) together with
the initial condition (6) yield system

y′ = f(y, t)ϕ(y(t), t) + g(y, t), ∆y|t=θi = J1(y, 0)ϕ(y(t), t) + J2(y, 0),

y(0) = y0.
(7)

The following conditions are assumed to hold.

(C1) The functions F (y, t), G(y, t), f(y, t), g(y, t) and Ii(y, ε), Ji(y, ε), i = 1, 2 are infinitely
differentiable on the interval 0 ≤ t ≤ T.

(C2) F (y, t) < 0, 0 ≤ t ≤ T.

(C3) The system (7) has a unique solution y(t) on 0 ≤ t ≤ T.

(C4) 1 + ∂
∂y

(J1(y, 0)ϕ(y(t), t) + J2(y, 0)) 6= 0.

(C5) lim
(z,y,)→(ϕ,y,0)

I1(y, µ)z + I2(y, µ)

µ
= 0, where y = y(θi) are the values for each impulse

moment at the points t = θi, i = 1, 2, ..., p.

An asymptotic approximation to the solution z(t, µ), y(t, µ) of problem (3)–(4) will be
sought in the form

z(t, µ) = z(t, µ) + ω(i)(τi, µ), τi =
t− θi
µ

, i = 0, 1, 2, ..., p,

y(t, µ) = y(t, µ) + µν(i)(τi, µ), θi < t ≤ θi+1, θ0 ≡ 0, θp+1 ≡ T.

(8)

where

z(t, µ) =
∞∑
k=0

µkzk(t), y(t, µ) =
∞∑
k=0

µkyk(t),

ω(i)(τi, µ) =
∞∑
k=0

µkω
(i)
k (τi), ν(i)(τi, µ) =

∞∑
k=0

µkν
(i)
k (τi).

(9)
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The coefficients ω(i)
k (τi) and ν

(i)
k (τi) in (9) are called boundary functions, for which the

following additional condition is imposed,

ω
(i)
k (∞) = 0, ν

(i)
k (∞) = 0, i = 0, 1, 2, ..., p. (10)

By substituting the expansions (8) into system (3), we get at the following equalities

µz′(t, µ) + ω̇(i)(τi, µ) = F (y(t, µ) + µν(i)(τi, µ), t)(z(t, µ) + ω(i)(τi, µ))− F (y(t, µ), t)z(t, µ)+

+ F (y(t, µ), t)z(t, µ) + [G(y(t, µ) + µν(i)(τi, µ), t)−G(y(t, µ), t)] +G(ỹ(t, µ), t),

y′(t, µ) + ν̇(i)(τi, µ) = f(y(t, µ) + µν(i)(τi, µ), t)(z(t, µ) + ω(i)(τi, µ))− f(y(t, µ), t)z(t, µ)+

+ f(y(t, µ), t)z(t, µ) + [g(y(t, µ) + µν(i)(τi, µ), t)− g(y(t, µ), t)] + g(y(t, µ), t).

Separating the expressions with respect to the variables t and τi, we derive two systems

µz′(t, µ) = F (y(t, µ), t)z(t, µ) +G(y(t, µ), t),

y′(t, µ) = f(y(t, µ), t)z(t, µ) + g(y(t, µ), t),
(11)

and

ω̇(i)(τi, µ) = F (y(t, µ) + µν(i)(τi, µ), t)ω(i)(τi, µ) + [F (y(t, µ) + µν(i)(τi, µ), t)− F (y(t, µ), t)]z(t, µ)+

+G(y(t, µ) + µν(i)(τi, µ), t)−G(y(t, µ), t),

ν̇(i)(τi, µ) = f(y(t, µ) + µν(i)(τi, µ), t)ω(i)(τi, µ) + [f(y(t, µ) + µν(i)(τi, µ), t)− f(y(t, µ), t)]z(t, µ)+

+ g(y(t, µ) + µν(i)(τi, µ), t)− g(y(t, µ), t).

(12)

Let us express F , f , I1 and I2 in the form of power series in µ as follows:

F (y(t, µ), t)z(t, µ) +G(y(t, µ), t) =

= F (y0(t) + µy1(t) + ..., t)z(t, µ) +G(y0(t) + µy1(t) + ..., t) =

=
(
F (y0(t), t) + µFy(y0(t), t)y1(t) + ...+ µkFy(y0(t), t)yk(t) + ...

)
(z0(t) + µz1(t) + ...)+

+
(
G(y0(t), t) + µGy(y0(t), t)y1(t) + ...+ µkGy(y0(t), t)yk(t) + ...

)
=

= F (y0(t), t)z0(t) +G(y0(t), t) + µ[F (y0(t), t)z1(t) + (Fy(t)z0(t) +Gy(t))y1(t)]+

+ µk[F (y0(t), t)zk(t) + (Fy(t)z0(t) +Gy(t))yk(t) +Hk(t)] + ... =

= F (y0(t), t)z0(t) +G(y0(t), t) + µH1(t) + . . . µkHk(t) + ...,

where functions Fy(t) and Gy(t) are calculated at the point (y0(t), t) and Hk(t) are defined
recursively in terms of zj(t) and yj(t) for j < k,

F (y(t, µ) + µν(i)(τi, µ), t)− F (y(t, µ), t) =

= F (y0(θi + µτi) + µy1(θi + µτi) + ...+ µν
(i)
0 (τi) + µ2ν

(i)
1 (τi) + ..., θi + µτi)−

− F (y0(θi + µτi) + µy1(θi + µτi) + ..., θi + µτi) =

= µFy(y0(θi), θi)ν
(i)
0 (τi) + µ2[Fy(y0(θi), θi)ν

(i)
1 (τi) + F2(θi)] + ...+

+ µk[Fy(y0(θi), θi)ν
(i)
k−1(τi) + Fk(θi)] + ... = µΠ1F (τi) + . . .+ µkΠkF (τi) + ...,
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F (y(t, µ) + µν(i)(τi, µ), t)ω(i)(τi, µ) + [F (y(t, µ) + µν(i)(τi, µ), t)− F (y(t, µ), t)]z(t, ε)+

+G(y(t, µ) + µν(i)(τi, µ), t)−G(y(t, µ), t) =

= F (y(θi + µτi, µ) + µν(i)(τi, µ), θi + µτi)ω
(i)(τi, µ) + [µΠ1F (τi) + . . .+ µkΠkF (τi) + ...]z(θi + µτi, µ)+

+ µΠ1G(τi) + . . .+ µkΠkG(τi) + ... = F (y0(θi), θi)ω
(i)
0 (τi) + µF (y0(θi), θi)ω

(i)
1 (τi) + ...+

+ [µΠ1F (τi) + . . .+ µkΠkF (τi) + ...](z0(θi) + µz1(θi) + ...) + µΠ1G(τi) + . . .+ µkΠkG(τi) + ... =

= F (y0(θi), θi)ω
(i)
0 (τi) + µ[F (y0(θi), θi)ω

(i)
1 (τi) + Π1F (τi)z0(θi) + Π1G(τi)] + ...+

+ µk[F (y0(θi), θi)ω
(i)
k (τi) + ΠkF (τi)z0(θi) + ΠkG(τi)] + ... =

= Π0H(τi) + µΠ1H(τi) + . . .+ µkΠkH(τi) + ...,

z(θi + µτi, µ) = z0(θi + µτi) + µz1(θi + µτi) + ... = z0(θi) + µτiz
′
0(θi) + ...+

+ µ(z1(θi) + µτiz
′
1(θi) + ...) + ... = z0(θi) + µ[z1(θi) + z′0(θi)τi]+

+ µ2[z2(θi) + z′1(θi)τi + z′′0(θi)
τi
2

] + ... = ω0(τi) + µω1(τi) + µ2ω2(τi) + ...

where the functions Fk(θi) are calculated at the point (y0(θi), θi), i = 1, 2, ..., p, and
ΠkF (τi),ΠkG(τi), i = 1, 2, ..., p, are defined recursively in terms of ω(i)

j (τi) and ν
(i)
j (τi) for

j < k. Analogously, one can get that

I1(y(θi, µ), µ)z(θi, µ) + I2(y(θi, µ), µ) = I1(y(θi−, µ), µ)z(θ−, µ) + I2(y(θi−, µ), µ) =

= I1

(
y(θi, µ) + µν(i−1)

(
θi − θi−1

µ
, µ

)
, µ

)(
z(θi, µ) + ω(i−1)

(
θi − θi−1

µ
, µ

))
+

+ I2

(
y(θi, µ) + µν(i−1)

(
θi − θi−1

µ
, µ

)
, µ

)
=

= I1(y(θi, µ), µ)z(θi, µ) + I2(y(θi, µ), µ) = I1(y0(θi), 0)z0(θi) + I2(y0(θi), 0)+ (13)
+ µ[I1(y0(θi), 0)z1(θi) + I1y(θi)z0(θi)y1(θi) + I1ε(θi)] + ε[I2y(θi)y1(θi) + I2ε(θi)] + ...+

+ µk[I1(y0(θi), 0)zk(θi) + I1y(θi)z0(θi)yk(θi) + I1k(θi)] + µk[I2y(θi)yk(θi) + I2k(θi)] + ... =

= I1(y0(θi), 0)z0(θi) + I2(y0(θi), 0)+

+ µ[I1(y0(θi), 0)z1(θi) + (I1y(θi)z0(θi) + I2y(θi))y1(θi)) + Iµ(θi)] + ...+

+ µk[I1(y0(θi), 0)zk(θi) + (I1y(θi)z̃0(θi) + I2y(θi))ỹk(θi)) + Ik(θi)] + ... =

= T 0(θi) + µT 1(θi) + . . .+ µkT k(θi) + . . . ,

where the terms I1y(θi), I2y(θi), I1k(θi) and I2k(θi) are calculated at the point (y0(θi), 0), i =
1, 2, ..., p, and I1k(θi), I2k(θi) are defined recursively in terms of zj(θi) and yj(θi) for j < k.
Analogous expansions hold for the expression J1(y, µ)z + J2(y, µ).
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The problems (3), (4) with (11) and (12) can be rewritten in the following form

µ(z′0(t) + µz′1(t) + . . .+ µkz̃′k(t) + . . .) = H0(t) + µH1(t) + . . . µkHk(t) + . . . ,

y′0(t) + µy′1(t) + . . .+ µky′k(t) + . . . = h0(t) + µh1(t) + . . . µkhk(t) + . . . ,

ω̇
(i)
0 (τi) + µω̇

(i)
1 (τi) + . . .+ µkω̇

(i)
k (τi) + . . . = Π0H(τi) + µΠ1H(τi) + . . .+ µkΠkH(τi) + . . . ,

ν̇
(i)
0 (τi) + εν̇

(i)
1 (τi) + . . .+ εkν̇

(i)
k (τi) + . . . = Π0h(τi) + εΠ1h(τi) + . . .+ µkΠkh(τi) + . . . ,

µ(
∞∑
k=0

µk∆zk|t=θi +
∞∑
k=0

µkω
(i)
k (0)) = T 0(θi) + µT 1(θi) + . . .+ µkT̃k(θi) + . . . ,

∞∑
k=0

µk∆yk|t=θi + µ
∞∑
k=0

µkν
(i)
k (0) = S0(θi) + µS1(θi) + . . .+ µkSk(θi) + . . . .

By inserting the expansion (9) into conditions (4), we get

z(0, µ) =
∞∑
k=0

µkzk(0) +
∞∑
k=0

µkω
(0)
k (0) = z0,

and

y(0, µ) =
∞∑
k=0

µkyk(0) + µ
∞∑
k=0

µkν
(0)
k (0) = y0.

The expansions are performed up to order n and the coefficients are equated by powers
of µ. For the zero-order approximation z0(t), y0(t), ω

(i)
0 (τi) and ν

(i)
0 (τi), i = 1, 2, ..., p, the

following systems are obtained:

0 = F (ỹ0(t), t)z0(t) +G(y0(t), t),

y′0(t) = f(y0(t), t)z0(t) + g(y0(t), t),
(14)

ω̇
(i)
0 (τi) = F (y0(θi), θi)ω

(i)
0 (τi) = Π0H(τi),

ν̇
(i)
0 (τi) = f(y0(θi), θi)ω

(i)
0 (τi) = Π0h(τi),

(15)

0 =
I1(y0(θi), 0)z0(θi) + I2(y0(θi), 0)

µ
, (16)

∆z0|t=θi + ω
(i)
0 (0) = I1(y0(θi), 0)z1(θi) + (I1y(θi)z0(θi) + I2y(θi))y1(θi) + Iµ(θi) = T 1(θi),

∆y0|t=θi = J1(y0(θi), 0)z0(θi) + J2(y0(θi), 0) = S0(θi), (17)

z0(0) + ω
(0)
0 (0) = z0, y0(0) = y0.

To find the coefficients of µk(k ≥ 1), the following equations are used

z′k−1(t) = F (y0(t), t)zk(t) + (Fy(t)z0(t) +Gy(t))yk(t) +Hk(t),

y′k(t) = f(y0(t), t)zk(t) + (fy(t)z0(t) + gy(t))yk(t) + hk(t),
(18)
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ω̇
(i)
k (τi) = F (y0(θi), θi)ω

(i)
k (τi) + ΠkF (τi)z0(θi) + ΠkG(τi) = ΠkH(τi),

ν̇
(i)
k (τi) = f(y0(θi), θi)ω

(i)
k (τi) + Πkf(τi)z0(θi) + Πkg(τi) = Πkh(τi),

∆zk|t=θi + ω
(i)
k (0) = I1(y0(θi), 0)zk+1(θi) + (I1y(θi)z0(θi) + I2y(θi))yk+1(θi)) + Ik+1(θi),

∆yk|t=θi + ν
(i)
k−1(0) = J1(y0(θi), 0)zk(θi) + (J1y(θi)z0(θi) + J2y(θi))yk(θi)) + Jk(θi), (19)

zk(0) + ω
(0)
k (0) = 0, yk(0) + ν

(0)
k−1(0) = 0.

Now we consider the interval t ∈ [0, θ1]. To obtain the leading-order approximations z0(t) =
z(t) and y0(t) = y(t), we solve system

0 = F (y0(t), t)z0(t) +G(y0(t), t),

y′0(t) = f(y0(t), t)z0(t) + g(y0(t), y0(0) = y0.

By virtue of the first equation in (14), equation (15) can be rewritten in the form

ω̇
(0)
0 (τ0) = F (y0(0), 0)ω

(0)
0 (τ0).

From the last equation, together with the initial condition

ω
(0)
0 (0) = z0 − z0(0)

the function ω
(0)
0 (τ0) can be determined. According to condition (C5), ω(0)

0 (τ0) admits the
exponential estimate

|ω(0)
0 (τ0)| ≤ c exp(−κτ0), (20)

where c > 0 and κ > 0.
The final step is to solve equation

ν̇
(0)
0 (τ0) = F (y0(0), 0)ω

(0)
0 (τ0) ≡ Π0h(τ0).

In view of condition (10), the initial condition is given by

ν
(0)
0 (0) = −

∫ ∞
0

Π0h(s)ds,

from which it follows that

ν
(0)
0 (τ0) = −

∫ ∞
τ0

Π0h(s)ds.

Since Π0f(τ0) decays exponentially, i.e., |Π0f(τ0)| ≤ c exp(−κτ0) the same holds for ν(0)0 (τ0) :

|ν(0)0 (τ0)| ≤ c exp(−κτ0).

The coefficients of µk in the approximations zk(t) and yk(t) are obtained by applying
system

z′k−1(t) = F (y0(t), t)zk(t) + (Fy(t)z0(t) +Gy(t))yk(t) +Hk(t),

y′k(t) = f(y0(t), t)zk(t) + (fy(t)z0(t) + gy(t))yk(t) + hk(t),

yk(0) + ν
(0)
k−1(0) = 0.
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To get ω(0)
k (τ0), the following system must be solved

ω̇
(0)
k (τ0) = F (y0(0), 0)ω

(0)
k (τ0) + ΠkF (τ0)z0(0) + ΠkG(τ0) = ΠkH(τ0),

ω
(0)
k (0) = −zk(0).

The remaining task is to solve the equation

ν̇
(0)
k (τ0) = f(y0(0), 0)ω

(0)
k (τ0) + Πkf(τ0)z0(0) + Πkg(τ0) = Πkh(τ0)

Taking into account condition (10), the initial condition is given by

ν
(0)
k (0) = −

∫ ∞
0

Πkh(s)ds,

from which it follows that

ν
(0)
k (τ0) = −

∫ τ∞

0

Πkh(s)ds.

Both ΠkH(τ0) and Πkh(τ0) satisfy exponential estimates of the type given in (20). As a
consequence, the following inequalities are satisfied,

|ω(0)
k (τ0)| ≤ c exp(−κτ0),
|ν(0)k (τ0)| ≤ c exp(−κτ0).

Let us now consider the interval t ∈ (θi, θi+1], i = 1, 2, ..., p. To obtain the leading-order
terms z0(t) = z(t) and y0(t) = y(t), corresponding to the power ε0, we make use of system

0 =F (y0(t), t)z0(t) +G(y0(t), t), 0 = I1(y0(θi), 0)z0(θi) + I2(y0(θi), 0),

y′0(t) =f(y0(t), t)z0(t) + g(y0(t), t), ∆y0|t=θi = J1(y0(θi), 0)z0(θi) + J2(y0(θi), 0).

In view of the first equation in (14), equation (15) takes the form

ω̇
(i)
0 (τi) = F (y0(θi), θi)ω

(i)
0 (τi), i = 1, 2, ..., p.

Based on the last equation and the initial condition

ω
(i)
0 (0) = I1(y0(θi), 0)z1(θi)+(I1y(θi)z0(θi)+I2y(θi))y1(θi)+Iµ(θi)−∆z0|t=θi , i = 1, 2, ..., p,

the function ω(i)
0 (τi) is to be determined, where ω(i)

0 (0) represented in the modified form below.
Differentiating both sides of the first equations in (14) and (16) yields the following

Fy(y0(θi), θi)z0(θi) +Gy(y0(θi), θi) = −F (y0(θi), θi)
dz

dy
,

I1y(y0(θi), 0)z0(θi) + I2y(y0(θi), 0) = −I1(y0(θi), 0)
dz

dy
.

(21)

Inserting the first equation of (21) into (18) results in

z′0(θi) = F (y0(θi), θi)z1(θi) + (Fy(θi)z0(θi) +Gy(θi))y1(θi) +H1(θi).
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Hence, it follows that

z1(θi)− y1(θi)
dz

dy
=
z′0(θi)−H1(θi)

F (y0(θi), θi)
. (22)

Inserting the second equation of (21) into (19) gives

ω
(i)
0 (0) = I1(y0(θi), 0)[z1(θi)− y1(θi)

dz

dy
] + Iµ(θi)−∆z0|t=θi , i = 1, 2, ..., p.

Substituting equation (22) in place of the square bracket yields

ω
(i)
0 (0) =

I1(y0(θi), 0)

F (y0(θi), θi)
(z′0(θi)−H1(θi)) + Iµ(θi)−∆z0|t=θi , i = 1, 2, ..., p.

According to condition (C5), the function ω
(i)
0 (τi) satisfies an exponential estimate of the

form

|ω(i)
0 (τi)| ≤ c exp(−κτi), i = 1, 2, ..., p, (23)

where c and κ denote positive constants, which values may differ across various inequalities.
The remaining task is to solve the following equation

ν̇
(i)
0 (τi) = f(y0(θi), θi)ω

(i)
0 (τi) = Π0h(τi), i = 1, 2, ..., p.

Using condition (10), we determine the initial condition as follows

ν
(i)
0 (0) = −

∫ ∞
0

Π0h(s)ds.

Consequently, the following result is derived

ν
(i)
0 (τi) = −

∫ ∞
τi

Π0h(s)ds.

Since |Π0h(τi)| ≤ c exp(−κτi), it holds that

|ν(i)0 (τi)| ≤ c exp(−κτi), i = 1, 2, ..., p.

The coefficients of εk in the approximations zk(t) and yk(t) are determined from the following
system

z′k−1(t) = F (y0(t), t)zk(t) + (Fy(t)z0(t) +Gy(t))yk(t) +Hk(t),

y′k(t) = f(y0(t), t)zk(t) + (fy(t)z0(t) + gy(t))yk(t) + hk(t),

∆yk|t=θi + ν
(i)
k−1(0) = J1(y0(θi), 0)zk(θi) + (J1y(θi)z0(θi) + J2y(θi))yk(θi)) + Jk(θi).

The functions ω(i)
k (τi) are determined as the solutions of the following system

ω̇
(i)
k (τi) = F (y0(θi), θi)ω

(i)
k (τi) + ΠkF (τi)z0(θi) + ΠkG(τi) = ΠkH(τi),

ω
(i)
k (0) = I1(y0(θi), 0)zk+1(θi) + (I1y(θi)z0(θi) + I2y(θi))yk+1(θi) + Ik+1(θi)−∆zk|t=θi ,
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where the initial value ω(i)
k (0) can be represented in an equivalent form below

ω
(i)
k (0) =

I1(y0(θi), 0)

F (y0(θi), θi)
(z′k(θi)−Hk+1(θi)) + Ik+1(θi)−∆zk|t=θi ,

Finally, it is necessary to solve the equation

ν̇
(i)
k (τi) = f(y0(θi), θi)ω

(i)
k (τi) + Πkf(τi)z0(θi) + Πkg(τi) = Πkh(τi), i = 1, 2, ..., p.

By applying condition (10), we obtain

ν
(i)
k (0) = −

∫ ∞
0

Πkh(s)ds,

and

ν
(i)
k (τi) = −

∫ ∞
τi

Πkh(s)ds.

The functions ΠkH(τi) and Πkh(τi) admit exponential estimates of the form (23).
Accordingly, one can prove that the following inequalities are satisfied,

|ω(i)
k (τi)| ≤ c exp(−κτi), i = 1, 2, ..., p,

|ν(i)k (τi)| ≤ c exp(−κτi), i = 1, 2, ..., p.
(24)

Hence, the expansions in (9) are constructed at least up to the terms of order k = n.

3 Main Results

In this section, we prove Theorems 1 and Theorem 2, which address two different behaviors:
a single layer singularity and a multi-layers singularity. The first behavior corresponds to a
layer concentrated near t = 0, while the second deals with the presence of multiple layers
near t = 0 and at the points t = θi, i = 1, 2, . . . , p. It is demonstrated that the partial sums
of the series (8) form a sequence of uniform approximations to the solution of the problem
(3)–(4).

3.1 Asymptotic expansion of singularity with a single layer

We consider the case in which the convergence of the solution is non-uniform in a
neighborhood of t = 0, as a result of the initial condition z(0, µ) = z0 satisfying z0 6= ϕ
for all µ > 0. The interval where this non-uniformity occurs is referred to as the initial layer.

In accordance with condition (C5) of (13), the following identity holds,

I1(y0(θi), 0)z1(θi) + (I1y(θi)z0(θi) + I2y(θi))y1(θi) + Iµ(θi) = 0, i = 1, 2, ..., p.

As a result, the first equation of (17) becomes

ω
(i)
0 (0) = −∆z0|t=θi , i = 1, 2, ..., p.
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Substituting the above expression into (8), we obtain

z(θi+, µ) = z0(θi+) + ω
(i)
0 (0) +O(µ) = z0(θi) +O(µ), i = 1, 2, ..., p.

It can be concluded that the region of non-uniform convergence has a thickness of order
O(µ), since for t > 0 the estimate |z(t, µ) − ϕ| = O(µ) holds and can be made arbitrarily
small by choosing sufficiently small µ. This indicates that, for sufficiently small values of µ,
the solution z(t, µ) to the problem (3), (4) does not exhibit boundary layer behavior in the
vicinity of the points t = θi, i = 1, 2, . . . , p.

Theorem 1 Let conditions (C1) − (C4) and (C5) be satisfied. Then there exist positive
constants µ0 and c such that, for all µ ∈ (0, µ0], the problem (3), (4) admits a unique solution
z(t, µ), y(t, µ) that satisfies the inequality

|z(t, µ)− Zn(t, µ)| ≤ cµn+1, 0 ≤ t ≤ T,

|y(t, µ)− Yn(t, µ)| ≤ cµn+1, 0 ≤ t ≤ T,
(25)

where

Zn(t, µ) = Z(i)
n (t, µ), Yn(t, µ) = Y (i)

n (t, µ), θi < t ≤ θi+1,

Z(i)
n (t, µ) =

n∑
k=0

µkzk(t) +
n∑
k=0

µkω
(i)
k (τi), τi =

t− θi
µ

,

Y (i)
n (t, µ) =

n∑
k=0

µkyk(t) + µ

n∑
k=0

µkν
(i)
k (τi), i = 1, 2, ..., p.

Proof 1 Substituting the expressions z(t, µ) = u(t, µ)+Zn(t, µ) and y(t, µ) = v(t, µ)+Yn(t, µ)
into equations (3) and (4), we derive the following system

µ
du

dt
= F (Y0, t)u+ [Fy(Y0, t)Z0 +Gy(Y0, t)]v + T1(u, v, t, µ),

dv

dt
= f(Y0, t)u+ [fy(Y0, t)Z0 + gy(Y0, t)]v + T2(u, v, t, µ),

µ∆u|t=θi = I1(Y0, 0)u+ [I1y(Y0, 0)Z0 + I2y(Y0, 0)]v + S1(u, v, θi, µ),

∆v|t=θi = J1(Y0, 0)u+ [J1y(Y0, 0)Z0 + J2y(Y0, 0)]v + S2(u, v, θi, µ),

(26)

with initial condition

u(0, µ) = 0, v(0, µ) = 0, (27)

where the components of the functions Fz, Fy, fz and fy are calculated at the points (z0(t) +



56 Asymptotic solutions to initial value problems for singularly . . .

ω
(i)
0 (τi), y0(t), 0), i = 1, 2, ..., p,

T1(u, v, t, µ) =F (v + Yn, t)(u+ Zn) +G(v + Yn, t)− F (Y0, t)u−

− [Fy(Y0, t)Z0 +Gy(Y0, t)]v − µ
dZn
dt

,

T2(u, v, t, µ) =f(v + Yn, t)(u+ Zn) + g(v + Yn, t)− f(Y0, t)u−

− [fy(Y0, t)Z0 + gy(Y0, t)]v −
dYn
dt

,

S1(u, v, θi, µ) =I1(v + Y (i−1)
n , µ)(u+ Z(i−1)

n ) + I2(v + Y (i−1)
n , µ)− I1(Y0, 0)u−

− [I1y(Y0, 0)Z0 + I2y(Y0, 0)]v + µZ(i−1)
n − µZ(i)

n ,

S2(u, v, θi, µ) =J1(v + Y (i−1)
n , µ)(u+ Z(i−1)

n ) + J2(v + Y (i−1)
n , µ)− J1(Y0, 0)u−

− [J1y(Y0, 0)Z0 + J2y(Y0, 0)]v + Y (i−1)
n − Y (i)

n .

The functions T (u, v, t, µ) possess the following two properties,
1) T1(0, 0, t, µ) = O(µn+1), T2(0, 0, t, µ) = O(µn+1).

2) For any µ > 0, there exist constants c2 > 0 and µ0 > 0 such that, for all µ ∈ (0, µ0)
and for ui, vi, i = 1, 2, the following inequalities are satisfied,
|Ti(u1, v1, t, µ)− Ti(u2, v2, t, µ)| ≤ c2µ(|u2 − u1|+ |v2 − v1|), i = 1, 2.

We now proceed to prove property 1). For t ∈ (θi, θi+1], it follows that

T1(0, 0, t, µ) = F (v + Yn, t)Zn +G(v + Yn, t)− µ
dZn
dt

= G(
n∑
k=0

µk(yk(t) + µν
(i)
k (τi)), t)+

+ F (
n∑
k=0

µk(yk(t) + µν
(i)
k (τi)), t)(

n∑
k=0

µk(zk(t) + ω
(i)
k (τi)))−

n∑
k=0

µk(z′k(t) + ω̇
(i)
k (τi)) =

= F (
n∑
k=0

µk(yk(t), t)
n∑
k=0

µkzk(t) +G(
n∑
k=0

µk(yk(t), t)−
n∑
k=0

µkz′k(t)+

F (y(θi + µτi, µ) + µν(i)(τi, µ), θi + µτi)
n∑
k=0

µkω
(i)
k (τi) +

n∑
k=0

µk(ΠkF (τi)z0(θi) + ΠkG(τi))−

−
n∑
k=0

µkω̇
(i)
k (τi) = [

n∑
k=0

µkHk(t) +O(µn+1)−
n∑
k=0

µkz′k(t)]+

+ [
n∑
k=0

µkΠkH(τi) +O(µn+1)−
n∑
k=0

µkω̇
(i)
k (τi)] = O(µn+1),

similarly to that for the functions yk(t), ν
(i)
k (τi), i = 1, 2, ..., p. The validity of the second

property of the functions Tj, j = 1, 2, can be derived by applying the mean value theorem. In
fact,

Ti(u1, v1, t, µ)− Ti(u2, v2, t, µ) = sup
[0;T ]

|∂∗uT | · (u1 − u2) + sup
[0;T ]

|∂∗vT | · (v1 − v2),
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where ∂∗uT = ∂∗uT (u∗(s), v∗(s), t, µ), ∂∗vT = ∂∗vT (u∗(s), v∗(s), t, µ), u∗(s) = u2 + s(u1 −
u2), v

∗(s) = u∗(s) = v2 + s(v1 − v2), 0 < s < 1. But

∂uTi(u
∗(s), v∗(s), t, µ) = F (v + Yn, t)− F (Y0, t),

∂vTi(u
∗(s), v∗(s), t, µ) = Fy(v + Yn, t)(u+ Zn)− Fy(Y0, t)Z0 +Gy(v + Yn, t)−Gy(Y0, t),

and

|u∗(s) + Zn(t, µ)− Z0(t)| ≤ |u∗(s)|+ Cµ,

|v∗(s) + Yn(t, µ)− Y0(t)| ≤ |v∗(s)|+ Cµ.

The continuity of the first-order partial derivatives of the functions F (y, t), G(y, t), f(y, t) and
g(y, t) ensures the validity of property 2). The functions Si(u, v, θi, µ), i = 1, 2, possess the
following two properties,

1∗) For 0 < µ < µ0

S1(0, 0, θi, µ) = O(µn+1), S2(0, 0, θi, µ) = O(µn+1).

2∗) For any µ > 0, there exist constants c2 > 0 and µ0 > 0 such that, for all µ ∈ (0, µ0) and
for ui, vi, i = 1, 2, the following inequalities are satisfied,

|Si(u1, v1, t, µ)− Si(u2, v2, t, µ)| ≤ c2µ(|u2 − u1|+ |v2 − v1|), i = 1, 2.

The proofs of properties 1∗) and 2∗) follow analogously to those of properties 1) and 2),
respectively.

We now reformulate the impulsive system (26)–(27) as an equivalent system of integral
equations

u(t, µ) =
1

µ

∫ t

0

Φ(t, s, µ)[(Fy(Y0, s)Z0 +Gy(Y0, s))v(s, µ) + T1(u, v, s, µ)]ds+ (28)

+
∑

0<θi<t

Φ(t, θi, µ)(1 +
I1(Y0, 0)

µ
)−1([I1y(Y0, 0)Z0 + I2y(Y0, 0)]v(θi, µ) + S1(u, v, θi, µ)),

v(t, µ) =

∫ t

0

Ψ(t, s, µ)[f(Y0, s)u(s, µ) + T2(u, v, t, µ)]ds+ (29)

+
∑

0<θi<t

Ψ(t, θi, µ)(1 + J1y(Y0, 0)Z0 + J2y(Y0, 0))−1(J1(Y0, 0)u(θi, µ) + S2(u, v, θi, µ)),

where Φ(t, s, µ) and Ψ(t, s, µ) denote the fundamental matrices of the corresponding system

µ
dΦ

dt
= F (Y0, t)Φ, t 6= θi, µ∆Φ|t=θi = I1(Y0, 0)Φ, Φ(s, s, µ) = 1,

dΨ

dt
= (fy(Y0, t)Z0 + gy(Y0, t))Ψ, t 6= θi, ∆Ψ|t=θi = (J1y(Y0, 0)Z0 + J2y(Y0, 0))Ψ, Ψ(s, s, µ) = 1.

The following holds for the fundamental matrix Φ(t, s, µ)

|Φ(t, s, µ)| ≤ c exp(−κ
µ

(t− s)), 0 ≤ s ≤ t ≤ T.
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By inserting the representation of v(t, µ) from equation (29) into the first equation, we derive

u(t, µ) =

∫ t

0

H(t, s, µ)u(s, µ)ds+N1(u, v, t, µ),

where H denotes a bounded kernel, and the function N1 satisfies the same two properties as
the function T (u, v, t, µ). The last equation may be replaced by an equivalent one of the form

u(t, µ) =

∫ t

0

R(t, s, µ)N1(u, v, s, µ)ds+N1(u, v, t, µ) = M1(u, v, t, µ), (30)

where R is the resolvent corresponding to the kernel H. Substituting the representation (30)
for u(t, µ) into equation (29) yields

v(t, µ) =

∫ t

0

Ψ(t, s, µ)[f(Y0, s)M1(u, v, s, µ) + T2(u, v, s, µ)]ds+

+
∑

0<θi<t

Ψ(t, θi, µ)(1 + J1y(Y0, 0)Z0 + J2y(Y0, 0))−1(J1(Y0, 0)M1(u, v, θi, µ)+ (31)

+ S2(u, v, θi, µ)) = M2(u, v, t, µ).

The functions M1 and M2 possess the same two properties as the function T (u, v, t, µ). The
method of successive approximations applied to systems (30) and (31) yields a unique solution
that fulfills the corresponding estimates

|u(t, µ)| = |z(t, µ)− Zn(t, µ)| ≤ cµn+1, 0 ≤ t ≤ T,

|v(t, µ)| = |y(t, µ)− Yn(t, µ)| ≤ cµn+1, 0 ≤ t ≤ T.

The theorem is proven.

3.2 Asymptotic expansion of singularity with multi-layers

In the previous subsection, it was shown that there exists a single initial layer. Using an
impulse function, the convergence can be nonuniform near several points, that is to say,
that multi-layers emerge. These layers occur on the neighborhoods of t = 0 and t = θi

p
i=1.

In the preceding subsection, the existence of a single initial layer was demonstrated. The
introduction of an impulse function leads to nonuniform convergence in the vicinity of multiple
points, resulting in the formation of multi-layer structures. These layers are localized near
t = 0 and t = θi, i = 1, 2, . . . , p.

In order to generate a singularity exhibiting a multi-layer structure, we examine system
(3) subject to conditions(C1)–(C4) along with the additional requirement condition

(C6) lim
(z,y,µ)→(ϕ,y,0)

I1(y, µ)z + I2(y, µ)

µ
= li 6= 0,

where li is a constant, ϕ(y(θi), θi)+li, i = 1, 2, ..., p, are the values for each impulse moment at
the points t = θi, i = 1, 2, ..., p. By virtue of condition (C6) from equation (13), the following
equality holds

I1(y0(θi), 0)z1(θi) + (I1y(θi)z0(θi) + I2y(θi))y1(θi) + Iµ(θi) = li 6= 0, i = 1, 2, ..., p.
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Accordingly, the first equation of system (17) can be rewritten in the following form

ω
(i)
0 (0) = li −∆z0|t=θi , i = 1, 2, ..., p.

By substituting the previously derived expression into (8), we arrive at

z(θi+, µ) = z0(θi+) + ω
(i)
0 (0) +O(µ) = z0(θi) + li +O(µ), i = 1, 2, ..., p.

According to condition (C6), after each impulse moment θi, the difference |z(θi+, µ)− ϕ| =
li +O(µ) does not vanish as µ→ 0. Consequently, the convergence is nonuniform. Therefore,
it can be concluded that the solution z(t, µ) of system (3) with the initial condition (4)
exhibits a multi-layer structure, with layers forming in the neighborhoods of t = 0 and t = θi
for i = 1, 2, . . . , p.

The proof of the next theorem follows by analogy with the proof of Theorem 1.

Theorem 2 Let conditions (C1) − (C4) and (C6) be satisfied. Then there exist positive
constants µ0 and c such that, for all µ ∈ (0, µ0], the problem (3), (4) admits a unique solution
z(t, µ), y(t, µ) that satisfies the inequality

|z(t, µ)− Zn(t, µ)| ≤ cµn+1, 0 ≤ t ≤ T,

|y(t, µ)− Yn(t, µ)| ≤ cµn+1, 0 ≤ t ≤ T,

where

Zn(t, µ) = Z(i)
n (t, µ), Yn(t, µ) = Y (i)

n (t, µ), θi < t ≤ θi+1,

Z(i)
n (t, µ) =

n∑
k=0

µkzk(t) +
n∑
k=0

µkω
(i)
k (τi), τi =

t− θi
µ

,

Y (i)
n (t, µ) =

n∑
k=0

µkyk(t) + µ
n∑
k=0

µkν
(i)
k (τi), i = 1, 2, ..., p.

4 Numerical examples

4.1 Example 1

Consider the impulsive system with singularities

µz′ = −y2z + y2 − 5µ2y, µ∆z|t=θi = zy − y − 2µ2y3,

y′ = 2zy − 8y, ∆y|t=θi = 2yz − 8y,
(32)

initial conditions

z(0, µ) = 2, y(0, µ) = 3, (33)

where θi = i/5, i = 1, 2, ...7. Assume that µ = 0 in the considered problem. In this case, the
first equation of system (32) reduces to the form −y2z + y2 = 0, zy− y = 0. which yields the
solution z = ϕ = 1. Nevertheless, according to condition (C2), the root z = 1 is uniformly
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asymptotically stable. Inserting the value z = 1 into the second equation of (32) yields the
following result

y′ = −6y, ∆y|t=θi = y + 1,

y(0) = 3.
(34)

This system possesses a unique solution y(t). Next, we examine the validity of condition (C5)

lim
(z,y,µ)→(ϕ,y,0)

zy − y − 2µ2y3

µ
= 0.

The solution z(t, µ) of system (32) with the initial condition (33) exhibits a single initial layer
at t = 0. The simulation results presented in Figure 1 confirm the presence of this single-layer
behavior. As µ→ 0, Figure 2 shows that the solution to problem (32), (33) converges to the
solution of the corresponding degenerate system (34).
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Figure 1: The blue and green curves illustrate the solutions of system (32) with initial
conditions (33), corresponding to the values µ = 0.1 and µ = 0.05, respectively. The red line
represents the solution to problem (34).
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Figure 2: The blue and green curves illustrate the solutions of system (32) with initial
conditions (33), corresponding to the values µ = 0.1 and µ = 0.05, respectively. The red line
represents the solution to problem (34).

4.2 Example 2

Now, we now consider the following system

µz′ = −y2z − 3y2 − 4µ2yz, µ∆z|t=θi = zy + 3y − 6µ2yz − 4sin(2µ),

y′ = 2zy − 8y, ∆y|t=θi = 2y − z,
(35)

initial conditions

z(0, µ) = −1, y(0, µ) = 3, (36)

where θi = i/5, i = 1, 2, ...7. Setting µ = 0 in (35) transforms the first equation into −y2z −
3y2 = 0, which simplifies to zy+3y = 0. This yields the root z = −3. The corresponding root
ϕ = −3 is uniformly asymptotically stable, as it satisfies condition (C2). Inserting z = −3
into the second equation of system (35) yields

y′ = −14y, ∆y|t=θi = 2y + 3,

y(0) = 3.
(37)

One can confirm that condition (C6) is satisfied

lim
(z,y,µ)→(ϕ,y,0)

zy + 3y − 6µ2yz − 4sin(2µ)

µ
= −8 6= 0.
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The solution z(t, µ) of system (35) with initial condition (36) exhibits multi-layers near t = 0
and at each point t = θ+i , i = 1, 2, ..., 7. Figure 3 reveals the presence of multi-layer behavior
in the solution, while Figure reffig4 shows that, as µ→ 0, the solution of the original problem
(35), (36) approaches the solution of the degenerate system (37).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
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Figure 3: The green and blue curves illustrate the solutions of system (35) with initial
conditions (36), corresponding to the values µ = 0.1 and µ = 0.05, respectively. The red line
represents the solution to problem (37).
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Figure 4: The green and blue curves illustrate the solutions of system (35) with initial
conditions (36), corresponding to the values µ = 0.1 and µ = 0.05, respectively. The red line
represents the solution to problem (37).

5 Conclusion

In this paper, the singularly perturbed quasi-linear impulsive differential equation is
considered. The boundary function method is employed to construct asymptotic solutions
with arbitrary accuracy. Both single-layer and multi-layers phenomena are analyzed within
the framework of asymptotic expansions. This approach allows a detailed description of the
solution behavior in regions characterized by rapid transitions and boundary layers. The
theoretical results are supported by illustrative examples and numerical simulations.
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ON EXPERIMENTAL PROOF OF "P VERSUS NP"THEOREM

We propose a simple and intuitive algorithm for solving md-DFA problem using algorithm concepts
within extended operators, our approach shows quadratic polynomial time and hence proves the
equivalence between polynomial and non-polynomial classes, we have also shown that minimal non-
emptiness of automata problem can be solved in polynomial time with help of modified subset
construction, rather that building a product automaton, which lead to factorial size of the memory
and time, in this work we also have used many non-tractable existing examples and computed them
in polynomial time, which guarantees that our algorithm solves NP-complete problem in almost
linear polynomial time, we have also avoided the problem of product automata by an algorithmic
approach, we are also giving the starting ground for the proof of back-reference problem which
was discussed before, notion to the globally local increment is also given as the main argument
towards the resolution of "P versus NP"theorem, which coincides with the finitarity term in general
mathematics.
Keywords: P versus NP, complexity, theorem, experimental, proof.

M. Сыздыков1∗, Я. Кардеис2
1КазНИТУ им. К.И. Сатпаева, Алматы, Казахстан

2Рейнланд-Пфальцский технический университет Кайзерслаутерн-Ландау, Пфальц, Германия
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Об экспериментальном доказательстве теоремы «P против NP»

Мы предлагаем простой и интуитивно понятный алгоритм для решения задачи md-DFA с
использованием концепций алгоритма в расширенных операторах, наш подход показывает
квадратичное полиномиальное время и, следовательно, доказывает эквивалентность между
полиномиальными и неполиномиальными классами, мы также показали, что минимальная
непустота автомата может быть решена за полиномиальное время с помощью модифициро-
ванной конструкции подмножества, а не построения автомата-произведения, что приводит к
факториальному размеру памяти и времени, в этой работе мы также использовали множе-
ство неразрешимых существующих примеров и вычислили их за полиномиальное время, что
гарантирует, что наш алгоритм решает NP-полную задачу за почти линейное полиномиальное
время, мы также избежали проблемы автоматов-произведений с помощью алгоритмического
подхода, мы также даем отправную точку для доказательства проблемы обратных ссылок,
которая обсуждалась ранее, понятие глобально локального приращения также приводится в
качестве основного аргумента к разрешению теоремы «P против NP», которая совпадает с
термином финитарности в общей математике.
Ключевые слова: P против NP, теорема, доказательство, сложность, прикладная матема-
тика.
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Бiз кеңейтiлген операторлар iшiнде алгоритм ұғымдарын пайдалана отырып, md-DFA есебiн
шешудiң қарапайым және интуитивтi алгоритмiн ұсынамыз, бiздiң әдiс квадраттық көпмү-
шелiк уақытты көрсетедi және осылайша көпмүшелiк және көпмүшелiк емес сыныптар ара-
сындағы эквиваленттiлiгiн дәлелдейдi, сонымен қатар бiз автоматтандырылған есептiң ми-
нималды бос еместiгiн модификацияланған iшкi уақыт өнiмiн құру арқылы шешуге болатын-
дығын көрсеттiк. жады мен уақыттың факторлық өлшемiне әкелетiн автомат, бұл жұмыста
бiз сонымен қатар көптеген транзакцияланбайтын бар мысалдарды қолдандық және оларды
көпмүшелiк уақытта есептедiк, бұл бiздiң алгоритмiмiз NP-толық есептi дерлiк сызықтық
көпмүшелiк уақытта шешетiнiне кепiлдiк бередi, сонымен қатар алгоритмдiк тәсiл арқылы
өнiмнiң автоматтары мәселесiн болдыртпадық, бiз бұған дейiн дәлелдеме берген мәселенi
де талқыладық. жаһандық жергiлiктi өсiмге жалпы математикадағы соңғылық терминiмен
сәйкес келетiн «P қарсы NP» теоремасын шешудiң негiзгi дәлелi ретiнде де берiлген.
Түйiн сөздер: P қарсы NP, теорема, дәлелдеу, күрделiлiк, қолданбалы математика.

1 Introduction

The NP-hardness was first defined in [1], also there’s a defined lower linear bound for deciding
arbitrary non-deterministic finite automata on regular languages or even other arbitrary [2].
The problem was first seen on the partial case of non-deterministic automata [3, 4]. The
problem of md-DFA is to find a minimal finite automaton which is a subset of any given
automata and isn’t included in others [5].

The relationship between P vs. NP is one of the greatest open problems in computer
science. The central challenge is whether problems whose solutions can be efficiently verified
(NP) can also be efficiently computed (P). Here, we propose a new perspective: Is there a
deeper mathematical structure that enables a more efficient computation of NP problems?
We investigate whether parallels exist between quantum mechanics, the fractal structure of
the Riemann zeta function, and the superposition of NP problems.

NP-Completeness in DFA Problems An important class of NP-complete problems arises
from automata-based computation. Two key problems are: - Minimal Distinguishing DFA
Problem: Determining the smallest deterministic finite automaton (DFA) that distinguishes
between two regular languages. - DFA Non-Emptiness Problem: Deciding whether the
intersection of multiple DFAs is non-empty. Both problems are NP-complete [5, 7]. - The
product construction for DFAs has a complexity of O(|A1| ∗ ... ∗ |An|), which grows
exponentially with the number of automata. - A modified subset construction can help reduce
the complexity, but a fundamental lower bound remains. Question: Is there a hidden structure
that allows for more efficient computation?

Superposition of NP Problems In classical computation, NP problems are solved
sequentially: all possible solutions must be explicitly checked one by one. In quantum
mechanics, states exist in superposition: - A quantum system can exist in multiple states
simultaneously until a measurement collapses it to a single definite state. - Quantum
computers could solve NP problems more efficiently by evaluating all solutions simultaneously
and amplifying the optimal one (e.g., using Grover’s algorithm). Hypothesis: NP problems
are not randomly distributed but follow a hidden mathematical structure that enables a more
efficient computation.
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1.1 Connection to the Zeta Function Fractal Structure & Superposition

According to Kardeis [14], the analytic continuation of the Riemann zeta function exhibits
remarkable symmetry: the function has poles at s = 1 and possibly at s = 0, as supported
by the functional equation; the critical line R(s) = 0.5, R(s) = 0.5 contains infinitely many
nontrivial zeros, reflecting the structure of prime numbers; the self-similarity of the zeta
function suggests a fractal order in its structure; a key point in Kardeis’ work is the hypothesis
that the structure of the zeta function resembles a superposition of states: the statement
"0 = 1 simultaneously like a superposition suggests that the zeros of the zeta function
represent a simultaneous existence of multiple solutions, this directly corresponds to the idea
that NP problems do not need to be solved sequentially but can be structured within a
higher-order fractal framework.

Hypothesis: The zeta function may reflect a deeper order in NP problems, enabling a
more efficient computation.

Connecting DFA, Quantum Mechanics, and the Zeta Function DFA & NP problems are
exponentially complex: classical algorithms require sequential computation, superposition in
quantum mechanics allows for parallel states.

The zeta function exhibits a fractal order: the self-similarity of its zeros and their reflection
symmetry could serve as a mathematical analogue to quantum superposition, this suggests
that NP problems are not randomly distributed but follow a fractal structure.

Implication for P vs. NP: if a deeper structure in NP problems can be identified, this could
break the exponential complexity barrier, the fractal organization could provide an alternative
ordering principle for search algorithms, similar to how quantum algorithms already offer
advantages today.

The fractal structure of the zeta function could provide a new perspective on NP problems.
Superposition in quantum mechanics could serve as a natural mathematical analogy for the
distribution of zeta function zeros. The existence of a fractal order in NP problems could
open new pathways for efficient computation.

No strict mathematical proof yet: a formal demonstration is needed to show that NP
problems can indeed be described by a fractal structure, specific quantum algorithms must
be developed to leverage this structure for efficient computations.

Future question: "Could the mathematical structure of the zeta function contribute to a
new theory of P vs. NP?"

2 Re-writing algorithm

We give the subtraction re-writing method to solve this problem in linear-logarithmic time
as per our previous research. The technique known as re-writing is summarized, for the &-
operator we use the overridden state with logical consumers as well as for the subtraction
operator which is defined within the same terms, however, differing only in logical statement,
the complement operator in this manner is also re-written using the alphabet star and
subtraction from the operand. Thus, the mix of re-writing and logical state composition
gives the way to the modified subset construction, which rather than visiting every possible
composition, produces exact answer on each iteration, thus giving the polynomial running
time, rather than exponential or even factorial. The DFA constructed from the subtraction
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of DFA1 and DFA2 was constructed experimentally on the example in [5]. The first DFA
corresponds to the regular expression ((aaaa) ∗a|(aaaa) ∗aa|(aaaa) ∗aaa), as the second one
to (a|aa|aaa|aa(aaa) ∗ |aaa(aaa)∗), the figure above shows the result produced by Regex+
software package. Thus, the decision problems based upon the extended operators can be
solved in full and more efficiently if we will choose the strategy of computing locally optimal
solution which gives the optimal step to the global one - this technique we will call as the
globally local increment (GLI). This decision problems which we encountered are only two:
minimal distinguishing DFA (md-DFA) and non-emptiness DFA of the given automata: both
of which has the state space of factorial size, which, in turn, means that we have to choose the
better strategy and solution in order to get to the certificate of acceptance in non-polynomial
problem within the visible time limit, in our experiments, it didn’t exceed more than minute.
In the next section we will give the compound benchmarks for the derived examples.

Figure 1: The distinguishing DFA for example in [5]

Re-writing works as it was outlined, thus, we can state that the DFA corresponding to
the expression R1 −R2 is a subset of DFA(R1) and isn’t contained in DFA(R2).

3 Proof by Product Automata

As it was presented in [6], the maximal complexity of product construction is the product
of its operands, which can be factorial due to the number of automata, however, we can
use same methodology as we have presented before using re-writing and event call, thus,
giving polynomial solution to various number of operands with variable cardinality. As it was
present in [7–9] the minimal intersection of arbitrary automata cannot be approximated using
product construction as it gives the factorial number of solution to be searched, otherwise,
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Figure 2: Example md-DFA for the expression ((aaaa) ∗ a{1, 4}){4000} −
(a{1, 3}(aaa)∗){4000}

the better strategy is to use modified subset construction approach. The term "minimal
distinguishing"can be also viewed from the approach we invented before as we can compute
the minimal possible automaton by simply computing the shortest path between starting
and ending points using Dijkstra algorithm. The non-emptiness problem which is known to
be NP-hard will be also proved to be solvable by a polynomial algorithm in the next section.
Another counter-example is from [10], where the expression in the form (ab)∗&... was studied,
we have shown in the next section that it can be computed in time of several seconds for the
string of length 8000 containing 1000 intersection expressions - this gives the contrary towards
the minimal DFA recognizing this language which has an exponential complexity. During the
review of the present results we haven’t met other counter examples which could get the
running experimental program to work with errors or in not observable time frame. Another
case we get from [11] for intersection operator, which gives the exponential estimation of the
time and space complexity, our results give the reasonable amount of time not greater than
12 seconds for one thousand intersections. The proof of correctness of re-writing algorithm
and modified subset construction can be done by viewing the cut, as it was presented much
more earlier. We also point the regression of complexity to almost linear and quadratic with
respect to the back-referencing problem in extended regular expressions, one can see that
number of decompositions decreases as we proceed further with the given search and, thus,
certificate of acceptance is achieved almost "on the fly". The co-NP complete problem [12]
can be by analogy solved in reasonable time as of our experimentation procedure, which
states that co-NP classes lie within polynomial P classes.
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4 Benchmarks and Experimentation

In table 1 there is a summary of the tests on the expression in the form of ((ak) ∗ a1..k)k −
(a1..k(ak)∗)k.

Figure 3: The results of expression tests using re-writing algorithm

On the next figure there is a visualization of the data in Table 1, as it can be seen results
converge to quadratic polynomial function.

With respect to the term fixed-parameter tractability (FPT) as our alphabet before in
tests consisted of only letter, we have run tests for arbitrary alphabet "abcd"for cases in form
((a|b|c|d)∗)k(a|b|c|d)k − ((a|b|c|d)k((a|b|c|d)∗)k:

In the other test we will use the regular expression in the form ak ∗ &.., k = 1..n, the
results are as follows.
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Figure 4: Visualization of the benchmarks in first table

5 Discussions

5.1 On Effective Algorithms and Cook’s Conjecture

This section is a review of the advancement methods in modern combinatorial optimization
within some major results in usage of dynamic programming on trees as well as main
conjectures in graph theory and theory of computational complexity, which in recent time
is studied more as we get in time within modern trends like social networks and publicly
available hubs, most of which rely on artificial intelligence, however, this work won’t deal
with AI, better we will propose several fundamental approaches, conjectures and questions
as per which we can give a clear and positive answer that this problem isn’t an ending case
and, thus, can be probed on the particular basis which include the deep review of the newest
papers on graph theory and other conforming topics, which are, in turn, become popular
during the past decade of the research within tractability, application and generalization
progress, we also give the important relation to chromatic numbers in graphs.

In this preamble paper we give the definition of some effective algorithms like subset
construction and variable maximum flow problem using potentials which was better studied
before as the analogy by Malhotra-Kumar and Maheshwari; we will also go further and
show that the Stephen Cook’s conjecture of the NP-complete problem implies the uncertain
complexity classes which were classified by us before as to be impractical while the certificate
of correctness remains of polynomial complexity.

As it was proposed and defined before in a seminal paper the NP-complete problem is a
problem whose verifying certificate is linear, however, it was incomplete to define the number
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Figure 5: Tests for the quadratic alphabet

of possible solutions to form the multiplicative space over the operator (*).
Dana and Scott also remained many unspecified in their decision of the subset construction

algorithm which was actually superseded by Berry-Sethi algorithm which produces the linear
number of states in deterministic automaton with respect to the preliminary construction
algorithm.

Since the definition of the networks and optimal flows on them, number of many
algorithms was proposed – one of them is due to Malhotra, Kumar and Maheshwari which
has a polynomial cubic complexity. We also give the notion to the super string problem as
it’s EXPTIME- and EXPSPACE-complete, thus gives the way of defining it as NP-hard.

As the efficient algorithm which includes both the optimization process as well as the
conversion of non-deterministic automaton to deterministic one can be viewed as the splice
between the initial and accepting states, thus giving the notion to the cases where the
exponential blow of number of states occur which we have well studied before and gave
the unary O(1)-time complexity check. Thus, this tendency gives the proof of the linear
nature of the subset construction algorithm whose minimal upper bound is O(n ∗ log(n)),
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Figure 6: Visualization for example arbitrary alphabet

however the minimal one is O(n). In this method we make the choice by the divide-and-
conquer strategy from beginning to the end of the state graph describing the automaton –
this gives the possibility of avoiding variety of optimization techniques which doesn’t pass
the dead point of the exponential growth of spaces, however, rather our algorithm makes it
possible “on-the-fly” which predominant viewing on the combined techniques of construction
and optimization applied together. On the figure below the basic idea is depicted which shows
how the algorithm works on non-deterministic finite automaton while making it deterministic.
The super string problem can be viewed from the minimal bound of exponential complexity
as there is the minimal string of variable length n = 2f(s) – for each s in the set of all string
S as the any minimal string containing all the strings in S as sub-string can be viewed on the
other hand as a minimal string along the “trie” for which the dynamic optimization is applied
and, thus, the correct composition is sought on the every node of the string forrest. Also
Malhotra-Kumar-Maheshwari algorithm is a good sense of creating the variable algorithm
with potentials defined for each of the element of the flow network, where the optimization is
applied according to the hierarchical order. At least, this is true, for variety of networks and
lead to the exponential blow-up for the networks of finding maximal pair whose algorithm
uses maximal flow algorithm along the augmentation paths.

We have defined the optimal cases for the subset construction algorithm which was proved
to be linear in complexity, also we have shown that the definition of NP-complete problem
originally has to be expanded to the class of the uncountable spaces which cannot be realized
in time of the arbitrary polynomial function. From the above it follows that DFA has same
power as NFA and can be used practically in the testing or membership problem. Also, we
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Figure 7: Results for non-emptiness test

have revisited the maximum-flow problem with the definition of arbitrary potentials of each
of the vertex which is defined as its minimum of the incoming and outgoing flow. Also the
superstring problem is actually is NP-hard as we have shown shortly in this paper due to the
variable complexity of the string to encompass any other defined set of strings to be checked
against the correct answer.

5.2 Argument towards Cook-Rabin-Scott Conjecture in Complexity Theory

We give the full proof of the equivalence of complexity classes like polynomial (P) and non-
polynomial (NP) according to Cook-Rabin-Scott conjecture and our prior results of the subset
construction which were first proposed by Berry-Sethi. The “P versus NP” has a long-lasting
history of its interpretation and first appearance and definition . As it follows from the original
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Figure 8: The visualization of the performance of the non-emptiness test algorithm

paper the problem can be classified as NP-complete if there’s a defined subset of certified
words in language DL(M), where M is a Turing tape automaton or non-deterministic finite
automaton (NFA) as they are isomorphic due to our prior objective finding. As it was well
presented and discussed by Scoot and Rabin, the NFA can be well converted to deterministic
finite automaton (DFA) encoding arbitrary set of accepting words over the language L(M),
also: DL(M) is a subset of L(M). Berry-Sethi gave the definition of the linear size automaton
and the undefined complexity of the pre-computation stage on the abstract syntax trees of the
input regular expression . Also it was shown before that complexity classes have the barriers
of their weight along the computational space . It was shown before that linear programming
(LP) can be used to solve NP-hard problems with the given customization of constraints .

Cook-Rabin-Scott conjecture can be obtained as a theorem proving the equivalence of
P and NP-classes along the full proof of the linear pre-processing and main algorithm
complexities when converting the sub-automaton DL(M) to deterministic.

As we have shown before the complexity of converting NFA to DFA is linear in time and
space, also any DL(M) can be represented by the regular language and, thus, we have that
P equals NP for the subset of the certificate language.

5.3 Homomorphism of Regular Languages is NP-complete

We consider the problem of homomorphism on regular languages by defining the mapping
over the set of alphabets on two difference language, we will also show that this problem is
actually NP-complete and can be solved by polynomial algorithm.
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Figure 9: The non-emptiness DFA for the expression
((a)∗)&((aa)∗)&((aaa)∗)&((aaaa)∗)&((aaa)∗)

The Cook’s statement of “P versus NP” still remains actual to the present day as many
researchers tend to get the argumentative response on the practical meaning of the open
problems which can give the open to the new applications of regular languages theory . The
partial proof of the existence of the semiring homomorphism on the account of alphabet
substitution problem was given in – this problem is to find the mapping between two regular
languages for their alphabets, so that they are homomorphic. We solve this NP-complete
problem by using maximal bipartite matching algorithm, which can be even parallel .

Obviously the certificate of acceptance of the Homomorphism Problem on Regular
Languages (HPRL) stands against the undefined, infinite or arbitrary set of input, moreover
the possible measure of matchings is of factorial complexity, thus we proof that HRPL, or
HOM, is NP-complete.

We give the set of measures on the bipartite matching graph, where the left side is of one
alphabet and right side is of another alphabet: at each time of iteration the matching weight
is increased according to the relation difference function between two symbols in both set of
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Figure 10: The resulting DFAs for expressions ((ab)∗)&...and(a ∗ a|)&...

Figure 11: The viewing and strategy of optimal subset construction algorithm

symbols. As we know the algorithm complexity in this case is at most cubic for the relatively
small set of letters.

5.4 Differentiating between Complexity Notation within Upper and Lower Classes

We present the final outcome on the account of upper and lower bounds for complexity
classes like polynomial and non-polynomial, including exponential and factorial growth as
per subset sum problem or classical Travelling Salesman Problem, the further distinguished
relation can be used further in particular domains of application of complexity theory like
Applied Mathematics and pure Mathematical way of expressing relations between Cook’s
main 3SAT-theorem and its partial cases like functional divergence and other related theorems
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and foundations.
When the “P versus NP” was first introduced, it was still unclear if there is at most a

connection between complexity classes, their big-O notation and asymptotical complexity
in mathematics, which states that there exist a limit between the complexity and its first
definition by Cormen et al. Recent research also showed that even linear programming within
additional constraints gives the profound solution to TSP and 3-SAT problems. We will show
further the full relation between O-notation and asymptotics in terms of pure mathematics
for its further application.

Thus, we get the following statement for P and NP complexity classes and their
classification function like O(f(n)), where f is a function: N+ → N+:

O(f(x)) = {f(x), f(x) ∈ NP ;xk, f(x) ∈ P ∧ f(x) < xk}
While we have already classified the class of NP-complete functions to be starting from

exponentiation and factorial, including Ackermann’s function, which is a super potentials
over others. Polynomial functions are actually solvable functions and can be computed in the
observable amount of time.

As it was presented in the partial function O(ln(ln(x)) is polynomial of the order 1, while
o(ln(ln(x)) = 0, the middle and actual theta-function will be as follows – theta(ln(ln(x)) =
(O(f(x))+o(x))

2
= 1

2
, thus it’s obvious that series S converge to Riemann’s complex number z.

5.5 Algorithm Deciding Automata Ambiguity Problem

We give the proof of NP-completeness of arbitrary automata ambiguity problem which shows
that according to our functional hypothesis, there’s a function spawning the polynomial
algorithm to solve it, we will also show that it’s of affordable complexity.

We start from well-known “P versus NP” theorem, which proves the full invocation
impractical content in order to decide any NP-hard problem, we will use further the final
version of subset construction algorithm . Also it’s known that first definition of derivatives
and extended operators was well-studied by Berry-Sethi . Orna Kupferman et al., later gave
a cubic algorithm for the decision of extended operators like intersection, subtraction and
complement . The problem itself is stated in .

The problem is to decide if the given set of initially non-deterministic finite automata
(NFA) are equivalent, as well as their subsets like deterministic ones (DFA). Obviously, the
problem lies in recurrent relation which leads to the undefined behavior of acceptance and
search of the accepting states defined as certificates – this gives the full proof of the NP-
completeness of this problem. In order to solve it we use the Modified Subset Construction
(MSC) by using the subtraction operators in extended finite automata (EFA), the algorithm
complexity, as it was shown, before is linearly logarithmic, O(n ∗ log(n)) – to be exact.

5.6 On Account of Regular Automata Separability Problem

The recent research showed the new problems coinciding with our algorithm for extended
operators including intersection, we will use it in order to solve the separability problem as
it was stated before.

As we already know there’s a set decidable and non-solvable problems . The subset
construction algorithm gives the determinisation of non-deterministic finite automata (NFA
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to DFA), also intersection operator was well studied in along the regular sets or, in other
words, sets produced by any regular language. The separability problem was first presented,
the problem is coNP-complete which is by definition the both sides of non-decidable or non-
polynomial problems, we will give the polynomial method of computation which gives the
answer of the verification against separability of arbitrary number of sets on the automata
for extended regular expressions.

As we can conclude the only relation of intersection of the sets K and L in spawns
arbitrary language which can be non-regular as regular languages are actually subsets of any
language as a set of words by definition, thus we can simply test the intersection operator
using Modified Subset Construction (MSC) with state activators in the way it was presented
in our seminal paper. The complexity of algorithm lying in P-class is linear and constitutes
the number O(|K|+ |L|) - this is by the way the lowest bound for any coNP-hard separability
problem on regular sets or other non Parikh automata.

5.7 Disproof of Unsatisfiability of Boolean Circuits

We give the full disproof and shade the light towards generalized MAX-SAT problem, also
classically known as 3-SAT, which cannot be solved on any Turing automata in observable
amount of time even if there is a tie between polynomial and non-polynomial complexities.

In this preamble we follow the certain source of the foundations of Computational
Complexity Theory by Stephen Cook, who also showed that 3-SAT problem and its general
case MAX-SAT on boolean circuits cannot be handled by Turing tape automata or their
isomorphisms like non-deterministic finite automata and deterministic one. For the past time
the SAT problem was well applied and studied in-depp, however the main ridiculous challenge
is about to build the universal SAT automata – the author of this work shows that there
could be boolean function which can make the automata producing positive answer on some
set of inputs and their co-variants.

Yes, the problem is still open and innovative as any boolean function on the mirror
circuit can produce either positive or negative answer, however, this problem is a case of the
generalized MAX-SAT problem which is known to be NP-complete and, thus, unable to be
solved in reasonable amount of time using computational materials like present day hardware.

5.8 Full Proof of Universality of Regular Languages

We give the fool proof of the universality of regular languages, which states that any language
is regular and every regular language can be arbitrary.

The proof problem of regular languages is actually NP-complete as there is no state
automata which could be deterministic and descriptive at the same time – this fact is well-
stated for any regular language and for any arbitrary language . We will show further that
these languages are actually equivalent using Aho-Corasick algorithm .

Obviously, Aho-Corasick tries are linearly deterministic and can form a logarithmic regular
language – this fact shows that both regular and arbitrary languages are equivalent.

5.9 Star Packing Problem Algorithm in Linear Time

We give the full exact algorithm to star packing problem.
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The problem is considered to be NP-hard and obviously NP-complete due to the reduction
to classical Vertex Cover Problem which has a parameterized invariant . Star packing graphs
were studied before in and the actual statement of the problem is given in .

We build the tree from the graph and optimize it linearly using the leaf traversal strategy
which gives full and exact answer.

5.10 On Consensus of Cardinality of Complexity Classes

We give the notion towards Louiz’s partial conjecture about inequivalence in classical “P
versus NP” theorem and other related research.

We are all well-known about undecidability of 3-SAT problem . The term ‘cardinality’
in computational complexity and its bordering applied sciences was recently raised upon
the necessary level . Dr. Akram Louiz gave all the necessary partial solution towards
axiomatization of non-conforming complexity classes like polynomials and non-polynomials
. The critics behind the scene is completely wrong and further we will give the full shed of
light on the mystery in science and its application.

Yes, indeed the exponential, factorial or even Ackermann’s complexities cannot be
considered as countable – and this is what gives the strong border of the non-existent classical
solutions, and as we know until the present time none of the NP-complete problem was solved.

The author of the ‘critical work’ is completely wrong as he sees Louiz’s conjecture as a
first argument towards resolution of “P versus NP” concept and we show that these classes
cannot be even comparable – this shows that Jamell Ivor Samuels is completely wrong in his
critical work.

5.11 Polynomial Solution for Detour Problem

We give the full polynomial solution for finding the detour in graphs in its general case.
The detour problem is NP-complete, detours were used in many aspects of science on

graphs . The detour problem was first initiated in . We give the full solution using dynamic
programming . Our solution depends on the length of the detour among any pair vertices as
we are using dynamic programming approach with memoization which gives the recurrence
relation along the two connected vertices and the visited length. We have given the full
general solution to graph detour problem using dynamic programming which runs in time
O(n ∗ k), where n is a number of vertices in graph and k is the maximal length of detour.

5.12 Optimization Techniques on Automata and Graphs

We give the profound notion along algorithmic optimization techniques to manipulate with
graph and automata structures.

The automata theory was well defined for the past time, the homomorphism of graphs and
these automata and the application of this finding was also presented in the prior works. At
the present time publication shows the connection between languages described by automata
and their mapping to graph automata.

We have a novel technique based upon the strongly-connected components on arbitrary
graphs like oriented and non-oriented in general – this technique shows a strong method of
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describing any graph by its underlying regular language and its finite non-deterministic or
deterministic automaton.

5.13 Order on Trees and Hierarchical Logical Problem

We introduce the optimized algorithm solving optimization problems in linear polynomial
time, also we give the notion towards the solution of hierarchical logical problem.

The graph theory remains still actual due to its wide range of applications, the problem of
finding strongly connected components gives the solution towards the existence of the logical
order relation between these components and hierarchy which can be seen on the depth or
breadth first search. We are using Fenwick trees for range min query in order to give the
full relation between the hierarchical logical system consisting of operands and comparison
operators like less, greater or equal.

The optimization towards trees is computed using the directed edge and its subtree by
the preserving dynamical programming and the ordered computation of not more than two
values for the general case with star vertexes.

The hierarchy according to which our algebra can give the answer to the query in the form
of relation between two any operands in a directed graph can be done using the range min
query as of Bender-Farach-Colton method of finding least common ancestor in a graph before
vertex labeling operation – we are using the same approach which gives the linear-logarithmic
complexity of the solution.

5.14 Isomorphism Problem on Graphs within Regular Language Notation

We give the notion towards the algorithm of indentifying isomorphism on graphs using the
finite automata and their regular languages.

The graph isomorphism problem is NP-complete . It has a long-lasting history and
application. Regular languages were introduced previously in . We will give the notion towards
the automata describing graphs upon their internal structure with respect to some of the
values like degree of vertexes and their adjacency property.

5.15 Permutation Pattern Waves and Polynomial Solution

We give fully polynomial solution to the permutation waves problem.
Since Cook’s first statement the problem is considered to be NP-complete due to the

existence of certificate of criteria as per integer sets with permutation pattern waves.
Permutations were well studied before, the first appearance of the permutation pattern wave
problem is given in .

As we can see we can use any notation building the corresponding relation on an oriented
graph and performing the valid labeling.

5.16 Configuration Swap Problem on Describing Trees

We give the definition of the exact and sub-optimal algorithm to the configuration swap
problem on graphs.
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The graph theory is a theory which has a long-lasting history and its application . The
swapping problem was introduced in and is of very practical meaning.

We simply build the tree from the graph after which we apply the oriented edge
optimization as per the given circumstance where all other sets are settled – this gives exact
and optimal solution to the minimal swapping problem.

5.17 On Boolean Circuits and Optimal Prefix Codes

We give the full notion on the boolean circuits and their relation to finite automata as well
as the definition of the optimal prefix codes for the binary encoding of the words in text.

The boolean circuits were defined in, with its prior statement on the solution of the defined
function – as it can be seen they can be converted to the deterministic finite automata defining
the language on which the boolean function will be satisfied or, in other words, equal to “true”.
Efficient encoding and prefix codes is a far more historical problem .

The boolean circuits can form a typical non-deterministic model which can be determined,
thus giving the observation towards the solution on a random function and random
configuration.

Optimal encoding prefix codes are to be formed from the assumption of the division of the
sums of occurrences of the symbol in source text, thus together forming the combinatorial
optimization problem, where the division strategy is due to pivot selection and obeys the
certain subset sum problem.

5.18 Non-polynomial Complexity of Permutation Automata

We give the full coverage of the notion of the permutation automata deciding complexity to
be NP-complete.

The definition of non-solvable problem was first introduced, permutation automata in
general were also presented, the problem of permutation automata acceptance without
weighted function was proposed in .

As we have already shown that there is a local bound for permutation automata which
can be re-presented in regular languages with extensions like back-references, it’s obvious
that full optimization network complies with the classical NP-complete problem as Traveling
Salesman Problem (TSP). The above fact shows that there could be non-countable number
of pre-permutations before visiting the layer on the arbitrary state of automaton.

5.19 Token Sliding Problem on Graphs in Polynomial Time

The quadro-linear polynomial algorithm is given for the token sliding problem on graphs.
Graph theory has a long history and meaning as a model, the token sliding problem is

well-known also, we will show further that this problem can be optimized on a produced tree
from an arbitrary graph.

At each step of optimization we change the order of independent set series according to
the orientation of the leaf and its sub-tree due to this orientation – this gives a quadratic
worst case method to compute the number of swaps in order to get the right configuration
of independent sets.
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5.20 Solving Optimization Problems on Graphs using Automata Composition

We give the full definition of the optimization problem and its isomorphic transformation
to the non-deterministic finite automata as per the order of traversal and its corresponding
settlement as in undirected as well as in directed graphs.

The optimization problems on graphs are known to be NP-complete, since the
optimization function can be easily verified and hard to get to the optimal point . Graph
theory is a model on which even finite automata can be operated in a pre-defined method.
The strongly connected components of directed graphs give the notion towards the ordered
relation between each of the node which can be optimized as per the sample problem like .

We can construct the correct automaton recognizing the language of the paths in the
graph after which we apply the optimization according to the order in the strongly connected
components of the directed graph, for general case of undirected graphs we can consider the
same option with respect to the search strategy.

5.21 Polynomial Algorithm for Clique Problem using Matrix Space

We give a polynomial algorithm in quadratic complexity for finding cliques in graphs
according to the matrix space with single operation like boolean multiplication of the
adjacency matrix of the given set of vertexes, we will show that this is a fully polynomial
solution with the current lower bound on the number of operations in order to find the clique
in graph of the defined rank.

The hardness of the problem is a key of its classification, graph theory is described,
the clique problem is known to be NP-complete and, thus, is to be solved efficiently using
conceptual algorithmic approach.

We give the matrix of adjacency an algebra with single closed operation like boolean
multiplication, after forming the maximal independent set and applying the multiplication
of this matrix and its transposition we can devise the sets for which this can be implied
according to the matching within the kernel of the clique – this operation reduces the size of
sought input up to the given order.

5.22 Subgraph Enumeration Problem on Graphs

The polynomial algorithm is presented along which the number of subgraphs of the given
graph can be counted.

The NP-hardness of this problem is defined as there are many subgraphs and only
isomorphic certify for the given subgraph in order to count all its isomorphisms in the given
graph. Graph theory is well-defined during the past time, subgraphs and their isomorphisms
are defined in . The counting problem is presented in .

We give the solution towards finding the number of subgraphs or simply enumerating
them during the descent on a produced tree for the given graph and subgraph, thus, we can
solve the problem by applying recurrent relation on the edge which divides the tree in several
parts with respect to the structure of the subgraph.
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5.23 Solution to Triangle Finding Problem in Graph

The fully quadratic algorithm in maximal number of edges is presented in order to find the
number or enumerate all subgraph triangles in graph.

Graph theory is presented, the triangles are discussed, the problem of finding triangles in
graphs is in .

We use at maximum quadratic space and time and number of edges at most which is
the most optimal exact solution to the stated problem. At first we build the sub-tree of a
graph and the adjacency of any two pairs for the pre-computed set of vertexes where the
third vertex is a middle and, thus, has the adjacent two vertices in the edge of the tree.

5.24 Solution to Disjoint Paths Problem on Graphs

The linear algorithm in the number of edges and vertices in graph is given for finding k-disjoint
paths.

Graph theory has a long-lasting history and application . The path or vertex disjoint set
problem in a graph is given in .

We start from the set of each pairs from the left to right and from right to left by building
the fully directed tree ascending in both directions so that there would be a cut of size more
than k, thus, satisfying the condition of disjoint path on vertexes or edges.

5.25 Solution to Maximum Satisfiability Problem and Minimal Vertex Covers on
Graphs

We give the solution to partial maximum satisfiability problem on the example of enumerating
minimal vertex covers which coincide and are non-polynomial, our solution is fully polynomial
and exact.

The problem of not more three variables in logical satisfiability problem was proved to be
NP-complete as well as its case on graphs for finding the minimal vertex cover .

We build the tree in which we descend from the produced tree and use memory in order
to store the bitmap of all satisfied conditions as well as per model of minimal vertex cover
on graphs.

5.26 Solution to Even-Path Problem in Arbitrary Graphs

We give a polynomial solution to even-path problem on graphs between two given vertices
in arbitrary graph as it can be either directed or undirected, our approach also states the
minimal bound of number of edges and vertexes in graph.

The problem can be seen as NP-complete, graph theory was well described, the even-path
problem is defined in .

5.27 Solution to Minimal Decomposition Problem on Graph

We give an algorithm and minimal bound for linear decomposition of the graph with given
maximal degree of its vertex.

Graph theory is described, the linear arboricity conjecture is stated, according to which
there is not more than half of the maximum degree of the paths.
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6 Recurrent Diversification of Counting Alternation Permutations

We give the recurrence relation towards the counting of alternation permutations thus
providing the exact formula in order to compute the number of alternating iterations within
the insertion operation and the union of the sets.

The permutations are well presented, alternating permutations are permutations with
pre-defined order .

Since implication we give the upper bound using the recurrent relation which is defined
as the oracle function PA(n): PA(n) = f(n) ∗ PA(n− 1).

Where f(n) is a function defined as the error factor for which the alternation decision
holds true, obviously f(0) = 1 and PA(0) = 1.

To define the function f(n), we are using each triplet consideration with respect to each
triplet in the form: ai < ai+1 > ai+2, ai > ai+1 < ai+2,

The above definition is a result of the term alternating permutation in its canonical sense.
As we see from above the second condition cannot hold true as we cannot insert the biggest
element n in any of the position when this fact is satisfied. Let’s consider this occurrence:
ai < n > ai+1 > ai+2 < ai+3 : ai < n > ai+2 < max(ai+1, ai+3) > min(ai+1, ai+3).

For the second condition we have: n > ai+1 < max(ai, ai+2) > min(ai, ai+2), n >
min(ai, ai+2) < max(ai, ai+2) < ai+1,min(ai, ai+2) < max(ai, ai+2) > ai+1 < n.

Thus, we have four subsets to devise the function f(n), thus giving us the following exact
relation like: f(n) = 4 ∗ PA(n− 1) : A1 ∪ A2 ∪ A3 ∪ A4.

Obviously: 4n ∗ PA1∪A2∪A3∪A4 ≤ f(n) ≤ 4n.
Where in above relation probability is the union of all the cases when the four insertion

conditions hold true, which is recursive and can be counted.

6.1 Reductions of Graph Edge Coloring Problem and Chromatic Number

In this short note we are to give the note towards graph edge coloring problem (ECP) and
its reduction to graph vertex coloring problem (VCP), which gives the significant result in
deciding the minimal number of colors for edge coloring problem.

The graphs are widely studied, chromatic numbers in VCP denote the minimal number
of colors required to color it so that no two adjacent vertices bear the same color. The latest
research aims also towards Euler’s lattices problem.

As we can construct the graph for the given graph G(V,E) : G(E, (a, b), (a, i)&(b, i) ∈
E∀i), it follows that the chromatic number can encode the number of edge coloring in ECP,
so that this number is at least greater than the same number of the initial graph by induction.

6.2 Relation between Chromatic Number and Length of Hamiltonian Paths in Graph

We give the strict computational relation between chromatic number of graph and sum of
lengths of Hamiltonian paths using set exclusion theorem as well as the addition towards
inverse graph.

Graph theory was steadily studied, the graph coloring problem and its chromatic number
are known to be NP-complete, the partial relation between these numbers and the length of
the maximal path were studied.
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As per the set theory, graph can be considered as a set if we would at each step of iteration
remove some 2-vertex graph with a single edge or not, this will look like as follows:
|G(V,E)| = |G(V1, E1)|+ |G(V2, E2)| − |G(V1 ∩ V2, E1 ∩ E2)|.
The above relation can be approximated within any path if we would get at each iteration

the pair of nodes (u, v), then our relation will look like:
|G(V,E)| = |G(V − {v}, E − {v})|+ {1, 2} − 1.
As in both division operator we divide the parts along the maximal length and an optional

edge in graph, obviously this function is to be minimal, thus we have to find a path of maximal
length in the inverse graph ¬G(V,E).

Thus, we get to the following relation:
χ(G(V,E)) = |V | −max{

∑
p∈H(¬G) |p|}

Where H(¬G(V,E)) is a set of longest paths through the whole set of vertexes in inverse
graph, the paths are to be disjoint.

The proof can be done by induction to the general graph G(V, E) as we approximate
towards minimal possible number. This proof gives an evidence of the connection between
Dirac’s formula for graph containing Hamiltonian and the chromatic number of the inverse
graph.

We have given the strict relation between longest paths which can be either Hamiltonian
of size |V | − 1 or any other maximal possible of all the paths in inverse graph, thus, giving
observation of the Hamiltonian cycle presence for Dirac’s formula on general graphs. This
fact gives us the observation of using the divide algorithm on inverse graph in order to find
the maximal longest path of the maximal size within Dirac’s equivalence relation. We will
use our equivalence to establish connection between chromatic numbers of the graph and its
inverse, thus we have:

χ(¬G(V,E)) = |V | −max{
∑

p∈H(G) |p|}
From this point, we get:
χ(G(V,E))− χ(¬G(V,E)) = max{

∑
p∈H(G) |p|} −max{

∑
p∈H(¬G) |p|}

In addition we give the definition of the complete graphs or cliques Kn: the paths are
actually Hamiltonians in these decomposition.

6.3 Optimal Labeling Algorithm for Vertex Coloring Problem in Graph

We present the labeling algorithm for Vertex Coloring Problem (VCP) which runs in product
linear time on number of vertexes and edges in graph at minimum with the chromatic number
as parameter.

VCP refers to graph theory, it’s known to be NP-complete and, thus, optimal or
approximate algorithm is to be applied .

We start from forming the system of inequalities between each of adjacent vertexes in
graph G(V,E). We start by labeling with choosing the minimal label index from adjacent
vertexes with stabilization principle on the obtained index which can be reverted in time
O(m) using each iteration on maximal chromatic number with total complexity of O(nm).

We claim that this algorithm is most optimal as to the consensus of simplex system formed
by inequalities and the target function to be minimal possible. The stabilization, thus, runs,
each time the node changes its correct labeling according to the selection rule.
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6.4 Proof and Solution of Meels-Colnet Conjecture and Problem

We give the full proof towards Meels-Colnet conjecture and CFG problem, which is in finding
the number of words of fixed size on grammars. The problem can be classified as P-complete
and also states that it’s strongly P-complete by Meels and Colnet [15].

We use our basic notation of extended regular expressions which can construct the
deterministic automata for the expression in the form (< CFG >)&an - this gives the
polynomial solution as we know that subset construction is P-complete which proofs that
this problem belongs to the same class of computational complexity.

The solution is to construct non-deterministic finite automata (NFA) for the &-expression
and subsequently convert it to deterministic finite automata (DFA) – this is a full solution
for any case of the problem.

6.5 Proof of Equivalence of Complexity Classes and Other Relations

The notion of complexity classes was before presented by Stephen Cook, as we know functions
can be polynomial and non-polynomial, as well as arbitrary.

Let f(x) be the sought non-polynomial function, then we have:
P =?NP .
We also know due to our functional hypothesis or Rabin-Scott conjecture that:
f(P ) = NP .
Let’s assume that:
P 6= NP , then - P = f−1(NP ) 6= NP&NP = f(P ) 6= P ⇒ f(f−1(NP )) = f(P ) =

NP 6= NP , which is a contradiction. For the second inequality we have: f−1(f(P )) =
f−1(NP ) = P 6= P , which is also a contradiction, then we get NP 6= NP&P 6= P ⇒
P = NP .

The statement is due to the mathematician Akram Louiz [16] and is as follows: P =
NP ⇔ |P | = |NP |, where P and NP are sought complexity classes.

As we know by Cook’s definition: P ⊆ NP ⇒ |P | ≤ |NP |. Let’s assume that P equals NP,
i.e. P = NP , then we have the following: P = NP ⇒ |P | = |NP | ≥ 0 ⇒ |NP | = 0&|P | =
0⇒ NP = {}, in other words the NP-class has no members and, thus, is actually an empty
set. However, as we know, according to Cook’s theorem there’s at least one problem, also
known as 3-SAT which belongs to the set of NP-complete problems – which is a contradiction
and, thus: P 6= NP .

From what follows Louiz’s equation: NP = N + P .
The solution of the system of equations: NP = N ·P and NP = N+P , gives the function

f(x) = x
x−1 both for P and N, thus stating that our conjecture is correct, since the function

f(x) exists.
Thus we have given definition to the following algebra: < +, ·, {N}, {P,NP} > which can

be used both as a regular language or any arithmetical expression.
As we have prior result of regular grammars over set of computational problems, we are

to present the universal ’complexity automata’ which can be used in solving any problem.
The "P versus NP"practice, theory and 3-SAT proof was well understood, however, there

was an attention towards, as we suppose, the resolution of this statement. Kardeis was
near the term as ’quantuam computing’ and Zeta-Function, however, we use an automatic
approach to give all the required framework foundation towards the solution of both
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polynomial and NP-hard, or non-polynomial, problems, provided both equality or inequality
of P- and NP-classes of computational complexity.

We give the following definition of our automata based on obtained result, thus, ’complex
automata’ is defined as follows: < +, ·, {P,N} >, where + and · is a union and concatenation
operation over the set of terminal symbols "P"and "Nwhere "P"stands for the certificate and
"N"is a problem itself. We have given all the necessary framework to operate on Complexity
Theory for the definition of the problem as a regular expression and further converted to
finite or ‘complex’ automata, thus, proving that any complex problem can be solved using
our approach.

We present the solution to two classical problems like MAX-SAT, or its 3-SAT partial case,
and TSP from computational complexity theory using subset construction. The problem was
stated before, MAX-SAT is also well-studied, as well as TSP. We give the exact algorithms
to these problems using subset construction.

For MAX-SAT problem we simply assign an alphabet symbol to each variable and its value
from the set of {0, 1}, then we apply the &-operator for each of the clause in MAX-SAT,
thus, solving it in polynomial time. For TSP we are using counter tags in finite automata
and also apply &-operator as in our previous local search algorithm.

6.6 Artificial Neural Networks without Layering Concept

We present the basic abstract of the newly obtained results on class of non-layered artificial
neural networks. Artificial neural networks is a well-known concept and solution, however
due to the lack of performance they are less productive for practical approach and mainly
are focused on artificial intelligence.

We define the prediction function as: f(x) = 1
x+1

- which is decreasing.
Meanwhile the training sigmoid function is defined as well: g(x) = 1

1+e−x - which is strongly
increasing.

Both functions are defined on the set of the range [0, 1] or [1, 0] with respect to probability.
We present the algorithm of training and prediction during input interaction:

1. Find the set of feasible set in model using machine learning algorithm and function f(x)
which can be presented as a binary tree.
2. Compute the prediction.
3. Get the input for the given prediction.
4. Train the model with the newly predicted fact using sigmoid function g(x).
5. Request the new input.
6. If input is empty, then halt.
7. Return to step 1 for the input from step 6.

6.7 Application and Theory of Several Aspects in Optimization

The 3SUM problem was viewed from a singleton point of view for the past time. In this
work the experimental results along with proof are presented: the state explosion doesn’t
occur in specific cases after decomposition of regular expression into non-deterministic
finite automata (NFA), thus, the P-complete procedure to take turn for converting NFA
into deterministic finite automaton (DFA) with construction according to the De Morgan
Law. We give the notion of the equivalence of the complexity classes due to the recent
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research according to Rabin-Scott subset construction. We also give the linear algorithm for
lookahead and lookbehind assertions in regular expressions by implementing the intersection
operator which was well studied before in our prior research, the work also includes: the
experimental part of research in our investigation of the "P versus NP"theorem and the
optimization principle within the physical layout, the full proof of inequivalence of P and
NP complexity classes which can be addressed to the famous "P versus NP"theorem by
Stephen Cook, our approach summarizes all the results obtained before in our prior research
of this topic and its failure during the decades of its first appearance in the scientific press,
definition of the single operation for giving the output to the new state in Berry-Sethi
approach of building deterministic finite automata (DFA), address the output, produced
by the Turing tape automaton, or Turing Machine, which is further divided as deterministic
and non-deterministic, to the set of regular languages recognized by finite automata. It’s
known that the subset sum problem lies in the NP-class of complexity, however, due to the
integer factorization of any number it states another argument towards P = NP. The unified
system based upon Ford-Fulkerson maximum flow method for solving the civil engineering
problems like flooding and human evacuation during earthquakes or other disasters is also
presented. According to the present time the normal forms are consequent to the efficient
data manipulation, still there’s no universal method for solving this problem according to the
criteria of data to be small and the modeled solution provides the sufficient normalization of
the source data. The X + Y sum problem as observed wasn’t solved before, so we provide
a fast and simple solution to this problem using algebraic properties of the vector as well as
the general case. The recent research and study in the theory of Computational Complexity
gives new perspectives in studying the "P versus NP"question.

We build the binary tree for each of the elements in binary notation in the given input
array, after which we concord the search according to the valid combinations. The conversion
of NFA to DFA, or subset construction, and its possibility proof first appeared in has an
exponential complexity of O(2n) and thus is EXP or NP-complete.

Many techniques were done before in order to avoid the effect of state explosion, however,
we present the De Morgan law for rewriting both union and intersection operators as well as
in extended regular expressions, which leads to P-complete result.

For the past decade the "P versus NP"problem was well studied with conformance that
P is a subset of NP. If this happens, then there’s a set of problems which are strictly in NP
and not in P assuming P not equal NP .

We simply close the circuit in our algorithm when converting non-deterministic finite
automata (NFA) to deterministic finite automata (DFA). The same is true even for NFA
constructions which give rise to the question of relation between regular language algebra
and features like lookahead and lookbehind assertions.

As it was stated before the "P versus NP"question has a long-standing history in the
theory of Computational Complexity and Mathematics as well, where the symbol of infinity
isn’t defined as operand due to the inconvenience of its relation to the operands in the
mathematical expression in the algebra of numbers .

Thus, by showing that P equals NP we still cannot devise the relation in this algebra,
however, if P not equals NP, we can proceed further with the modern aspects.

Before we have shown that there’s a functional relation between complexity classes, i.e.
there could exist the function f(x), so that f(P ) = NP .
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We will proceed to the above publication further and give the strict proof of inequivalence
of complexity classes and as it follows from this proof the hierarchy of classes which give
consolidated proof of the relations between the variety of complexity classes in Computer
Science and Theory of Computation .

Before our research the Theory of Complexity was well underlined and it follows that
first we have to postulate and only then give the question of the relation between complexity
classes, basically polynomial "P"and non-polynomial "NP"classes.

The main problem in the Berry-Sethi approach is the conformance of the new state to the
states added before during each iteration of the algorithm. We use the single test application
of our method for the equivalence of the states to the regular language they represent.

Since each of the Turing machines has a limited set of states during which it can transit
to the next step, or iteration, of processing the input and, thus, going to the halting or
accepting, or rejecting, state, we are to define the set of words which are written are well-
defined as programs produced by this machine. The regular language is formed from the
Deterministic Turing Machine (DTM) or Non-deterministic Turing Machine (NDTM) can
arbitrarily produce the regular set of languages, known as programs of this machines according
to the finite state of states in the transition diagram as it can be seen in various sources .
On the account of "P versus NP"theorem we are to define the proved equality of P and NP-
classes of complexity as Finite Automata (FA) are isomorphic with to the regular language
they accept .

The "P versus NP"problem is the main problem stated before.
We simply factorize numbers within the prime number factorization algorithm and build

on-level tree structure for finding the structure of the method. As we know the prime
factorization is reminiscent of the tractable logic of computer numbers which tend to limit
the Ackermann numbers . The prime factorization itself isn’t studied nowadays and is well-
known to be P-complete within the subquadratic algorithm which is still inefficient against
big numbers which are met in cryptography . Still it’s omitted that the subset sum problem
can be devised from the whole set of problems within the multi-cubic trees along prime
factorization and prime number notation system. Still it’s posed that linear complexity of
introduced parameters harms the overall magnitude of complexity, which is well-known and
can be factored according to the optimal notation of consecutive prime numbers to which
the parameter tends to grow linearly with predefined maximal speed of Ackermann numbers.
We build the growing structure of the tree on each level having the prime number in prime
notation of the parameter whose limit is to be deduced from even factorial decomposition
which leads to blow and speed-up and, thus, makes the free parameter less playing the role.

The normalization problem is to be presented as the mathematical programming problem
within the constraints and the main function as the size of data to be minimized. Earlier we
have shown that the factorial number of possible data in each table depends on the number
of columns and number of rows. This fact makes it possible to seed the data and store them
in a fast and efficient way.

The ”X+Y ” problem is in general still unsolved and plays a role in effective optimization
.

We simply sort the items by the normal vector distance to the line X + Y going through
the given point.

This simply gives the minimal possible running time on average as O(n ∗ log(n)).
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As it was pointed out by the modern research the "P versus NP"question is to be studied
from a different point of view and the broad horizons of its decidability are to be omitted
due to the insufficient approach in the formalization of this theorem.

6.8 Proof

We prove the above fact by the assumption already given in the statement before: thus,
as we know any non-deterministic finite automata (NFA) can be converted to analogous
deterministic finite automata (DFA).

According to our latest research the subset construction is P-complete and, thus, there
exist no automata with the strict property given above, thus, it follows that P = NP .

We have devised the parallel computing law as follows: limN→∞
NP
N

= P .
Let’s assume that the above law is correct according to the number of threads N, which

operate on a Non-deterministic Turing Machine (NDTM). Also let’s assume that P = NP ,
then it follows:

limN→∞
1
N

= 1⇒ 0 = 1⇒ P 6= NP .
The output above demonstrates the simplest way of proving the inequivalence of

complexity classes according to the parallel computing law: NP = N · P

6.9 Experiment

We build the integral circuit on a board and give the experimental projection of the abstract
processes and processes which are put in a different environment, or physically. The VLSI
devices are used today in many aspects. Hamiltonian is met in the Traveling Salesman
Problem (TSP) where it defines the shortest possible path visiting each of the city once.
TSP by itself was an argument of "P versus NP"theory and practice . On the experimental
electrical board we build the layered circuit by using elements for satisfying the "visit-
once"condition. Thus, the shortest path of a limited number of mediate elements can be
found.

We develop the maximum flow network on map using any applicable source and present
each cell with the incoming or outgoing edges as of the each of the bordering cells on the
map.

The maximum flow applied to the above-described model gives the result of simple
prediction scheme according to which the residue flow can be pushed forward as well
as backward, and the possible dangerous zones with blocking flow can be detected and
successfully mapped to the physical map where the ecological disaster happens.

At each model we give the maximum capacity as the maximum capacity of the fluid or
human factor.

7 Conclusion

We have given a fully polynomial algorithm for the md-DFA problem which is NP-complete -
this fact gives the experimental proof of the equivalence of complexity classes like polynomial
"P"and non-polynomial "NP"as the benchmarks above state as the argument as they are
almost linear to the size of the expressions and running time depends also linearly, also,
the problem described was proved to be NP-complete before. We have also shown the
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experimental proof of tractability of the problems like md-DFA and Non-emptiness-DFA
which are known to lie in NP-class of complexity. We have also concluded that within the new
proof, back-referencing problem can be computed fast within arbitrary number of capturing
groups. Thus, we claim experimental proof of "P versus NP"theorem: P = NP , which could
be used in solving other problems like Riemann hypothesis by Akram Louiz [13]. The reader
is invited to use Regex+ software package and provide examples. I also have some notes about
theories like fixed-parameter tractability and classification - all these theories and similar to
them are all about the direct solution or final resolution of P-NP theorem by Cook, while
our conjecture of functional hypothesis gives the final outcome with to the full statement of
the problem: are there solution to NP-complete problem or not.

There could be parallels between the P vs. NP problem and quantum mechanics,
particularly in relation to the concept of superposition. In quantum mechanics, a system can
exist in multiple states simultaneously until a measurement is made. Similarly, NP problems
could be seen as a kind of "superposition"of many possible solutions that exist at the same
time until verification or computation collapses them into a final solution.

Thus, we have also proved that subset construction, or powerset construction, is
polynomial, or P-complete, with respect to the prior obtained results.

The common misinterpretation of the "P versus NP"theorem lies between the fact that
it can be solved effectively, still, it doesn’t follow that from this consequence we can devise
the relationship between two classes.

The potential of the method above gives the main result of the past research for efficient
implementation of lookaround assertions. We have presented the experimentation theory for
which there could be conjectured that each of the shortest paths found on the simulated
integral circuit can form the Hamiltonian by itself in its decomposed state.

We have shown the inequivalence of complexity classes around our final proof which is
given as a final contribution to the field of Computational Complexity.

The above method is expensive, however, in static mode it can be more productive.
We have come to the end of the "P versus NP"continued story and the positive output

of the proof of equivalence of these complexity classes gives the horizons of the universality
of automata and their isomorphic properties as well.

The overall can be considered as the other argument towards "P versus NP"theorem
and the proof P = NP, as the subset sum is both in P and NP and NP-complete classes of
complexity.

We presented the safe method for detecting possible bottlenecks during flooding and
evacuation which can lead to a more humanistic approach in science and engineering.

As the much earlier works were towards the static structure of the database, for now we
have defined the universal approach towards data normalization.

The above case can be extended to the problem where the normal vector of a line is
given with arbitrary weights which open new horizons to the studying of the application and
theoretical acquisition of this problem.

The sorting problem for dual coords can be solved in minimal possible time O(n) by
converting it to co-NP problem as integer sorting.

Thus, we came through the inequality of the question "P versus NP"which clearly gives
the argument towards the preliminary axiomatization of the complexity classes which we
name as "decidable"and "undecidable".
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We have provided all the necessary conditions to operate on problem sets and more using
the new complexity algebra.

We have given linear algorithm for MAX-SAT and poly-logarithmic for TSP.
We have also presented the evolutionary and mainly performing model for artificial

intelligence and machine learning.
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ON A SPECTRAL PROBLEM FOR A FOURTH-ORDER DIFFERENTIAL
OPERATOR

This paper considers a generalized spectral problem for a fourth-order differential operator. The
primary goal of the research is to analyze the spectral properties of the operator arising in
boundary value problems for the Stokes and Navier-Stokes equations, as well as to utilize the
obtained eigenfunctions to construct a fundamental system in the space of solenoidal functions.
The work combines theoretical analysis with practical applications, making it relevant for numerical
modeling of hydrodynamic processes. The main methodology is based on the method of separation
of variables and the use of curl operators for different domain dimensions. In particular, the paper
proposes approaches to introducing curl operators for the three- and four-dimensional cases, which
generalize the problem formulation. The key results include proving the existence and distribution
of eigenvalues, as well as constructing an orthonormal basis in functional spaces. This study
contributes to the development of spectral analysis of high-order operators and can be useful
for developing efficient algorithms for solving hydrodynamic problems. The practical significance
of the results lies in their application to numerical modeling of fluid flows in various fields of science
and engineering.
Key words: spectral problem, curl operator, eigenvalues, eigenfunction.
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Төрiншi реттi дифференциалдық оператор үшiн бiр спектралды есеп туралы

Бұл жұмыста төртiншi реттi дифференциалдық оператор үшiн жалпыланған спектрлiк есеп
қарастырылады. Зерттеудiң негiзгi мақсаты – Стокс және Навье-Стокс теңдеулерi үшiн шека-
ралық есептердi шешу барысында туындайтын оператордың спектрлiк қасиеттерiн талдау,
сондай-ақ алынған меншiктi функцияларды соленоидалды функциялар кеңiстiгiнде iргелi
жүйенi құру үшiн пайдалану. Жұмыс теориялық талдауды практикалық қолданумен үй-
лестiретiндiктен, бұл оны гидродинамикалық үдерiстердiң сандық модельдеуi үшiн өзектi
етедi. Негiзгi әдiс айнымалыларды бөлу әдiсiне және әртүрлi өлшемдегi облыстар үшiн ро-
тор операторларын қолдануға негiзделген. Атап айтқанда, үш және төрт өлшемдi жағдайлар
үшiн ротор операторларын енгiзу тәсiлдерi ұсынылып, бұл өз кезегiнде есептiң қойылымын
жалпылауға мүмкiндiк бередi. Негiзгi нәтижелерге меншiктi мәндердiң бар екендiгi мен ор-
наласуын дәлелдеу, сондай-ақ функционалдық кеңiстiктерде ортонормаланған базистi құру
жатады. Бұл зерттеу жоғары реттi операторлардың спектрлiк талдауының дамуына үлес қо-
сып, гидродинамикалық есептердi шешудiң тиiмдi алгоритмдерiн әзiрлеуге пайдалы болуы
мүмкiн. Жұмыстың практикалық маңызы – алынған нәтижелердiң әртүрлi ғылыми және
инженерлiк салалардағы сұйықтық ағындарын сандық модельдеуде қолданылуында.
Түйiн сөздер: спектрлiк есеп, ротор операторы, меншiктi мән, меншiктi функция.
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В данной работе рассматривается обобщенная спектральная задача для одного дифферен-
циального оператора четвертого порядка. Основной целью исследования является анализ
спектральных свойств оператора, возникающего при решении краевых задач для уравнений
Стокса и Навье-Стокса, а также использование полученных собственных функций для
построения фундаментальной системы в пространстве соленоидальных функций. Работа
сочетает теоретический анализ с практическим применением, что делает её актуальной для
численного моделирования гидродинамических процессов. Основная методология основана
на методе разделения переменных и использовании роторных операторов для различных
размерностей области. В частности, предлагаются способы введения операторов ротор для
трех- и четырехмерного случаев, что позволяет обобщить постановку задачи. Основными
результатами являются доказательство существования и расположения собственных зна-
чений, а также построение ортонормированного базиса в функциональных пространствах.
Данное исследование вносит вклад в развитие спектрального анализа операторов высо-
кого порядка и может быть полезно для разработки эффективных алгоритмов решения
гидродинамических задач. Практическая значимость результатов заключается в их приме-
нении в численном моделировании потоков жидкости в различных областях науки и техники.

Ключевые слова: спектральная задача, оператор ротор, собственные значения, собствен-
ные функции.

Introduction

In this paper, we consider a generalized spectral problem for a fourth-order differential
operator.

By introducing a scalar or vector stream function, the spectral problem for the two-, three-
, and four-dimensional Stokes operators can be reduced to a generalized spectral problem for
the biharmonic operator.

Let us provide the mathematical formulations of the latter statement.
First, let us formulate the spectral problem for the d-dimensional Stokes operator. Let

x = (x1, ..., xd) ∈ Ω ⊂ Rd, d ≥ 2, be an open bounded simply connected domain with
boundary ∂Ω. The goal is to find nontrivial solutions {w⃗k(x), pk(x), x ∈ Ω, k ∈ N} and the
corresponding values of the parameter {λ2

k, k ∈ N} for the following boundary value problem
( [1], Chapter II, § 4; [2], Chapter I, § 6, Corollary 6.1; [3], Chapter I, § 2, Subsection 2.6):

−∆w⃗(x) +∇p(x) = λ2w(x), x ∈ Ω,

div{w⃗(x)} = 0, x ∈ Ω,

w⃗(x) = 0, x ∈ ∂Ω.

(1)

Let dim{Ω} = 2, and consider the two-dimensional curl operator curl defined as follows:

{w1, w2} = curl{0, 0, U(x)} = {∂x2U,−∂x1U}, (2)

where U(x) is a scalar function known as the stream function. From equation (1) using the
formulas in (2), we can proceed as follows: first, by substituting the vector function w⃗ in (1)
with curlU ; second, by applying the operator curl, to the resulting expressions; and third,
by summing the results obtained after the second step. As a result, we obtain:

(−∆)2U(x) = λ2(−∆)U(x), x ∈ Ω,

U(x) = 0, x ∈ ∂Ω,

∂n⃗U(x) = 0, x ∈ ∂Ω,

(3)
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where n⃗ is the outward normal to the boundary ∂Ω.
Since the differential equation in (3) contains the operator −∆ on the right-hand side,

we will refer to problem (3) as a generalized spectral problem for the biharmonic operator
(−∆)2. It is evident that the key role in transforming problem (1) into the spectral problem
(3) is played by the curl operator given in (2).

Let dim{Ω} = 3, and consider the three-dimensional curl operator defined as follows:

curl U⃗(x1, x2, x3) = w⃗(x1, x2, x3), div w⃗(x1, x2, x3) = 0, (x1, x2, x3) ∈ Ω, (4)

where U⃗ = {U1, U2, U3}, w⃗ = {w1, w2, w3} are three-dimensional vector functions,

w⃗ = curl U⃗ = {∂x2U3 − ∂x3U2, ∂x3U1 − ∂x1U3, ∂x1U2 − ∂x2U1}. (5)

If we assume that all three components of the vector U⃗ are equal, i.e., U1 = U2 = U3 =
U(x1, x2, x3) in Ω, then, similarly to the two-dimensional case, using equations (4)–(5), we
can derive from (1) the following:

−∆(−∆+ S)U(x) = λ2(−∆+ S)U(x), x ∈ Ω,

U(x) = 0, x ∈ ∂Ω,

∂n⃗U(x) = 0, x ∈ ∂Ω,

(6)

where S = ∂2
x1x2

+∂2
x2x3

+∂2
x3x1

. If we temporarily remove the operator S from the differential
equation in (6), we once again obtain a spectral problem of the form (3), but now in the
three-dimensional case.

Let dim{Ω} = 4, and consider the four-dimensional curl operator defined as follows:

curl U⃗(x1, x2, x3, x4) = w⃗(x1, x2, x3, x4), div w⃗(x1, x2, x3, x4) = 0, (x1, x2, x3, x4) ∈ Ω, (7)

where U⃗ = {U1, U2, U3, U4, U5, U6}, w⃗ = {w1, w2, w3, w4},

w⃗ = curl U⃗ =


∂x4U1 + ∂x3U5 − ∂x2U6

∂x4U2 + ∂x1U6 − ∂x3U4

∂x4U3 + ∂x3U4 − ∂x1U5

−∂x1U1 − ∂x2U2 − ∂x3U3

 , div curl U⃗ = 0. (8)

Remark 1 The curl operator in equations (7)–(8) acts on a six-dimensional vector function
U⃗ , which, in particular, corresponds to the following vector composed of the electric E⃗ and
magnetic H⃗ field intensity vectors: E⃗ = {E1, E2, E3}, H⃗ = {H1, H2, H3} ( [4], Chapter V,
§ 1, Chapter VII, § 1; [5], Chapter III, § 8 and § 9; [6], Chapter I, § 5), namely,

U⃗ = {E1, E2, E3, H1, H2, H3}.

From equation (1), using formulas (7)–(8), we can derive the following:
(−∆)2U(x) = 3λ2(−∆)U(x), x ∈ Ω,

U(x) = 0, x ∈ ∂Ω,

∂n⃗U(x) = 0, x ∈ ∂Ω.

(9)
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If we disregard the factor of 3 in front of the spectral parameter λ2, the spectral problem
(9) fully coincides with problem (3), but now in the four-dimensional case, i.e., dimΩ = 4.

Once again, it is evident that the key role in transforming problem (1) into the spectral
problem (9) is played by the curl operator, which is defined by formulas (7)–(8).

The aim of this work is to construct a fundamental system in the space of solenoidal
functions. If we were able to solve spectral problems for the biharmonic operator (3) in
domains of various dimensions dim{Ω} = d, d ≥ 2, we would succeed in constructing such a
fundamental system, which is important not only from a theoretical point of view but also
for the development of computationally efficient algorithms for the approximate solution of
boundary value problems for the Stokes and Navier–Stokes systems [7]. In this work, we will
limit ourselves to solving a certain generalized spectral problem for a fourth-order differential
operator.

It is worth noting that spectral problems for the Stokes operator (but with periodic
boundary conditions) in a cubic domain have also been considered in the works [8], [9],
and [10].

In [8], the spectra of the curl and Stokes operators in a cube are studied for functions
satisfying periodic boundary conditions. The Cauchy problem for the 3D Navier-Stokes
equations with periodic conditions in the spatial variable was investigated in [10].

Since our approach actively utilizes the properties of the curl operator, which is closely
related to vortex theory, we refer to the foundational works on vortex theory [11], [12], [13],
[14], [15], [16], and others. Some ideas from these works have been used in establishing our
statements.

Let us introduce the main function spaces that will be used in this work. Let x =
(x1, ..., xd) ∈ Ω ⊂ Rd where d ≥ 2, be an open bounded simply connected domain with
a sufficiently smooth boundary ∂Ω, and let m ≥ 0 be an integer,

Wm
2 (Ω) =

{
v| ∂|α|

x v ∈ L2(Ω), |α| ≤ m
}
, where ∂|α|

x = ∂α1
x1
...∂αd

xd
, |α| =

d∑
j=1

αj, ∂xj
=

∂

∂xj

,

◦
W

m
2 (Ω) =

{
v| v ∈ Wm

2 (Ω), ∂j
n⃗v = 0, j = 0, 1, 2...,m− 1, n⃗ is the outward normal to ∂Ω

}
.

For the notation of function spaces, we will follow the monographs [17], [18], [19], and [20].

1 Formulation of the Spectral Problem

Let us consider the following spectral problem for a fourth-order differential operator.

Problem 1

d∑
k=1

∂4
xk
u(x) = λ2(−∆)u(x), x ∈ Ω, (10)

u(x) = ∂n⃗u(x) = 0, x ∈ ∂Ω, (11)

where n⃗ is the outward normal to ∂Ω.
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Let us introduce the following spaces:

Определение 1 Let us denote by V1(Ω) and V2(Ω) the Hilbert spaces with the corresponding
inner products

(∇u,∇v)L2(Ω), ∀u, v ∈
◦
W

1
2(Ω), (12)

((u, v))
def
=

d∑
k=1

(
∂2
xk
u, ∂2

xk
v
)
L2(Ω)

, ∀u, v ∈
◦
W

2
2(Ω), (13)

and norms

∥u∥V1(Ω) =
√
∥∇u∥2L2(Ω), ∥u∥V2(Ω) =

√√√√ d∑
k=1

∥∂2
xk
u∥2L2(Ω). (14)

It is obvious that the norms (14), induced by the inner products (12)–(13), define
equivalent norms in the spaces

◦
W1

2(Ω) and
◦
W2

2(Ω), respectively..

Предположение 1 In the spectral problem (10)–(11), the fourth-order operator is elliptic
and possesses the properties of symmetry and positive definiteness in the space V2(Ω).
Therefore, the eigenvalues {λ2

n, n ∈ N} of this problem are real and located on the positive
semi-axis. Moreover, the smallest eigenvalue is bounded away from zero, i.e., λ1 ≥ δ > 0.

The following statement holds true.

Предположение 2 The spectral problem (10)–(11) possesses a set of "generalized
eigenfunctions" {un(x), n ∈ N}, which belong to the space V2(Ω) and form an orthonormal
basis in the space V1(Ω).

Let us formulate the main result of this work.

Theorem 1 (Main result) The spectral problem (10)–(11) has the following solution

un(x) = X1n(x1)X2n(x2)...Xdn(xd), λ2
n, n ∈ N, (15)

where X1n(x1) = Φn(y)|y=x1 , X2n(x2) = Φn(y)|y=x2 , ..., Xdn(xd) = Φn(y)|y=xd
:

Φ2n−1(y) = sin2 λ2n−1y
2

, λ2
2n−1 =

(
2πn
l

)2
, n ∈ N,

Φ2n(y) = [λ2nl − sinλ2nl] sin
2 λ2ny

2
− sin2 λ2nl

2
[λ2ny − sinλ2ny] ,

λ2
2n =

(
2νn
l

)2
, n ∈ N,

(16)

and {νn, n ∈ N} are the positive roots of the equation tan ν = ν, n ∈ N.

The arrangement of the eigenvalues on the positive semi-axis is shown in Figure 1.1 (here
l = 2).
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Figure 1.1. The positive roots of the equations (for l = 2):
tan νn = νn, νn = λnl

2
= λn; sinλn = 0, n ∈ N.

From Figure 1.1 we have:

0 < λ1 = π < λ2 =
3π

2
− ε1 < λ3 = 2π < λ4 =

5π

2
− ε2

< λ5 = 3π < λ6 =
7π

2
− ε3 < λ7 = 4π < ...

Next, from Theorem 1, we obtain:

Следствие 1 The eigenvalues {λ2n, n ∈ N} are ordered as follows:

0 < λ2n =
2νn
l

<
(2n+ 1)π

2
, ∀n ∈ N,

λ2n =
2νn
l

→ (2n+ 1)π

2
, n → ∞,

where {νn, n ∈ N} are the positive roots of the equation tan ν = ν.

2 Proof of Theorem 1

We will use the method of separation of variables. Substituting the expression un(x) =
X1n(x1)X2n(x2)...Xdn(xd) into the relations (10)–(11) for each n ∈ N, we obtain:{

XIV
kn (xk) + λ2

nX
II
kn(xk)− αknµnXkn(xk) = 0, xk ∈ (0, l),

X1n(0) = X1n(l) = XI
1n(0) = XI

1n(l) = 0,
(17)
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where k = 1, .., d, and {αkn, k = 1, ...d} are arbitrarily chosen numbers for each n ∈ N from

the set {αkn ∈ R1 \ {0},
d∑

k=1

αkn = 0}; moreover, µn ∈ C, n ∈ N, are (in the general case)

unknown complex numbers.
Firstly, note that due to the positivity of the numbers λ2

n (as shown earlier in Proposition
1), the parameter µn can only take real values. Let us separately consider the following cases:
(a) µn ̸= 0, (b) µn = 0.

(a) µn ̸= 0. The general solutions of the equations from (17) have the form

Xkn(xk) = Akn sinh θ(2k−1)nxk+Bkn cosh θ(2k−1)nxk+Ckn sin θ2knxk+Dkn cos θ2knxk, (18)

where {Akn, Bkn, Ckn, Dkn, k = 1, ..., d} are constant values, and the constants {θkn, k =
1, ..., d} must satisfy the equations:

2θ(2k−1)nθ2kn
[
1− cosh θ(2k−1)nl · cos θ2knl

]
=

(
θ22kn − θ2(2k−1)n

)
sinh θ(2k−1)nl · sin θ2knl, (19)

where k = 1, ..., d, and they ensure the fulfillment of the boundary conditions from (17).
In terms of the original constants λ2

n and σkn = αknµn, k = 1, ..., d, the equations (19)
take the following form:

±4i
√
σkn

1− cosh

l

√
−λ2

n +
√

λ4
n + 4σkn

2

 · cos

l

√
λ2
n +

√
λ4
n + 4σkn

2



= λ2
n sinh

l

√
−λ2

n +
√

λ4
n + 4σkn

2

 · sin

l

√
λ2
n +

√
λ4
n + 4σkn

2

 , k = 1, ..., d, (20)

where
θ2(2k−1)nθ

2
2kn = σkn, θ22kn − θ2(2k−1)n = λ2

n, k = 1, ..., d.

(a1). Let σkn > 0 for some fixed index k. If µn ̸= 0, then such an index k always exists!
In this case, the relation (20) is equivalent to the equation:

±i4
√
σkn [1− cosh ξkn cos ηkn] = λ2

n sinh ξkn sin ηkn, ξkn ̸= ηkn, ξkn, ηkn ∈ R1
+,

which cannot be satisfied, where the following notations are introduced:

ξkn = l

√
−λ2

n +
√

λ4
n + 4σkn

2
, ηkn = l

√
λ2
n +

√
λ4
n + 4σkn

2
.

Thus, the remaining case is when µn = 0, i.e. σkn = 0, k = 1, ..., d.
(b). Let µn = 0. In this case, the boundary value problems (17) take the following form:{

XIV
kn (xk) + λ2

nX
II
kn(xk) = 0, xk ∈ (0, l),

Xkn(0) = Xkn(l) = XI
kn(0) = XI

kn(l) = 0,
k = 1, ..., d. (21)

The general solutions of the equations from (21) are the following functions:

Xkn(xk) = Akn +Bknxk + Ckn sinλnxk +Dkn cosλnxk, (22)
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where the roots of the characteristic equations for (22) are respectively given by:

θkn1 = 0, θkn2 = 0, θkn3 = iλn, θkn4 = −iλn, k = 1, ..., d.

Moreover, the constant λn is a solution of the equation:

λn

{
4 sin4 λnl

2
− [λnl − sinλnl] sinλnl

}
= 0. (23)

The equation (23) is equivalent to the following relations:

λn ̸= 0,


sin

λ2n−1l

2
= 0, λ2

2n−1 =

(
2πn

l

)2

,

tan
λ2nl

2
=

λ2nl

2
, λ2

2n =

(
2νn
l

)2

,

n ∈ N, (24)

where {νn, n ∈ N} are the positive roots of the equation tan ν = ν.
By ensuring the fulfillment of the boundary conditions from (21) for the solutions (22)

with the constants Akn, Bkn, Ckn, Dkn, k = 1, ..., d, we establish the statement of Theorem 1.

Conclusion

The paper solves the generalized spectral problem for a fourth-order differential operator in
a domain Ω, which has dimension dim{Ω} = d ≥ 2. In the future, it is assumed that the
eigenfunctions of the generalized spectral problem will be used to construct a fundamental
system in the space of solenoidal functions. It is worth noting that in the works [23] and [24], a
solution to the spectral problem (3) for the biharmonic operator in the domain Ω, represented
by a 3-D sphere, was found.
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LIMITING ERROR OF THE OPTIMAL COMPUTING UNIT FOR
FUNCTIONS FROM THE CLASS W r;α

2

In the problem of optimal recovery of an infinite object (functions on a continuum, integrals of
continuous functions, solutions of partial differential equations, derivative of functions,...) from
finite numerical information about it, the problem of finding the limiting error of the optimal
computing unit naturally arises, since the numerical information about the infinite object to be
restored , as a rule, will not be accurate. In this article, the limiting error of the optimal computing
unit is found in the problem of optimal recovery of periodic functions of many variables from the
anisotropic Sobolev classW r;α

2 in a power-logarithmic scale in the space metric L2. The actuality of
this work is determined by the following factors: firstly, the found limiting error εN of the optimal
computing unit preserves the exact order of the smallest recovery error , when replacing exact
numerical information about a function f ∈W r;α

2 with inaccurate information and is unimprovable
in order; secondly, the problem of finding the limiting error of an optimal computing unit has not
previously been studied in the class under consideration; thirdly, the anisotropic Sobolev class in
the power-logarithmic scale is a finer scale of classification of periodic functions according to the
rate of decrease of their trigonometric Fourier coefficients than the anisotropic Sobolev class in the
power scale.
Key words: optimal recovery, optimal computing unit, linear functionals, exact order, anisotropic
Sobolev class, trigonometric Fourier coefficients, limiting error

А.Б. Утесов, Г.И. Утесова∗
Қ. Жұбанов атындағы Ақтөбе өңiрлiк университетi, Ақтөбе, Қазақстан

∗e-mail: ugi_a@mail.ru
W r;α

2 класы функциялары үшiн оптималды есептеу агрегатының шектiк қателiгi

Ақырсыз объектiнi (континуумда анықталған функцияны, үзiлiссiз функциялар интегралда-
рын, дербес туындылы дифференциалдық теңдеулер шешiмдерiн, функция туындыларын,...)
одан алынған саны ақырлы мәлiметтер арқылы оптималды қалыптастыру есебiнде табиғи
түрде, қалыптастырылуға тиiс ақырсыз объекттен алынатын сандық мәлiметтер әдетте
дәл болмайтындықтан, оптималды есептеу агрегатының шектiк қателiгiн табу есебi пайда
болады. Бұл мақалада L2 кеңiстiгi метрикасында дәреже – логарифмдiк шкаладағы
анизотропты Соболев W r;α

2 класына тиесiлi көп айнымалылы периодты функцияларды
оптималды қалыптастыру есебiндегi оптималды есептеу агрегатының шектiк қателiгi
табылған. Осы жұмыстың өзектiлiгi оптималды есептеу агрегатының келесi факторлар
арқылы қамтамасыз етiледi: бiрiншiден, оптималды есептеу агрегатының табылған εN
шектiк қателiгi f ∈ W r;α

2 функциясынан алынған дәл сандық мәлiметтi дәл емес мәлiметке
ауыстырғанда да қалыптастырудың ең аз қателiгiнiң дәл ретiн сақтайды және ретi бойынша
жақсармайды; екiншiден, оптималды есептеу агрегатының шектiк қателiгiн табу есебi осы
күнге дейiн қарастырып отырған класта зерттелмеген; үшiншiден, периодты функцияларды
олардың тригонометриялық Фурье коэффициенттерiнiң кему жылдамдығы бойынша
классификациялап сипаттауда логарифм-дәрежелiк шкаладағы анизотропты Соболев класы
дәрежелiк шкаладағы анизотропты Соболев класымен салыстырғанда кең, әрi дәл сипаттама
болып келедi.

Түйiн сөздер: оптималды қалыптастыру, оптималды есептеу агрегаты, сызықтық функци-
оналдар, дәл рет, анизотропты Соболев класы, тригонометриялық Фурье коэффициенттерi,
шектiқ қателiк.
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Предельная погрешность оптимального вычислительного агрегата для функций из

класса W r;α
2

В задаче оптимального восстановления бесконечного объекта (функции на континууме,
интегралы от непрерывных функций, решения дифференциальных уравнений в частных
производных, производной функций, . . . ) по конечной числовой информации о нем есте-
ственным образом возникает задача нахождения предельной погрешности оптимального
вычислительного агрегата, поскольку числовая информация о подлежащем к восстанов-
лению бесконечном объекте, как правило, не будет точной. В данной статье найдена
предельная погрешность оптимального вычислительного агрегата в задаче оптимального
восстановления периодических функций многих переменных из анизотропного класса
Соболева W r;α

2 в степенно – логарифмической шкале в метрике пространства L2. Акту-
альность настоящей работы обусловлена следующими факторами: во – первых, найденная
предельная погрешность εN оптимального вычислительного агрегата сохраняет точный
порядок наименьшей погрешности восстановления при замене точной числовой информации
о функции f ∈ W r;α

2 на неточную и является неулучшаемой по порядку; во – вторых, ранее
задача нахождения предельной погрешности оптимального вычислительного агрегата не
изучалась на рассматриваемом классе; в – третьих, анизотропный класс Соболева в степенно
– логарифмической шкале является более тонкой шкалой классификаций периодических
функций по скорости убывания их тригонометрических коэффициентов Фурье, чем анизо-
тропный класс Соболева в степенной шкале.

Ключевые слова: Оптимальное восстановление, оптимальный вычислительный агрегат, ли-
нейные функционалы, точный порядок, анизотропный класс Соболева, тригонометрические
коэффициенты Фурье, предельная погрешность

1 Introduction

Using the notations of the articles [1] and [2], we present definitions of the computing unit,
the exact order of error of the optimal recovery, the optimal computing unit and its limiting
error. Let a natural number N, normalized spaces X and Y of numerical functions defined
on sets Ω and Ω1 respectively, a functional class F ⊂ X, an operator T : F 7→ Y, a function

ϕN ≡ ϕN(z1, . . . , zN ; y) : CN × Ω1 → C,

which for each fixed (z1, . . . , zN) as a function of a variable y belongs to the space Y, are given.
Further, the symbol l(N) will be used to denote a N− dimensional vector

(
l
(1)
N , . . . , l

(N)
N

)
with

functionals l(1)N : F → C, . . . , l(N)
N : F → C.

Definition 1. For a given pair
(
l(N), ϕN

)
, a numerical function

ϕN

(
l
(1)
N (f), . . . , l

(N)
N (f); y

)
of a variable y is called a computing unit.

Every below, we will use C(α, β, . . .) to denote positive quantities that depend only
on the parameters indicated in brackets. For positive sequences {an}n≥1 and {bn}n≥1 the
notation an �

α,β,...
bn will mean the existence of some quantity C(α, β, . . .) > 0 such that
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an ≤ C(α, β, . . .)bn for all n ∈ N. It should be taken into account that the values of
C(α, β, . . .) > 0 in different expressions may be different. And the simultaneous fulfillment
of the relations an �

α,β,...
bn and bn �

α,β,...
an is written as an �≺

α,β,...
bn.

Further, for given F, Y,DN and T : F 7→ Y we determine the quantity

δN(DN , T, F )Y = inf
(l(N),ϕN )∈DN

δN((l(N), ϕN), T, F )Y , (1)

where DN is a subset of the set of all pairs (l(N), ϕN),

δN((l(N), ϕN), T, F )Y = sup
f∈F

∥∥∥(Tf)(·)− ϕN(l
(1)
N (f), . . . , l

(N)
N (f); ·)

∥∥∥
Y
.

Definition 2. A positive sequence {ψN}N≥1 such that

δN(DN , T, F )Y �≺
α,β,...

ψN (2)

is called the exact order of error of the optimal recovery of the operator T : F → Y by
computing units from DN in the metric of the space Y.

Definition 3.A computing unit
(
l̃(N), ϕ̃N

)
≡ ϕ̃N

(
l̃
(1)
N (f), . . . , l̃

(N)
N (f); ·

)
such that

δN(DN , T, F )Y �≺
α,β,...

δN((l̃(N), ϕ̃N), T, F )Y �≺
α,β,...

ψN (3)

is called optimal.
Thus optimal computing unit (l̃(N), ϕ̃N) realizes the exact order ψN .
Here we note that in the relations (2) and (3), instead of the parameters α, β, . . . the

parameters of the class F and the space Y are taken.
Calculations for each function f from class F the value l(1)N (f), . . . , l

(N)
N (f) of functionals

l
(1)
N : F → C, . . . , l(N)

N : F → C, with rare exceptions, cannot be exact. Therefore, for the
optimal computing unit (l̃(N), ϕ̃N), the problem arises of finding the error ε̃N in calculating the
values l̃(1)N (f), . . . , l̃

(N)
N (f) of the functionals l̃(1)N : F → C, . . . , l̃(N)

N : F → C, which preserves
the optimality of (l̃(N), ϕ̃N) and is the limiting in order. In [1] the error ε̃N was called the
limiting error of the optimal computing unit (l̃(N), ϕ̃N). Now we present definition of ε̃N ,
formulated in [2].

Definition 4. A sequence ε̃N > 0 is called the limiting error of an optimal computing
unit

(
l̃(N), ϕ̃N

)
, if

4N

(
ε̃N , (l̃

(N), ϕ̃N), T, F
)
Y
�≺
α,β,...

δN(DN , T, F )Y and (4)

lim
N→∞

4N(ηN ε̃N , (l̃
(N), ϕ̃N), T, F )Y

δN(DN , T, F )Y
= +∞ (5)
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for any positive sequence {ηN}N≥1 increasing arbitrarily slowly to +∞, where

4N(εN , (l̃
(N), ϕ̃N), T, F )Y =

= sup
f∈F

sup
z1,...,zN

{∥∥∥(Tf)(·)− ϕ̃N(z1, . . . , zN ; ·)
∥∥∥
Y

:
∣∣∣zi − l̃(i)N (f)

∣∣∣ ≤ εN , i = 1, . . . , N
}
≡

≡ sup
f∈F

sup
|γ(1)N |≤1,...,|γ

(N)
N |≤1

∥∥∥(Tf)(·)− ϕ̃N
(
l̃
(1)
N (f) + γ

(1)
N εN , . . . , l̃

(N)
N (f) + γ

(N)
N εN ; ·

)∥∥∥
Y

for any positive sequence εN .
The relation (4) means that when calculating the values of the optimal computing unit

ϕ̃N

(
l̃
(1)
N (f), . . . , l̃

(N)
N (f); ·

)
each number l̃(τ)N (f)(τ = 1, . . . , N = N(K)) can be replaced with

error ε̃N by a number zτ such that |zτ − l̃(τ)N (f)| ≤ εN(τ = 1, . . . , N = N(K)), preserving the
exact order of error of the optimal recovery.

According to equality (5), we can state that the error ε̃N is of limiting error, because an
arbitrarily slow infinite increase in the value of ε̃N (i.e., replacement of ε̃N by ηN ε̃N) violates
the exact order of error of optimal recovery.

Many mathematicians have been and continue to be concerned with the problems of
establishing the relation (1) and constructing optimal computing units for various F, Y,DN

and T : F 7→ Y ( see, for example, [3-6] and the bibliography therein). The problem of
finding limiting errors is a relatively new problem in approximation theory, computational
mathematics and numerical analysis. Results on this problem can be found in the works [1],
[2], [7] and [8]. In this article, when

Tf = f, F = W r;α
2 [0, 1]s, Y = L2[0, 1]s, DN = LN ,

where W r;α
2 ≡ W r1,...,rs;α1,...,αs

2 [0, 1]s is the anisotropic Sobolev class on a power –logarithmic
scale (the definition of the class is given below), LN is the set of computing units (l(N), ϕN)

with linear functionals l(1)N : W r;α
2 → C, . . . , l(N)

N : W r;α
2 → C, the limiting error of the optimal

computing unit
(
l̄(N), ϕN

)
from [5] is found.

The importance of studying this work lies in the following: firstly, the anisotropic
Sobolev class W r;α

2 ≡ W r1,...,rs;α1,...,αs
2 [0, 1]s in the power-logarithmic scale is a finer scale

of classifications of periodic functions in terms of the rate of decrease of their trigonometric
Fourier coefficients than the usual anisotropic Sobolev class W r1,...,rs

2 [0, 1]s in the power scale;
secondly, the recovery of functions from the classW r;α

2 [0, 1]s is carried out by computing units
from a fairly wide set containing all partial sums of Fourier series over all possible orthonormal

systems, all possible finite convolutions
N∑
i=1

f(ξi)KN(x− ξi) with special kernels KN , and all

finite sums of approximation used in orthowidths, linear widths, and greedy algorithms;
thirdly, previously, the problem of finding the limiting error of the optimal computing unit
was not considered on a multidimensional functional class W r;α

2 ; fourthly, in the problem of
finding the limiting error of the optimal computing unit on optimal recovery of functions from
the class W r;α

2 , unlike the classes Sobolev SW r
2 with a dominant mixed derivative, Korobov

Er
s and Sobolev W r

p , and the exact order and limiting error does not depend on the number
variable functions f(x) = f(x1, . . . , xs) (see, for example, [9] and [10]).
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2 Main result

First, let’s agree on the notation used. Everywhere below, the symbols [a] and |E| will denote
the integer part of the number a and the amount elements of the finite set E. For each vector
r = (r1, . . . , rs) with positive components, we assume λ = 1/(1/r1 + . . . + 1/rs). Instead of
symbols

‖ · ‖L2 , �
s,r1,...,rs,α1,...,αs

, �
s,r1,...,rs,α1,...,αs

and �≺
s,r1,...,rs,α1,...,αs

we will use the symbols ‖ · ‖2,�,� and �≺ respectively. The symbol � will mean the end
of the proofs.

Now we give a definition of the anisotropic Sobolev class W r;α
2 on a power – logarithmic

scale. Let an integer number s ≥ 2, vectors r = (r1, . . . , rs) and α = (α1, . . . , αs)
be given such that ri > 0 and αi ∈ R for each i = 2, 3, . . . , s. The class W r;α

2 ≡
W r1,...,rs;α1,...,αs

2 [0, 1]s consist of all functions f(x) = f(x1, . . . , xs) that are summable on [0, 1]s

and 1 – periodic on each variable and whose trigonometric Fourier – Lebesgue coefficients
f̂(m) =

∫
[0,1]s

f(x)e−2πi(m,x)dx,m ∈ Zs satisfy the condition

∑
m∈Zs

|f̂(m)|2(m2r1
1 ln2α1(m1 + 1) + . . .+m2rs

s ln2αs(ms + 1)) ≤ 1,

where mj = max{1; |mj|} for each j = 1, . . . , s.
The main result of this article is the following
Theorem. Let an integer number s ≥ 2, vectors r = (r1, . . . , rs), r1 > 0, . . . , rs > 0 and

α = (α1, . . . , αs) ∈ Rs be given such that ri + αi > 0 for each i = 2, 3, . . . , s, and let the
inequality(

1

min{r1, r1 + α1}
+ . . .+

1

min{rs, rs + αs}

)−1
>

1

2
(6)

hold. Then the quantity

εN =
1

Nλ+1/2(lnN)λ(α1/r1+...+αs/rs)

is limiting error of the optimal computing unit

(
l̄(N), ϕN

)
≡ ϕN

(
l̄
(1)
N (f), . . . , l̄

(N)
N (f);x

)
=

N∑
τ=1

f̂(m(τ))e2πi(m
(τ),x),

where N ≡ N(K) =
s∏
i=1

(2Ni + 1),

Ni ≡ Ni(K) = [Kλ/ri(lnK)λ(α1/r1+...+αs/rs)/ri(lnK)−αi/ri ], K ≥ 2 for each i ∈
{1, . . . , s}, {m(1),m(2), . . . ,m(N)} is some ordering of the set AK = {m ∈ Zs : |m1| ≤
N1, . . . , |ms| ≤ Ns}, in the problem of optimal recovery of functions from the class
W r1,...,rs;α1,...,αs

2 [0, 1]s in the metric of the space L2[0, 1]s.
In the case α1 = α2 = . . . = αs = 0 from this theorem we obtain the following statement.
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Corollary. Let an integer number s ≥ 2, vector r = (r1, . . . , rs) be given such that ri > 0

for each i = 2, 3, . . . , s, and let the inequality
(

1
r1

+ . . .+ 1
rs

)−1
> 1

2
hold. Then the quantity

εN = 1
Nλ+1/2 is limiting error of the optimal computing unit

(
l̄(N), ϕN

)
≡ ϕN

(
l̄
(1)
N (f), . . . , l̄

(N)
N (f);x

)
=

N∑
τ=1

f̂(m(τ))e2πi(m
(τ),x),

where N ≡ N(K) =
s∏
i=1

(2Ni + 1), Ni ≡ Ni(K) = [Kλ/ri ], K ≥ 2 for each i ∈

{1, . . . , s}, {m(1),m(2), . . . ,m(N)} is some ordering of the set AK = {m ∈ Zs : |m1| ≤
N1, . . . , |ms| ≤ Ns}, in the problem of optimal recovery of functions from the class
W r1,...,rs

2 [0, 1]s in the metric of the space L2[0, 1]s.

3 Auxiliary statements

Lemma 1. Let sequences {xn}n≥1 and {yn}n≥1 be given such that lim
n→∞

xn = +∞ and
lim
n→∞

yn = +∞. Then for the sequence zn = min{xn, yn} the equality lim
n→∞

zn = +∞ holds.
Proof. According to the equalities lim

n→∞
xn = +∞ and lim

n→∞
yn = +∞, for any positive number

ε > 0 there is a number Nε such that for all natural numbers n ≥ Nε the inequalities xn > ε
and yn > ε are satisfied. From these inequalities follows the inequality min{xn, yn} > ε, which
is true for each n ≥ Nε. Therefore, lim

n→∞
zn = +∞. �

Lemma 2. For each γ ∈ R there exists a quantity C1(γ) ≥ 2 such that for all integers
K ≥ C1(γ) the relation

ln(K lnγK) �≺
γ

lnK (7)

holds.
Proof. In case γ ≥ 0 for all integers K ≥ 2 the inequalities

K ≤ K lnγK ≤ Kγ+1 ⇔
⇔ lnK ≤ ln(K lnγK) ≤ (γ + 1) lnK (8)

are satisfied.
Let γ < 0. Since lim

K→∞

√
K lnγK = +∞, there exists a number K(0) = K(0)(γ) such that

for all integers K ≥ K(0) the inequalities

1

2
lnK ≤ ln(K lnγK) ≤ lnK (9)

hold. Therefore, taking C1(γ) =

{
2, if γ ≥ 0;

K(0) + 1, if γ < 0,
by virtue of the inequalities (8) and

(9) for all integers K ≥ C1(γ) we obtain (7). �
Lemma 3. For any function f ∈ L2 the inequality

max
{
‖f(·)− ϕN(0, . . . , 0; ·)‖2, ‖(−f)(·)− ϕN(0, . . . , 0; ·)‖2

}
≥ ‖f‖2
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is satisfied.
Proof. Let us introduce the following notations:

a = ‖f(·)− ϕN(0, . . . , 0; ·)‖2 and b = ‖(−f)(·)− ϕN(0, . . . , 0; ·)‖2.

Then, according to the inequalities max{a, b} ≥ (a + b)/2 and ‖x‖2 + ‖y‖2 ≥ ‖x − y‖2, we
have

max
{
‖f(·)− ϕN(0, . . . , 0; ·)‖2, ‖(−f)(·)− ϕN(0, . . . , 0; ·)‖2

}
≥ ‖f(·)− ϕN(0, . . . , 0; ·)‖2 + ‖(−f)(·)− ϕN(0, . . . , 0; ·)‖

2
≥

≥ (‖f(·)− ϕN(0, . . . , 0; ·))− ((−f)(·)− ϕN(0, . . . , 0; ·)‖2
2

≥ ‖f‖2.�

4 Proof of the main result

We will begin the proof by checking the validity of the relations

4N(εN , (l̄
(N), ϕN), T f = f,W r;α

2 )L2 �≺ δN(LN , T f = f,W r;α
2 )L2 . (10)

For arbitrarily given numbers γ(τ)N such that |γ(τ)N | ≤ 1(τ = 1, . . . , N) there is an inequality∥∥∥f(·)− ϕN(l̄
(1)
N (f) + γ

(1)
N εN , . . . , l̄

(N)
N (f) + γ

(N)
N εN ; ·)

∥∥∥
2
≤

≤
∥∥∥f(·)− ϕN(l̄

(1)
N (f), . . . , l̄

(N)
N (f); ·)

∥∥∥
2

+

∥∥∥∥∥
N∑
τ=1

(−γ(τ)N )εNe
2πi(m(τ),·)

∥∥∥∥∥
2

. (11)

According to the theorem from [5], the relations

δN(LN , T f = f,W r;α
L2 )L2 �≺ δN

(
(l̄(N), ϕN), T f = f,W r;α

2

)
L2 �≺

�≺ 1

Nλ(lnN)λ(α1/r1+...+αs/rs)
(12)

are valid. Using the Parseval equality, we find∥∥∥∥∥
N∑
τ=1

(−γ(τ)N )εNe
2πi(m(τ),·)

∥∥∥∥∥
2

� 1

Nλ(lnN)λ(α1/r1+...+αs/rs)
.

Further, due to inequalities (11) and (12), we obtain∥∥∥f(·)− ϕN
(
l̄
(1)
N (f) + γ

(1)
N εN , . . . , l̄

(N)
N (f) + γ

(N)
N εN ; ·

)∥∥∥
2
�

� 1

Nλ(lnN)λ(α1/r1+...+αs/rs)
.

From where, by virtue of the arbitrariness of the numbers γ(τ)N (τ = 1, . . . , N) and the
function f , we have
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4N

(
εN , (l̄

(N), ϕN), T f = f,W r;α
2

)
L2 �

1

Nλ(lnN)λ(α1/r1+...+αs/rs)
. (13)

Since
δN(LN , T f = f,W r;α

2 )L2 ≤ δN
(
(l̄(N), ϕN), T f = f,W r;α

2

)
L2 ≤

≤ 4N

(
εN , (l̄

(N), ϕN), T f = f,W r;α
2

)
L2 ,

then taking into account (12) and (13) we obtain (10).
Let the set of pairs

(
l(N), ϕN

)
with functionals

l
(1)
N (f) = f̂(m(1)), . . . , l

(N)
N (f) = f̂(m(N))

be denoted by ΦN . Now let us verify that for all (l(N), ϕN) ∈ ΦN and any arbitrarily slowly
increasing to +∞ sequence {ηN(K)}K≥1 the equality

lim
N→∞

4N(ηNεN , (l̄
(N), ϕN), T f = f,W r;α

2 )L2

δN(LN , T f = f,W r;α
2 )L2

= +∞. (14)

holds. Next, for each integer K > C(r, α, s) we define the set

H∗K = {m ∈ Zs : [M∗
1 ] ≤ |m1| ≤ 2 · [M∗

1 ], . . . , [M∗
s ] ≤ |ms| ≤ 2 · [M∗

s ]} ,

where M∗
i = Nλ/ri(lnN)λ(α1/r1+...+αs/rs)/ri(lnN)−αi/riβ

−1/ri
K for all i ∈ {1, 2, . . . , s}, N =

N(K), βK = min{ηN , lnN}.
Since lim

K→+∞
βK = +∞ (see Lemma 1), there exists a number K0 ≥ C(r, α, s) such that

for all integers K ≥ K0 the inequality βK ≥ 1 holds.
Now for any component mi(i = 1, 2, . . . , s) of the vector m ∈ H∗K we will prove the

inequality

lnαi(2mi)� lnαi N,αi ∈ R. (15)

If αi ≥ 0, then by virtue of inequalities (lnN)−αi/ri ≤ 1 and β−1/riK ≤ 1 and Lemma 2, we
have

lnαi(2mi)� lnαi
(

2Nλ/ri(lnN)λ(α1/r1+...+αs/rs)/ri(lnN)−αi/riβ
−1/ri
K

)
�

� lnαi
(
2Nλ/ri(lnN)λ(α1/r1+...+αs/rs)/ri

)
� lnαi N.

Comparing the beginning and the end of this chain of inequalities, we obtain (15). Let
αi < 0. Since βK = min{ηN , lnN}, then β−1/riK ≥ ln−1/ri N.

Therefore,

2mi � 2Nλ/ri(lnN)λ(α1/r1+...+αs/rs)/ri(lnN)−αi/riβ
−1/ri
K �

� Nλ/ri(lnN)λ(α1/r1+...+αs/rs)/ri−αi/ri−1/ri ,

whence by virtue of Lemma 2 and the inequality αi < 0, we again obtain (15).
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From (15) follows the inequality

mri
i lnαi(2mi)� Nλ(lnN)λ(α1/r1+...+αs/rs)β−1K . (16)

Consider the function hK(x) = βKεN
∑

m∈H∗
K

e2πi(m,x). Then, using the relation

|H∗K | �≺ N · β−1/λK (17)

and the inequalities (16) and βK ≥ 1(K ≥ K0), we have∑
m∈Zs

|ĥK(m)|2
(
m2r1

1 ln2α1(m1 + 1) + . . .+m2rs
s ln2αs(ms + 1)

)
=

=
∑
m∈H∗

K

|ĥk(m)|2
(
m2r1

1 ln2α1(m1 + 1) + . . .+m2rs
s ln2αs(ms + 1)

)
�

�
∑
m∈H∗

K

|ĥK(m)|2
(
m2r1

1 ln2α1(2m1) + . . .+m2rs
s ln2αs(2ms)

)
�

� β2
Kε

2
N

∑
m∈H∗

K

N2λ(lnN)2λ(α1/r1+...+αs/rs)β−2K �

� 1

N

∑
m∈H∗

K

1� 1

β
1/λ
K

� 1.

Therefore, for some C(r, α, s) > 0 the function tK(x) = C(r, α, s) · hK(x) belongs to the
class W r;α

2 . By virtue of Parseval’s equality and relation (17) we have

‖tK‖2 �
β
1−1/(2λ)
K

Nλ(lnN)λ(α1/r1+...+αs/rs)
. (18)

Further, having fixed the values of K ≥ K0 for any τ = 1, . . . , N ≡ N(K) we put

γ̃
(τ)
N = − t̂K(m(τ))

εNηN
and ω̃

(τ)
N = −(−t̂K)(m(τ))

εNηN
.

Since for each τ = 1, . . . , N inequalities |γ̃(τ)N | ≤ 1, |ω̃(τ)
N | ≤ 1 and equalities

t̂K(m(τ)) + ηN γ̃
(τ)
N εN = 0, (−t̂K)(m(τ)) + ηN ω̃

(τ)
N εN = 0

are true, then by virtue of Lemma 3 for each pair (l(N), ϕN) ∈ ΦN we have

sup
f∈W r;α

2

sup
|γ(1)N |≤1,...,|γ

(N)
N |≤1

∥∥∥f(·)− ϕN
(
f̂(m(1)) + γ

(1)
N ηNεN , . . . ,

f̂(m(N)) + γ
(N)
N ηNεN ; ·

)∥∥∥
2
≥

≥ max
{∥∥∥tK(·)− ϕN

(
t̂K(m(1)) + γ̃

(1)
N ηNεN , . . . , t̂K(m(N)) + γ̃NηNεN ; ·

)∥∥∥
2
,
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∥∥∥(−tK)(·)− ϕN
(

(−t̂K)(m(1)) + ω̃
(1)
N ηNεN , . . . , (−t̂K)(m(N)) + ω̃

(N)
N ηNεN ; ·

)∥∥∥
2

}
=

= max
{∥∥∥tK(·)− ϕN(0, . . . , 0; ·)

∥∥∥
2
,
∥∥∥(−tK)(·)− ϕN(0, . . . , 0; ·)

∥∥∥
2

}
≥ ‖tK‖2.

Next, using inequality (18), we find

4N

(
ηNεN , (l

(N), ϕN), T f = f,W r;α
2

)
L2 � δN (LN , T f = f,W r;α

2 )L2 β
1−1/(2λ)
K . (19)

Since (
1

min{r1, r1 + α1}
+ . . .+

1

min{rs, rs + αs}

)−1
>

1

2

(see condition (6)), then 2λ > 1. Therefore, in view of the equality lim
K→+∞

βK = +∞ and

the inequalitiy (19) for each pair (l(N), ϕN) ∈ ΦN and any positive sequence {ηN(K)}K≥1 that
increases arbitrarily slowly to +∞, the inequality

lim
N→∞

4N(ηNεN , (l
(N), ϕN), T f = f,W r;α

2 )L2

δN(LN , T f = f,W r;α
2 )L2

= +∞ (20)

holds. It is clear that (l̄(N), ϕN) ∈ ΦN . Consequently, from (20) follows (14). �
Remark. Since the equality (20) is proved for all pairs (l(N), ϕN) ∈ ΦN , then any optimal

computing unit ϕN
(
f̂(m(1)), . . . , f̂(m(N)); ·

)
, N = N(K) does not have a greater (in order)

limiting error than εN .

5 Conclusion

The theorem proved above is a new result in approximation theory, numerical analysis, and
computational mathematics. This study can be continued by replacing condition (6) with
a weaker condition that ensures absolute convergence of the trigonometric Fourier series∑
m∈Zs

f̂(m)e2πi(m,x) functions f ∈ W r;α
2 .
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ON q-DEFORMATED HÖRMANDER MULTIPLIER THEOREM

Abstract. The main purposes of this work, we introduce the q-deformed Fourier multiplier
Ag defined on the space L2

q(Rq) through the framework of the q2-Fourier transform, while also
extending the functional setting of Lp

q(Rq) with 1 ≤ p < ∞. Our approach provides a natural
extension of classical Fourier multiplier theory into the q-deformed setting, which is relevant
in the context of quantum groups and noncommutative analysis. Furthermore, we establish
several key q-analogues of classical harmonic analysis inequalities for the q2-Fourier transform,
including the Paley inequality, Hausdorff-Young inequality, Hausdorff-Young-Paley inequality,
and Hardy-Littlewood inequality. These results not only generalize their classical counterparts but
also open new avenues for analysis on q-deformed spaces. As a significant application, we prove
a q-deformed version of the Hörmander multiplier theorem, which provides sufficient conditions
for the boundedness of multipliers in the q-deformed setting. This work sets the stage for further
developments in the field of q-deformed harmonic analysis.

Key words: q-Jackson integral, q-caclulus, Fourier multiplier, inequality, multiplier, Hausdorff-
Young inequality.
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Қарағанды Бөкетов университетi, Қарағанды, Қазақстан

e-mail: nariman.tokmagambetov@gmail.com
q-деформацияланған Хёрмандердiң мультипликаторлар теоремасы туралы

Аннотация. Бұл жұмыстың негiзгi мақсаттары: бiз L2
q(Rq) кеңiстiгiнде анықталған q2-

Фурье түрлендiруi шеңберiнде Ag q-деформацияланған Фурье көбейткiшiн енгiземiз және
1 ≤ p <∞ үшiн функционалды параметрдi Lp

q(Rq) кеңiстiктерiне кеңейтемiз. Бiздiң көзқара-
сымыз, әрине, Фурье көбейткiштерiнiң классикалық теориясын q-деформацияланған пара-
метрге дейiн кеңейтедi, бұл кванттық топтар мен коммутативтi емес талдау контекстiнде өте
маңызды. Содан кейiн бiз q2-Фурье түрлендiруi үшiн гармоникалық талдаудың классикалық
теңсiздiктерiнiң бiрқатар негiзгi q-аналогтарын белгiлеймiз, соның iшiнде Палей, Хаусдорф–
Янг, Хаусдорф–Янг–Пэйли және Харди-Литлвуд теңсiздiктерi. Алынған нәтижелер олардың
классикалық прототиптерiн қорытып қана қоймай, q-деформацияланған кеңiстiктерге тал-
даудың жаңа бағыттарын ашады. Маңызды қолданба ретiнде бiз көбейткiштер туралы Хёр-
мандер теоремасының q-деформацияланған нұсқасын дәлелдеймiз, ол q-деформацияланған
параметрде көбейткiштердiң шектелгендiгi үшiн жеткiлiктi шарттарды бередi. Бұл жұмыс
q-деформацияланған гармоникалық талдауды одан әрi дамытуға негiз қалайды.
Түйiн сөздер: q-Джексон интегралы, q-есептеу, Фурье көбейткiшi, теңсiздiк, мультиплика-
тор, Хаусдорф–Янг теңсiздiгi.
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Аннотация. Основные цели данной работы состоят в следующем: мы вводим q-
деформированный мультипликатор Фурье Ag, определённый на пространстве L2

q(Rq) в рам-
ках q2-преобразования Фурье, а также расширяем функциональную постановку до про-
странств Lp

q(Rq) при 1 ≤ p < ∞. Наш подход естественным образом продолжает клас-
сическую теорию фурье-мультипликаторов в q-деформированную постановку, что суще-
ственно в контексте квантовых групп и некоммутативного анализа. Далее мы устанавли-
ваем ряд ключевых q-аналогов классических неравенств гармонического анализа для q2-
преобразования Фурье, включая неравенства Пэли, Хаусдорфа–Янга, Хаусдорфа–Янга–Пэли
и Харди–Литтлвуда. Полученные результаты не только обобщают их классические прототи-
пы, но и открывают новые направления анализа на q-деформированных пространствах. В
качестве существенного приложения мы доказываем q-деформированный вариант теоремы
Хёрмандера о мультипликаторах, дающий достаточные условия ограниченности мультипли-
каторов в q-деформированной постановке. Эта работа закладывает основу для дальнейшего
развития q-деформированного гармонического анализа.
Ключевые слова: q-интеграл Джексона, q-исчисление, мультипликатор Фурье, неравен-
ство, мультипликатор, неравенство Хаусдорфа–Янга.

1 Introduction

The history of quantum calculus (or q-deformation) started in the 18th century when L. Euler
[9] investigated the infinite product in the following form:

(q; q)−1
∞ =

∞∏
k=0

1

1− qk+1
, |q| < 1.

It serves as a generating function for the partition function p(n), which enumerates the
number of distinct ways to express n as a sum of positive integers. In the early 20th
century, F.H. Jackson introduced the q-derivative and the definite q-integral [6, 7], forming
the basis of modern q-calculus. Over the past two decades, research on q-deformation has
expanded rapidly. For instance, V. Kac and P. Cheung [8] studied its fundamental properties,
while T. Ernst [10, 11] highlighted its importance in quantum computing models. Further
developments include the work of N. Bettaibi and R.H. Bettaieb [4], who introduced a q-
deformed Dunkl operator and analyzed its Fourier transform in [13, 14] (see also [16]). This
operator is defined using Rubins q-differential operator ∂q [17, 18]. For more details on the
history and recent progress in q-calculus, see the monographs [1, 10–12,15].

The q-difference calculus dates back to the early 20th century, with pioneering
contributions by F. Jackson [6, 7] and R.D. Carmichael [5]. More recently, W. Al-Salam [3]
and R.P. Agarwal [2] introduced the concept of fractional q-difference calculus. In recent
years, fueled by the rapid growth of research in the q-partial dif equation, this theory has
also undergone significant development (see, [25–27,29–31]).

In this work, we establish some basic q-deformed integral inequalities for q2-Fourier
transform such as the Paley, Hausdorff-Young, Hausdorff-Young-Paley, and Hardy-Littlewood
inequalities. The problem under consideration can be reformulated as proving the
boundedness of an associated Fourier multiplier via an appropriate transformation. In this
context, the Hörmander multiplier theorem is a fundamental result in Fourier analysis that
provides conditions ensuring the boundedness of Fourier multiplier operators on Lp spaces.
Specifically, it characterizes the regularity requirements for a multiplier function so that the
associated operator, defined by multiplication in the Fourier domain, acts boundedly on
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Lp(Rd. Let σ be a function on Rd, and define the Fourier multiplier operator Aσ by

Aσf(x) = F−1
[
σ · f̂

]
(x),

where F denotes the classical Fourier transform.
The theorem states that Aσ is bounded on Lp(Rd) for 1 < p ≤ 2 ≤ q <∞. if σ satisfies a

condition, often expressed as

sup
λ>0

λ
( ∫
|σ(s)|≥λ

dqs
) 1
p
− 1
q
.

This statement generalizes earlier results by Mikhlin and provides a powerful framework for
analyzing multipliers. It has important applications in partial differential equations, signal
processing, and control theory, among others. Comprehensive discussions of these results and
their further developments are available in the works of L. Hörmander [23], E.M. Stein [32],
as well as in more recent texts like L. Grafakos [24]. Our formulation of q-deformed Fourier
multiplier is more intuitive and aligns closely with the classical, commutative framework,
which allows many of the same properties to carry over. Similar to the classical case, the key
part of the proof depends on the Paley inequality and the Hausdorff–Young–Paley inequality
for the classical Fourier transform, both of which are obtained through the Hausdorff–Young
inequality. In the course of our work, we also derive q-analogue of several important
inequalities such as the Paley, Hausdorff–Young–Paley, Hardy–Littlewood. Moreovere, we
present a simple proof of the Lp − Lq boundedness of Fourier multipliers that avoids using
the Paley and Hausdorff–Young–Paley inequalities, drawing on the method introduced in [33].

2 Preliminaries

2.1 Basic notations on Rq space

Throughout this paper, we assume 0 < q < 1. In this section, we will fix some notations and
recall some preliminary results. We put Rq = {±qn : n ∈ Z} and R̃q = Rq ∪ {0}. For a ∈ C,
the q-shifted factorials are defined by

(a; q)0 = 1; (a; q)n =
n−1∏
k=0

(
1− aqk

)
, n = 1, 2, . . . ; (a; q)∞ =

∞∏
k=0

(
1− aqk

)
.

We denote also

[a]q =
1− qa

1− q
, a ∈ C and [n]q! =

(q; q)n
(1− q)n

, n ∈ N.

The q-analogue differential operator Dqf(x) is

Dqf(x) :=
f(x)− f(qx)

x(1− q)
.

The q-Jackson integrals are defined by (see, [6, 7])
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a∫
0

f(x)dqx = (1− q)a
+∞∑
n=0

qnf (aqn) (1)

b∫
a

f(x)dqx = (1− q)
+∞∑
n=0

qn (bf (bqn)− af (aqn)) (2)

and ∫
Rq

f(x)dqx = (1− q)
+∞∑

n=−∞

qn {f (qn) + f (−qn)} ,

provided the sums converge absolutely.
In the following we denote by

• Lpq (Rq) =

f : ‖f‖Lpq(Rq) =

(∫
Rq
|f(x)|p dqx

)1/p

<∞

.

• L∞q (Rq) =

{
f : ‖f‖L∞q (Rq) = sup

x∈Rq
|f(x)| <∞

}
.

2.2 Fourier transform and Fourier multiplier on Rq

The q2-exponentials (see [18] and [17])

e(x; q2) = cos(−ix; q2) + i sin(−ix; q2),

where the q2-trigonometric functions

cos(x; q2) =
∞∑
k=0

(−1)kqk(k+1)x2k

[2k]q!

and

sin(x; q2) =
∞∑
k=0

(−1)kqk(k+1)x2k+1

[2k + 1]q!
.

Definition 2.1 Let f ∈ Dq (Rq) . Then the q2-Fourier transform of f is defined as follows

F(ξ; q2) := f̂(ξ) = K

∫
Rq

f(x)e(−ixξ; q2)dqx (3)

and its inverse

f(x) = K

∫
Rq

e(ixξ; q2)F(ξ; q2)dqξ,

where K = (1+q)1/2

2Γq2 (1/2)
.
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Moreover, we have the Plancherel (or Parseval) identity (see, [17])

‖f‖L2
q(Rq) = ‖f̂‖L2

q(Rq). (4)

In [17], δy denote the weighted Dirac-measure at y ∈ Rq defined on Rq by

δy(x) =

{
[(1− q)y]−1, if x = y,
0, if x 6= y,

and It satisfies the following properties:
1) for all x, y ∈ Rq , we have the orthogonality relation

δy(x) = K2

∫
Rq

e(ixξ; q2)e(−iyξ; q2)dqξ. (5)

2) If f ∈ L1
q(Rq), then we get that

f(y) =

∫
Rq

f(x)δy(x)dqx. (6)

Definition 2.2 We assume that the function g : Rq → C is bounded. Then, we introduce the
q-deformated Fourier multiplier Ag on L2

q(Rq) as follows

Ag(f)(x) = K

∫
Rq
g(ξ)f̂(ξ)e(ixξ; q2)dqξ. (7)

Definition 2.3 Let 1 ≤ p, r ≤ ∞. Let B : Lpq(Rq) → Lrq(Rq) be a bounded linear operator.
The, we define its adjoint operator B∗ : Lr

′
q (Rq)→ Lp

′
q (Rq) as follows

(B(f1), f2) :=

∫
Rq
B(f1)(ξ)f2(ξ)dqξ =

∫
Rq
f1(ξ)B(f2)(ξ)dqξ = (f1, B

∗(f2)), (8)

for all f1 ∈ Lpq(Rq) and f2 ∈ Lr
′
q (Rq).

2.3 The q-distribution function

In subsection, we state the distribution function df (λ; q) on Rq. Let Ω be a subset of (0,∞)
and z > 0. Then, the definite q-integral with the function χΩ(x) introduced as follows∫

R+
q

χ(0,z](x)f(x)dqx = (1− q)
∑
qn≤z

qnf(qn) (9)

and ∫
R+
q

χ[z,∞)(x)f(x)dqx = (1− q)
∑
z≤qn

qnf(qn), (10)

where χΩ(x) is the characteristic function of the set Ω (see, [20, formals 2.6-2.7] and [21]).
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Definition 2.4 (see, [28, Definition 2. p. 504]) The q-distribution function df (λ; q) of f :
Rq → R is a real-valued function, which expressed as

df (λ; q) = µq{x ∈ Rq : |f(x)| > λ}, λ > 0.

Moreover, we observe that

df+g(2λ; q) ≤ df (λ; q) + dg(λ; q). (11)

Using the distribution function, we present and demonstrate the following key
characterization of the Lpq(Rq) norm.

Proposition 2.5 (see, [28, Proposition 4. p. 506])Let 0 < p <∞ and f ∈ Lpq(Rq). Then

‖f‖p
Lpq(Rq) = [p]q

∫
R+
q

λp−1df (λ; q)dqλ. (12)

Lemma 2.6 (see, [28, Lemma 1. p. 506]) Let f ∈ Lpq (Rq) for 0 ≤ p <∞. Then
a) We assume that Eλ = {x ∈ Rq : |f(x)| > λ}

df (λ; q) ≤ 1

λ

∫
Rq

χEλ(x)|f(x)|dqx ≤
1

λ

∫
Rq

|f(x)|dqx;

b) (The q-Chebyshev inequality).

df (λ; q) ≤ 1

λp

∫
Rq

χEλ(x)|f(x)|pdqx,

3 A q-deformated interpolation theorem

In this section we establish a q-deformated interpolation theorem.

3.1 The q-deformated Marcinkiewicz Interpolation theorem

Definition 3.1 (see, [28, Definition4. p. 507]) Assume that 0 < p < ∞. Then, we defined
the space weak Lp,∞q (Rq) as follows

‖f‖Lp,∞q (Rq) :=

{
inf
λ>0

{
Cq > 0 : df (λ; q) ≤ Cq

λp

}
= sup

λ>0

{
λd

1/p
f (λ; q)

}
<∞

}
. (13)

The weak Lp,∞q (Rq) spaces are larger than the usual Lpq (Rq) spaces.
For any 0 < p <∞ and any f in L∞q (Rq) we have

‖f‖Lp,∞q (Rq) ≤ ‖f‖Lpq(Rq), (14)

Hence, the embedding Lp,∞q (Rq) ↪→Lpq (Rq) holds.
Indeed, by (13) and the q-Chebyshev’s inequality (see, Lemma 2.6 (b) ), and we have
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‖f‖Lp,∞q (Rq) = sup
λ>0
{λd1/p

f (λ; q)} = sup
λ>0

{(∫
Eλ

χEλ(x)|f(x)|pdqx
)1/p
}
≤ ‖f‖p

Lpq(Rq),

which implies that (14) holds.
Now, we can prove the following interpolation theorem, which will let us deduce Lpq (Rq)

boundedness from weak inequalities, since they measure the size of the distribution function.

Theorem 3.2 (q-deformated Marcinkiewicz interpolation) Let 0 < p <
s ≤ ∞ and T is a sublinear operator defined on Lp,∞q (Rq) + Ls,∞q (Rq) :={
f0 + f1 : f0 ∈ Lp,∞q (Rq) , f1 ∈ Ls,∞q (Rq)

}
. Assume that

‖T (f)‖Lp,∞q (Rq) ≤ C0‖f‖Lp,∞q (Rq), ∀f ∈ L
p,∞
q (Rq) , (15)

‖T (f)‖Ls,∞q (Rq) ≤ C1‖f‖Ls,∞q (Rq), ∀f ∈ L
s,∞
q (Rq) , (16)

Then ∀r ∈ (p, s) and ∀f ∈ Lr,∞q (R) the following estimate holds

‖T (f)‖Lr,∞q (Rq) ≤ C‖f‖Lr,∞q (Rq), (17)

where C := 2[r]
1/r
q

(
1

[r−p]q + 1
[s−r]q

)1/r

Cθ
0C

1−θ
1 and θ := 1/r−1/s

1/p−1/s
.

Proof. For a fixed λ > 0 we suppose that the functions f0 and f1 by

f0(x) =

{
f(x), if |f(x)| ≤ Cλ,
0, if |f(x)| > Cλ,

f1(x) =

{
0, if |f(x)| ≤ Cλ,
f(x), if |f(x)| > Cλ,

for some C > 0 to be determined later.
Let 0 < p < r < s < ∞. We assume that E0 := {x : |f(x)| ≤ Cλ} and E1 :=

{x : |f(x)| > Cλ}. Then it can then be easily verified that f1 (the unbounded part of f)
is an Lpq function for p < r:∫

R+
q

λr−p−1‖f0‖pLpq(Rq)dqλ =

∫
R+
q

λr−p−1

∫
Rq

χE0(x)|f(x)|pdqxdqλ

=

∫
Rq

|f(x)|p
∫
R+
q

λr−p−1χE1(x)dqλdqx ≤
[Cλ]p−r‖f‖rr,q

[r − p]q
, (18)

and that f0 (the bounded part of f) is an Lss,q (Rq) function for r < s:∫
R+
q

λr−s−1‖f1‖ss,qdqλ =

∫
R+
q

λr−s−1

∫
Rq

χE1(x)|f(x)|sdqxdqλ

=

∫
Rq

|f(x)|s
∫
R+
q

λr−s−1χE0(x)dqλdqx ≤
[Cλ]s−r‖f‖rr,q

[s− r]q
. (19)



124 On q-deformated Hörmander multiplier theorem

the subadditivity property of T and Hypotheses (15) and (16) together with (11) now
give

dTf (2λ; q)
(11)
≤ dTf0(λ; q) + dTf1(λ; q)

(15)(16)
≤ Cp

0

λp
‖f0‖pp,q +

Cs
1

λs
‖f1‖ss,q (20)

In view of the last estimates (18)-(20) and (12), we conclude that

‖Af‖rr,q
(12)
= [r]q

∫
R+
q

[2λ]r−1dTf (2λ; q)dq2λ

(20)
= 2r[r]q

Cp
0

∫
R+
q

λr−p−1‖f0‖pp,qdqλ+ Cs
1

∫
R+
q

λr−s−1‖f1‖ss,qdqλ


(18)(19)
≤ 2r[r]q

[
Cp

0C
r−p

[r − p]q
+
Cs

1C
s−r

[s− r]q

]
‖f‖rr,q.

We assume that Cp
0C

r−p = Cs
1C

s−r, we get that

C = C
p
s−p
0 C

s
s−p
1 ⇒ Cp

0C
r−p = Cp

0C
p(r−p)
s−p

0 C
s(r−p)
s−p

1 = C
p(r−p)
s−p

0 C
s(r−p)
s−p

1 .

Therefore, we have shown (17), where

Cr = 2r[r]qC
p(r−p)
s−p

0 C
s(r−p)
s−p

1

{
1

r − p
+

1

s− r

}
.

This completes the proof.
We say that A . B if there exists a positive constant c > 0, which depends only on

certain parameters of the spaces involved, such that A ≤ cB. Similarly, we write A � B
to indicate that both inequalities A . B and A & B are satisfied, possibly with different
constants in each inequality. In other words, A and B are equivalent up to multiplicative
constants depending only on the space parameters.

4 The q-deformated Hausdorff-Young-Paley Inequality

Now, we start to prove q-deformated Hausdorff-Young-Paley inequality and its inverse
inequality.

Theorem 4.1 Let 1 ≤ p ≤ 2 and 1
p

+ 1
p′

= 1. Then for any f ∈ Lpq(Rq) we have

‖f̂‖
Lp
′
q (Rq)

≤ ‖f‖Lpq(Rq). (21)

Proof. Let A is a linear operator such that A(f)(ξ) = f̂(ξ) for f ∈ Lpq(Rq), 1 ≤ p ≤ 2. Then,
by using the Hölder inequality (see [19, Proposition 37.2]), we have

‖A(f)‖L∞q (Rq) = ‖f̂‖L∞q (Rq) = sup
ξ∈Rq
|f̂(ξ)|

≤ sup
ξ∈Rq
‖e(−i · ξ; q2)‖L∞q (Rq)‖f‖L1

q(Rq) ≤ ‖f‖L1
q(Rq),
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where sup
ξ∈Rq
‖e(−i · ξ; q2)‖L∞q (Rq) ≤ 1. Moreover, by Plancherel’s identity (4), we have

‖A(f)‖L2
q(Rq) = ‖f̂‖L2

q(Rq)
(4)
= ‖f‖L2

q(Rq), f ∈ L2
q(Rq).

Therefore, we derive that A : L1
q(Rq)→ L∞q (Rq) and A : L2

q(Rq)→ L2
q(Rq), with the operator

norms at most 1. In the case, θ = 2/p′, then 0 ≤ θ ≤ 1. Moreover, we have 1
p

= 1−θ
1

+ θ
2
and

1
p′

= 1−θ
∞ + θ

2
. Hence, It is follows from the Theorem 3.2 that the inequality (21) holds.

We now derive the reverse form of inequality (21) in the range 2 ≤ p ≤ ∞.

Theorem 4.2 Suppose that 2 ≤ p ≤ ∞ and f̂ ∈ Lp′q (Rq). Then

‖f‖Lpq(Rq) ≤ ‖f̂‖Lp′q (Rq)
, (22)

where 1
p

+ 1
p′

= 1.

Proof. Let f ∈ Lpq(Rq). then, from duality of Lpq(Rq) we find that

‖f‖Lpq(Rq) = sup
{
|(f, ϕ)| : ϕ ∈ Lp′q (Rq), ‖ϕ‖

Lp
′
q (Rq)

= 1
}
.

and using the Plancherel identity (4), we get

(f, ϕ) =

∫
Rq
x̂(s)ŷ(s)dqs, x, y ∈ S(Rq).

Therefore,

‖f‖Lpq(Rq) = sup{|(f, ϕ)| : ϕ ∈ Lp′q (Rq), ‖ϕ‖
Lp
′
q (Rq)

= 1}

= sup
{∣∣ ∫

Rq
f̂(s)ϕ̂(s)dqs

∣∣ : ϕ ∈ Lp′q (Rq), ‖ϕ‖
Lp
′
q (Rq)

= 1
}

≤ sup
{∫

Rq
|f̂(s)ϕ̂(s)|dqs : ϕ ∈ Lp′q (Rq), ‖ϕ‖

Lp
′
q (Rq)

= 1
}

≤ sup
{∫

Rq
|f̂(s)||ϕ̂(s)|dqs : ϕ ∈ Lp′q (Rq), ‖ϕ‖

Lp
′
q (Rq)

= 1
}

≤ sup
ϕ∈Lp

′
q (Rq)

‖ϕ‖
L
p′
q (Rq)

=1

{(∫
Rq
|f̂(s)|p′dqs

)1/p′

·
(∫

Rq
|ϕ̂(s)|pdqs

)1/p}

= sup
ϕ∈Lp′ (Rq)
‖ϕ‖

L
p′
q (Rq)

=1

{
‖f̂‖

Lp
′
q (Rq)

· ‖ϕ̂‖Lpq(Rq)

}
.

Here we used the inequality |f̂(ξ)ϕ̂(ξ)| ≤ |f̂(ξ)||ϕ̂(ξ)| for any ξ ∈ Rq, applying the Hölder
inequality (see [19, Proposition 37.2]) with respect to Fourier transforms of f and ϕ ∈ Lp′q (Rq)



126 On q-deformated Hörmander multiplier theorem

with ‖ϕ‖
Lp
′
q (Rq)

= 1. by using inequality (21) with respect to ϕ, we write that

‖f‖Lpq(Rq)
(21)
≤ sup

ϕ∈Lp
′
q (Rq)

‖ϕ‖
L
p′
q (Rq)

=1

{
‖f̂‖

Lp
′
q (Rq)

· ‖ϕ‖
Lp
′
q (Rq)

}
= ‖f̂‖

Lp
′
q (Rq)

,

thereby completing the proof.
Next, we establish the q-deformated Hausdorff-Young-Paley inequality.

Theorem 4.3 Assume that 1 < p ≤ 2 and let ϕ : Rq → R+ be a strictly positive function
satisfyingthe following condition

Mϕ := sup
t>0

t

∫
ϕ(ξ)≥t

dqξ <∞. (23)

Then, we have the following inequality∫
Rq

|f̂(ξ)|pϕ2−p(ξ)dqξ


1
p

≤ cpM
2−p
p

ϕ ‖f‖Lpq(Rq) for f ∈ Lpq(Rq), (24)

where cp > 0 is a constant independent of f.

Proof. We assume that ν be a measure on Rq by ν(ξ) := ϕ2(ξ)dqξ > 0. Detone a space
Lpq(Rq, ν) as follows

‖f‖Lpq(Rq ,ν) :=

f :

∫
Rq

|f(ξ)|pϕ2(ξ)dqξ


1
p

<∞

 .

One can readily verify that, endowed with the above norm, this space is Banach. We then
introduce the operator A : Lpq(Rq)→ Lpq(Rq, ν) via the formula

(Af)(ξ) =
f̂(ξ)

ϕ(ξ)
.

It follows from f̂ + ϕ(ξ)
(3)
= f̂(ξ)+ϕ̂(ξ), f, ϕ ∈ L2

q(Rq), that A is a sub-liner (or quasi-linear)
operator. Now, we will prove that A A : Lpq(Rq)→ Lpq(Rq, ν) is well-defined and bounded with
1 ≤ p ≤ 2. Equivalently, we claim that (24) is valid under condition (23). We first verify that
A is of weak types (2, 2) and (1, 1). The distribution function dA(f)(t), t > 0, with respect to
ϕ2(s) > 0, is defined by

dA(f)(t) := ν{s > 0 : |A(f)| > t} =

∫
|A(f)|>t

ϕ2(ξ)dqξ.
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The next step is to show that

dA(f)(t) ≤
(
c2‖f‖L2

q(Rq)

t

)2

with c2 = 1, (25)

and

dA(f)(t) ≤
c1‖f |L1

q(Rq)

t
with c1 = 2Mϕ. (26)

To begin with, we prove inequality (25). Using the q-Chebyshev inequality (see Lemma 2.6
(b)) together with (3), we obtain

tdA(f)(t) ≤ ‖A(f)‖2
L2
q(Rq ,ν) =

∫
Rq

|f̂(s)|2dqs = ‖f̂‖2
L2
q(Rq)

(3)
= ‖f‖2

L2
q(Rq).

Therefore, the operator A is of weak type (2, 2) with its norm bounded above by c2 = 1. Next,
we proceed to prove inequality (26). Using Hцlder’s inequality (cf. [19, Proposition 37.2]) for
the exponents p = 1 and p′ =∞, we obtain

|f̂(ξ)|
ϕ(ξ)

(3)
≤ K

∣∣ ∫
Rq f(x)e(−ixξ; q2)dqx

∣∣
ϕ(ξ)

≤
‖e(−i · ξ; q2)‖L∞q (Rq)‖f‖L1

q(Rq)

ϕ(ξ)
≤
‖f‖L1

q(Rq)

ϕ(ξ)
, ξ ∈ Rq.

Therefore, we have

{ξ ∈ Rq :
|f̂(ξ)|
ϕ(ξ)

> t} ⊂ {ξ ∈ Rq :
‖f‖L1

q(Rq)

ϕ(ξ)
> t}

for any t > 0. Consequently,

ν{ξ ∈ Rq :
|f̂(ξ)|
ϕ(ξ)

> t} ≤ ν{ξ ∈ Rq :
‖f‖L1

q(Rq)

ϕ(ξ)
> t}

for any t > 0. Setting v :=
‖f‖

L1
q(Rq)

t
, we obtain

ν{ξ ∈ Rq :
|f̂(ξ)|
ϕ(ξ)

> t} ≤ ν{ξ ∈ Rq :
‖f‖L1

q(Rq)

ϕ(ξ)
> t} =

∫
ϕ(ξ)≤v

ϕ2(ξ)dqξ. (27)

Let us estimate the right hand side. Now we claim that∫
ϕ(ξ)≤v

ϕ2(ξ)dqξ ≤ (1 + q1/2)v ·Mϕ. (28)
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Indeed, from this equality ϕ2(ξ) = (1− q)
∑

qi≤ϕ2(ξ)

qi, and (9)-(10) first we have

∫
ϕ(ξ)≤v

ϕ2(ξ)dqξ = (1− q)
∫

ϕ(ξ)≤v

∑
qi≤ϕ2(ξ)

qidqξ = (1− q)2
∑

ϕ(qk)≤v

qk
∑

qi/2≤ϕ(qk)

qi

= (1− q)2
∑
qi/2≤v

qi
∑

qi/2≤ϕ(qk)≤v

qk

≤ (1 + q1/2)(1− q1/2)
∑
qi/2≤v

qi(1− q)
∑

qi/2≤ϕ(qk)

qk

≤ (1 + q1/2)(1− q1/2)
∑
qi/2≤v

qi/2qi/2
∫

qi/2≤ϕ(ξ)

dqξ

= (1 + q1/2)

v∫
0

t ∫
t≤ϕ(ξ)

dqξ

 dq1/2t. (29)

Since
t

∫
t≤ϕ(ξ)

dqξ ≤ sup
t>0

t

∫
t≤ϕ(ξ)

dqξ = Mϕ

and Mϕ <∞ by assumption and (29), it follows that∫
ϕ(ξ)≤v

ϕ2(ξ)dqξ
(29)
≤ (1 + q1/2)Mϕ

v∫
0

dq1/2t ≤ (1 + q1/2)v ·Mϕ.

This establishes the claim (28). By combining (27) and (28), we derive (26), which confirms
that A is of weak type (1, 1) with operator norm at most c1 = 2Mϕ. Applying Theorem 3.2
with parameters p1 = 1, p2 = 2, and 1

p
= 1−η

1
+ η

2
, we consequently obtain inequality (24).

This completes the proof.
From the q-deformated Paley-type inequality stated in Theorem 4.3, we derive the

following q-deformated Hardy–Littlewood inequality.

Theorem 4.4 Assume that 1 < p ≤ 2 and ϕ : Rq → R+ be a strictly positive function
satisfying the following condition∫

Rq

1

ϕβ(s)
dqs <∞ for some β > 0. (30)

Then, we have q-deformated Hardy–Littlewood inequality as follows∫
Rq

|f̂(s)|pϕβ(p−2)(s)dqs


1
p

≤ Cp‖f‖Lpq(Rq) for f ∈ Lpq(Rq),

where Cp > 0 is a constant independent of x.
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Proof. It follows from the assumption 30 that

Cq = (1− q)
∑
k∈Z

qkϕ−β(qk) = (1− q)
∑

ϕβ(qk)≤ 1
t

qkϕ−β(qk)

≥ (1− q)t
∑

ϕβ(qk)≤ 1
t

qk = t

∫
ϕβ(s)≤ 1

t

dqs = t

∫
t≤ 1

ϕβ(s)

dqs, t > 0.

Therefore, taking the supremum over all positive t, we obtain the bound

sup
t>0

t

∫
{s∈Rq :t≤ 1

ϕβ(s)
}
dqs ≤ Cq <∞.

This shows that the integral expression is uniformly controlled by the constant Cq. Then, by
applying Theorem 4.3 to the function defined by

h(s) =
1

ϕβ(s)
, s ∈ Rq.

we derive the desired inequality.

Theorem 4.5 Suppose that 2 ≤ p < ∞ with 1
p

+ 1
p′

= 1 and ϕ : Rq → R+ be a strictly
positive function satisfying the following condition∫

Rd

1

ϕβ(s)
dqs <∞ for some β > 0.

If ∫
Rd

|f̂(s)|pϕ
βp(2−p′)

p′ (s)dqs <∞,

then

‖f‖p
Lpq(Rq) ≤ Cp,q

∫
Rq

|f̂(s)|pϕ
βp(2−p′)

p′ (s)dqs, f ∈ Lpq(Rq),

where Cp,q > 0 is a constant independent of x.

Proof. For Lp(Rq) we have

‖f‖Lpq(Rq) = sup
{∣∣〈f, g〉L2

q(Rq)
∣∣ : g ∈ Lp′(Rq), ‖g‖Lp′ (Rq) = 1

}
.

It follows from (4) that

〈f, g〉L2
q(Rq) =

∫
Rd

f̂(s)ĝ(s)dqs, f, g ∈ L2
q(Rq). (31)
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Using the Hölder inequality for any function g ∈ Lp′q (Rq) with ‖g‖
Lp
′
q (Rq)

= 1, we deduce that

‖f‖Lpq(Rq) = sup
‖g‖

L
p′
q (Rq)

=1

{|〈f, g〉L2
q(Rq)| : g ∈ L

p′

q (Rq)}

= sup
‖g‖

L
p′
q (Rq)

=1

{∣∣ ∫
Rq

f̂(s)ĝ(s)dqs
∣∣ : g ∈ Lp′q (Rq)

}
≤ sup

‖g‖
L
p′
q (Rq)

=1

{∫
Rq

|f̂(s)ĝ(s)|dqs : g ∈ Lp′q (Rq)
}

≤ sup
‖g‖

L
p′
q (Rq)

=1

{∫
Rq

|f̂(s)||ĝ(s)|dqs : g ∈ Lp′q (Rq)
}

≤ sup
‖g‖

L
p′
q (Rq)

=1

{∫
Rq

ϕ
β(2−p′)

p′ (s)|f̂(s)| · ϕ
β(p′−2)

p′ (s)|ĝ(s)| : g ∈ Lp′q (Rq)
}

≤ sup
‖g‖

L
p′
q (Rq)

=1

{(∫
Rq

ϕ
βp(2−p′)

p′ (s)|f̂(s)|pdqs
)1/p

·
(∫
Rq

ϕβ(p′−2)(s)|ĝ(s)|p′dqs
)1/p′}

.

Now applying Theorem 4.4 with respect to p′, we get

‖f‖Lpq(Rq) ≤ sup
‖g‖

L
p′
q (Rq)

=1

{(∫
Rq

ϕ
βp(2−p′)

p′ (s)|f̂(s)|pdqs
)1/p

·
(∫
Rd

ϕβ(p′−2)(s)|ĝ(s)|p′dqs
)1/p′}

.
(∫
Rq

ϕ
βp(2−p′)

p′ (s)|f̂(s)|pdqs
)1/p

· sup
‖g‖

L
p′
q (Rq)

=1

‖g‖
Lp
′
q (Rq)

.

Since ‖g‖
Lp
′
q (Rq)

= 1, taking Cp,q = cp′,q, we complete the proof.

Remark 4.6 Suppose p = 2, then the inequalities stated in Theorems 4.1 and 4.2 both
simplify to the identity given by (4).

The following result can be inferred from [22, Corollary 5.5.2, p. 120].

Proposition 4.7 Let dqν1(ξ) = ω1(ξ)dqξ, dν2(ξ) = ω2(ξ)dqξ, ξ ∈ Rq. Suppose that 1 ≤
p, r0, r1 < ∞. If a continuous linear operator A admits bounded extensions A : Lpq(Rq) →
Lr0q (Rq, ν1) and A : Lpq(Rq)→ Lr1q (Rq, ν2), then there exists a bounded extension A : Lpq(Rq)→

Lrq(Rq, ν) where 0 < θ < 1, 1
r

= 1−θ
r0

+ θ
r1

and dqν(ξ) = ω(ξ)dqξ, ω = ω
r
r0

(1−θ)
1 · ω

r
r1
θ

2 .

Now, we obtain the q-deformated Hausdorff-Young-Paley inequality.

Theorem 4.8 Suppose that 1 < p ≤ r ≤ p′ <∞ for 1
p

+ 1
p′

= 1. Let ϕ is given as in Theorem
4.3. Then(∫

Rd

|f̂(ξ)|rϕ(ξ)
r( 1
r
− 1
p′ )dqξ

) 1
r ≤ cp,r,p′M

1
r
− 1
p′

ϕ ‖f‖Lpq(Rdθ).

where cq,p,r,p′ > 0 is a constant independent of f.
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Proof. Let A(x) := f̂ be a linear operator acting on the space Lpq(Rq). By using the
inequality stated in (24) for 1 < p ≤ 2, we then deduce that

(∫
Rq

|f̂(ξ)|pϕ2−p(ξ)dqξ
) 1
p
.M

2−p
p

ϕ ‖f‖Lpq(Rq).

In other words, A : Lpq(Rq) → Lpq(Rq, ν1) is a bounded map, where the weight is given by
?1(?):=f2-p(?)>0 ω1(ξ) := ϕ2−p(ξ) > 0 with ξ ∈ Rq. moreover, for 1 ≤ p ≤ 2 with 1

p
+ 1

p′
= 1,

by applying the inequality (21), we obtain that(∫
Rq

|f̂(ξ)|p′dqξ
)1/p′

= ‖f̂‖
Lp
′
q (Rq)

≤ ‖f‖Lpq(Rq),

which implyis that A : Lpq(Rq) → Lp
′
q (Rq, ν2), where ν2(ξ) := 1dqξ for all ξ ∈ Rq. It follows

from Proposition 4.7 that A : Lpq(Rq)→ Lrq(Rq, ν) with dqν = ω(ξ)dqξ, is bounded for any η
such that p ≤ η ≤ p′, where the space Lηq(Rq, ν) is defined as

‖f‖Lηq (Rq ,ν) :=

f : Rq → R :

∫
Rq

|f(ξ)|ηω(ξ)dqξ


1
η

<∞

 ,

where ω : Rq → R is a positive function and will be defined later. Let us find the explicit
form of ω. For fix θ ∈ (0, 1) such that 1

η
= 1−θ

p
+ θ

p′
, we derive θ = p−η

η(p−2)
and from Proposition

4.7 with respect to r = η, r0 = p, and r1 = p′, we have

ω(ξ) = (ω1(ξ))
η(1−η)

r · (ω2(ξ))
ηη
r′ = (ϕ2−r(ξ))

η(1−η)
r · 1

ηη
r′ = ϕ1− η

r′ (ξ) = ϕη
(

1
η
− 1
r′

)
(ξ)

for all ξ ∈ Rq and 2−r
r
· (1− η) = 1

η
− 1

r′
. Hence, for dqν = ϕ

η
(

1
η
− 1
p′

)
(ξ)dqξ we obtain

‖A(x)‖Lηq (Rq ,ν) . (M
2−r
r

ϕ )1−η‖x‖Lrq(Rq) = M
1
η
− 1
p′

ϕ ‖x‖Lpq(Rq), x ∈ Lpq(Rq).

This completes the proof.

5 the q-deformated Hörmander multiplier theorem

First, we obtain the q2-Fourier transform of the Fourier multiplier (7).

Lemma 5.1 Let g : Rq → C be a bounded function. Then, we have

Âg(f) = g · f̂ , f ∈ Lpq(Rq). (32)

for f ∈ Lpq(Rq).
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Proof. Let f ∈ Lpq(Rq). Then, by (3), (5)-(6) and (7) we have

(̂Agf)(y)
(3)(7)
= K2

∫
Rq

[ ∫
Rq

g(ξ)f̂(ξ)e(ixξ; q2)dqξ
]
e(−ixy; q2)dqx

=

∫
Rq

g(ξ)f̂(ξ)
[
K2

∫
Rq

e(ixξ; q2)e(−ixy; q2)dqx
]
dqξ

(5)
=

∫
Rq

g(ξ)f̂(ξ)δy(ξ)dqξ

(6)
= g(y)f̂(y),

for all y ∈ Lpq(Rq).
Let us denote by g the complex conjugate of the function g, in Definition 2.3.

Lemma 5.2 Suppose that 1 < p, q <∞. Let Ag : Lpq(Rd
θ)→ Lqq(Rd

θ) be the Fourier multiplier
defined by (7) with the symbol g. Then its adjoint A∗g = Ag and Ag : Lq

′
q (Rd

θ)→ Lp
′
q (Ad

θ).

Proof. For h, f ∈ Lpq(Rq). Then, It follows frmm (8), (31), and (32) that

(Agf, h)
(31)
=

∫
Rq

Âgf(s)ĥ(s)dqs

(32)
=

∫
Rq

g(s)f̂(s)ĥ(s)dqs =

∫
Rq

f̂(s)g(s)ĥ(s)dqs

(32)
=

∫
Rq

f̂(s)Âg(h)(s)dqs
(31)
= (f, Agh).

Since Lηq(Rq) is dense in Lpq(Rq) , we have A∗g = Ag.
Finally, we state the q-deformated Hörmander multiplier theorem.

Theorem 5.3 Suppose that 1 < p ≤ 2 ≤ η < ∞ and g : Rq → R be a bounded function.
Then, the Fourier multiplier defined in (7) can be extended to act as a bounded linear operator
from the space Lpq(Rq) to the space Lηq(Rq). Moreover, the following estimate holds

‖Ag‖Lpq(Rq)→Lηq (Rq) . sup
λ>0

λ
( ∫
|g(s)|≥λ

dqs
) 1
p
− 1
q
.

Proof. By duality it is sufficient to study two cases: 1 < p ≤ η′ ≤ 2 and 1 < η′ ≤ p ≤ 2,
where 1 = 1

η
+ 1

η′
.

First, we consider the case 1 < p ≤ η′ ≤ 2, where 1 = 1
η

+ 1
η′
. By (32) we have

Âgf = g · f̂ , f ∈ Lpq(Rq). (33)
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Then, it follows from it follows from Proposition 4.2 and (33) that

‖Agf‖Lηq (Rq)
(22)
≤ ‖Âgf‖Lη′q (Rq)

(33)
= ‖gf̂‖

Lη
′
q (Rq)

, (34)

for all f ∈ Lηq(Rq).
Thus, we denote η′ := r and 1

s
:= 1

p
− 1

η
= 1

η′
− 1

p′
, then for h(ξ) := |g(ξ)|s, ξ ∈ Rq, then,

by using the inequality in Theorem 4.8. In other words, we derive(∫
Rq

(
|f̂(ξ)| · |g(ξ)|

)η′
dqξ
) 1
η′
.M

1
s

|g|s‖x‖Lpq(Rq) (35)

for any f ∈ Lpq(Rq). Let us study M
1
s

|g|s separately. Indeed, by definition

M
1
s

|g|s :=
(

sup
λ>0

λ

∫
|g(ξ)|s≥λ

dqξ
) 1
s

=
(

sup
λ>0

λ

∫
|g(ξ)|≥λ

1
s

dqξ
) 1
s

=
(

sup
λ>0

λs
∫

|g(ξ)|≥λ

dqξ
) 1
s
.

Since 1
s

:= 1
p
− 1

η
, it follows that

M
1
s

|g|s =
(

sup
λ>0

λs
∫

|g(ξ)|≥λ

dqξ
) 1
p
− 1
η

= sup
λ>0

λs
(

1
p
− 1
η

)( ∫
|g(ξ)|≥λ

dqξ
) 1
p
− 1
η

= sup
λ>0

λ
( ∫
|g(ξ)|≥λ

dqξ
) 1
p
− 1
η
. (36)

Hence, combining (34), (35), and (36) we obtain

‖Agf‖Lηq (Rdθ)

(34)
.

(∫
Rq

(
|x̂(ξ)| · |g(ξ)|

)η′
dqξ
) 1
η′

(35)
. M

1
s

|g|s‖x‖Lpq(Rq)
(36)
= sup

λ>0
λ
( ∫
|g(ξ)|≥λ

dqξ
) 1
p
− 1
η ‖x‖Lηq (Rq),

for 1 < p ≤ η′ ≤ 2 and x ∈ Lpq(Rd
θ).

Next, we consider the case η′ ≤ p ≤ 2 so that p′ ≤ (η′)′ = η, where 1 = 1
η

+ 1
η′

and
1 = 1

p
+ 1

p′
. Thus, the Lpq-duality (see Lemma 5.2) yields that A∗g = Ag and

‖Ag‖Lpq(Rq)→Lηq (Rq) = ‖Ag‖Lη′q (Rq)→Lp
′
q (Rq)

.

Set 1
p
− 1

η
= 1

s
= 1

η′
− 1

p′
. Hence, by repeating the argument in the previous case we have

‖Ag(x)‖
Lp
′
q (Rq)

. sup
λ>0

λ

 ∫
|g(ξ)|≥λ

dqξ


1
q′−

1
η′

‖x‖
Lη
′
q (Rq)

= sup
λ>0

λ

 ∫
|g(ξ)|≥λ

dqξ


1
p
− 1
η

‖x‖
Lη
′
q (Rq)

.
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In other words, we have

‖Ag‖Lη′q (Rq)→Lp
′
q (Rq)

. sup
λ>0

λ

 ∫
|g(ξ)|≥λ

dqξ


1
p
− 1
η

.

Combining both cases, we obtain

‖Ag‖Lpq(Rq)→Lηq (Rq) . sup
λ>0

λ

 ∫
|g(ξ)|≥λ

dqξ


1
p
− 1
η

for all 1 < p ≤ 2 ≤ η <∞. This concludes the proof.
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Сингулярлық диффузиялық теңдеулер класы үшiн көздi оңтайлы басқару

әдiсiмен қалпына келтiру

Бұл жұмыста керi квадратты потенциалы бар сингулярлық параболалық теңдеудегi кеңiстiк-
тiк тәуелдi көздi анықтаудың керi есебi қарастырылады, ол ақырлы уақыт мезетiндегi өл-
шеу деректерiн пайдаланады. Есеп тиiмдi басқарудағы орнықтылықты қамтамасыз ету үшiн
Тихоновтың регуляризацияланған функционалын минимизациялауға негiзделiп тұжырым-
далған. Теориялық нәтижелерi ретiнде тура есеп үшiн әлсiз шешiмнiң бар және жалғыздығы
дәлелденуiн, сонымен қатар, бiрiншi реттiк оптималдық шарты орындалған жағдайда керi
есептiң орнықтылығының бағалауын айтуға болады. Сандық нәтижелерi ретiнде дәл және
шулы деректермен синтетикалық мысалдарда тексерiлген Ландвебер типiндегi итерациялық
алгоритм әзiрлендi.
Түйiндi сөздер: Керi есеп; сингулярлы параболалық теңдеу; тұрақтылық; тұрақтандыру;
Ландвебер әдiсi.
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Восстановление источника в классе сингулярных уравнений диффузии с

использованием метода оптимального управления

В данной работе рассматривается обратная задача идентификации пространственно-
зависимого источника в сингулярном параболическом уравнении с обратно-квадратичным
потенциалом на основе данных измерений в конечный момент времени. Задача переформу-
лируется в рамках оптимального управления путём минимизации регуляризованного функ-
ционала Тихонова, что обеспечивает устойчивость решения. Теоретические результаты вклю-
чают доказательство существования и единственности слабого решения для прямой задачи,
а также оценку устойчивости для обратной задачи, основанную на условии оптимальности
первого порядка. Для численной реконструкции разработан итерационный алгоритм типа
Ландвебера, эффективность которого подтверждена на синтетических примерах с точными
и зашумлёнными данными.
Түйiндi сөздер: Керi есеп; сингулярлы параболалық теңдеу; тұрақтылық; тұрақтандыру;
Ландвебер әдiсi.

1 introduction

Inverse problems are concerned with the identification of unknown inputs or sources from
partial or indirect observations of the system’s response, in contrast to forward problems,
where the output is computed from given inputs. It is well known that inverse problems are
often ill-posed in the sense of Hadamard; that is, the solution may not exist, may not be
unique, or may not depend continuously on the data. Consequently, small perturbations in
the measurements—such as those due to noise—can lead to significant errors in the solution

In the present work, we investigate the inverse problem of identifying a spatially dependent
source term in a singular parabolic equation from measurements of the solution at a fixed
final time. More precisely, we consider the following initial-boundary value problem

∂tθ(x, t)− θxx(x, t)−
µ

|x|2 θ(x, t) = f(x), (x, t) ∈ QT := Ω× (0, T ),

θ(0, t) = θ(1, t) = 0, t ∈ (0, T ),

θ(x, 0) = θ0(x), x ∈ Ω,

(1)

where Ω := (0, 1), 0 < T < ∞ is an arbitrary final fixed time, θ0 is a given smooth function
describe the initial state, f(x) represents the unknown source term which is assumed to be
kept independent of time variable t.

We are particularly concerned with the inverse problem of recovering the spatially
dependent source term f(x) appearing in the governing parabolic equation. To this end,
we assume that the solution u(x, t) is observed at the final time t = T over the spatial
domain Ω, that is

u(x, T ) = ω(x), x ∈ Ω, (2)

where ω ∈ L2(Ω) denotes the final-time observation. When the source term f(x) is known,
the associated initial-boundary value problem (1) defines the so-called direct (or forward)
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problem. In the present study, however, f(x) is unknown and must be identified from the
final observation (2). Accordingly, we formulate the inverse problem as the determination of
f(x) from a prescribed admissible class such that the corresponding solution to (1) satisfies
the final-time constraint (2).

Singular inverse-square potentials have attracted considerable attention in recent years
due to their relevance in modeling various physical phenomena across multiple disciplines,
including quantum cosmology [5], combustion theory [6], electron capture processes [8],
and quantum mechanics [7]. Moreover, such potentials naturally arise in the linearization
of certain reaction–diffusion systems governed by the heat equation involving supercritical
source terms [1].

In the context of inverse problems for parabolic equations, a substantial body of literature
has addressed issues related to stability and well-posedness for various classes of equations
using a range of analytical and numerical techniques [12,17–21].

Concerning inverse problems for singular parabolic equations, we mention, among other
works, the study in [15], where the inverse source problem for the model (1) was investigated
in a multidimensional setting. In [11], the author addressed the inverse problem of identifying
a source term in degenerate singular parabolic equations, with degeneracy and singularity
occurring in the interior of the spatial domain. More recently, in [14], the inverse source
problem for a heat equation involving multipolar inverse-square potentials was considered.

From a numerical perspective, it is worth noting that only a limited number of works have
been devoted to the identification of source terms or coefficients in parabolic equations with
inverse-square potentials, despite the fact that such models arise naturally in both theoretical
studies and applied contexts.

In contrast to the aforementioned studies, which commonly rely on techniques based
on Carleman estimates [17], our approach is framed within the context of optimal control
theory—a widely used methodology for addressing inverse source problems in a broad class
of evolution equations [1,10,13,22]. Specifically, we recast the inverse problem as an optimal
control problem, where the unknown source term is treated as a control variable. The objective
is then to minimize a suitably defined cost functional, which yields a quasi-solution to the
original inverse problem.

By deriving and analyzing the first-order necessary optimality conditions, we establish
both the local stability and uniqueness of the quasi-solution. More precisely, our main stability
result can be stated as follows: let (U, f) and (Ũ , f̃) be two solutions to the inverse problem
(1)–(2) corresponding to final-time observations ω and ω̃, respectively. Then, there exists a
constant C > 0, independent of the final time T , such that

∥f − f̃∥2L2(Ω) ≤ C∥ω − ω̃∥2L2(Ω).

The second main contribution of this work concerns the numerical reconstruction of the
unknown source term in the problem (1), based on the final-time observation (2). To this
end, we develop a numerical scheme built upon the well-known Landweber iterative method.
This approach has proven to be both reliable and efficient, as demonstrated through a series
of numerical experiments.

The remainder of the paper is organized as follows. In Section 2, we establish the well-
posedness of the direct problem (1). Section 3 is devoted to the analysis of the inverse
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problem within an optimal control framework; in particular, we prove the existence of a
minimizer for the cost functional and derive the associated first-order necessary optimality
condition. In Section 4, using the optimality condition, we establish a stability result for the
inverse problem. Section 5 is concerned with the numerical reconstruction of the unknown
source term. To this end, we implement a Landweber-type iterative method to compute an
approximate solution to the inverse problem based on the final-time data.

2 Analysis of the direct problem

2.1 Functional framework

As is well known in the analysis of parabolic equations involving singular inverse-square
potentials, the constant µ plays a crucial role in determining the well-posedness of the
associated problem. Specifically, there exists a critical threshold µ∗ > 0 beyond which the
problem becomes ill-posed. This upper bound is given by the optimal constant in the Hardy
inequality, which ensures that for any function z ∈ H1

0 (Ω), the weighted function z
x
∈ L2(Ω),

and the following inequality holds:

µ∗
∫
Ω

z2(x)

x2
dx ≤

∫
Ω

|zx(x)|2 dx. (3)

In the one-dimensional setting Ω = (0, 1), it is known that the critical constant is µ∗ = 1
4
.

For fixed µ ∈ (0, µ∗], we define the following functional space:

H1
µ,0(Ω) :=

{
z ∈ L2(Ω) ∩H1

loc(Ω) : z(0) = z(1) = 0,

∫
Ω

(
z2x(x)− µ

z2(x)

x2

)
dx < +∞

}
.

This space is a Hilbert space when equipped with the inner product

(z1, z2)µ :=

∫
Ω

(
z1,x(x)z2,x(x)− µ

z1(x)z2(x)

x2

)
dx,

and the corresponding norm

∥z∥µ :=

(∫
Ω

(
z2x(x)− µ

z2(x)

x2

)
dx

)1/2

.

By standard arguments, one can show that there exist positive constants C1, C2 > 0,
depending on µ, such that

(1− 4µ)

∫
Ω

z2x dx+ C1

∫
Ω

z2 dx ≤ ∥z∥2µ ≤ (1 + 4µ)

∫
Ω

z2x dx+ C2

∫
Ω

z2 dx.

This implies that for the subcritical case µ < µ∗, the spaces H1
µ,0(Ω) and H1

0 (Ω) are
topologically equivalent with respect to their norms. However, in the critical case µ = µ∗, the
space H1

µ,0(Ω) strictly contains H1
0 (Ω), that is,

H1
0 (Ω) ⊊ H1

µ,0(Ω).
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In this work, we restrict our attention to the subcritical case 0 < µ < µ∗. Now, le us define
the space H1

µ(Ω) as the completion of H1(Ω) with respect to the norm

∥z∥H1
µ(Ω) :=

(
∥z∥2L2(Ω) + ∥z∥2µ

)1/2

.

Accordingly, we may write

H1
µ,0(Ω) =

{
z ∈ H1

µ(Ω) : z(0) = z(1) = 0
}
.

Under the assumption µ < 1
4
, it is known that H1

µ(Ω) embeds continuously into the Sobolev
space W 1,q

0 (Ω) for all 1 ≤ q < 2, and also into the fractional Sobolev spaces Hs
0(Ω) for all

0 ≤ s < 1. Moreover, due to the compact embedding W 1,q
0 (Ω) ↪→ Hs

0(Ω) for suitable q = q(s)
sufficiently close to 2, and the compactness of Hs

0(Ω) ↪→ L2(Ω), we conclude that

H1
µ(Ω) ↪→↪→ L2(Ω),

where the embedding is compact. For more details on the properties of H1
µ(Ω), we refer the

reader to [2] and [15].

2.2 Well-posedness of the Direct Problem

In order to analyze the inverse problem associated with the differential equation under
consideration, a thorough understanding of the corresponding direct problem is essential.
Therefore, we begin by establishing the well-posedness of the direct problem, with a detailed
analysis of the existence, uniqueness, and regularity of its solutions.

To define a weak solution, we multiply equation (1) by a test function ϕ ∈ H1
µ,0(Ω),

integrate over Ω, and use integration by parts. This leads to the following variational
formulation.

Definition 1. Let θ0 ∈ L2(Ω) and f ∈ L2(QT ). A function θ is said to be a weak solution
to problem (1) if

θ ∈ L2(0, T ;H1
µ,0(Ω)), θt ∈ L2(0, T ;H−1

µ (Ω)),

and for all test functions ϕ ∈ L2(0, T ;H1
µ,0(Ω)), the following variational identity holds:∫∫

QT

θtϕ dx dt+

∫∫
QT

θxϕx dx dt− µ

∫∫
QT

θϕ

x2
dx dt =

∫∫
QT

fϕ dx dt, (4)

with the initial condition θ(0) = θ0 satisfied in L2(Ω).

Remark 1. The use of the weighted Sobolev space H1
µ,0(Ω) is crucial due to the singularity

of the potential term µx−2θ, which renders the classical space H1
0 (Ω) inadequate when µ > 0.

For µ < µ∗, the Hardy inequality ensures that the bilinear form associated with the operator
is coercive on H1

µ,0(Ω).
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Before formulating the inverse problem, it is necessary to establish that the associated
direct problem is well posed.
This ensures that for any admissible source term, the governing singular parabolic equation
admits a unique weak solution that depends continuously on the data.
Such a result guarantees that the forward operator is mathematically well defined, which is
a fundamental prerequisite for the subsequent optimal control framework.

Theorem 1. Let θ0 ∈ L2(Ω) and f ∈ L2(QT ). Then, problem (1) admits a unique weak
solution θ in the sense of Definition 1, satisfying

θ ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1
µ,0(Ω)), θt ∈ L2(0, T ;H−1

µ (Ω)).

Moreover, the following a priori energy estimate holds:

sup
t∈[0,T ]

∥θ(t)∥2L2(Ω)+

∫ T

0

∥θ(t)∥2µ dt+
∫ T

0

∥θt(t)∥2H−1
µ (Ω)

dt ≤ C
(
∥θ0∥2L2(Ω) + ∥f∥2L2(QT )

)
, (5)

where the constant C > 0 depends only on µ,Ω, and T .

3 Optimal control

The inverse problem under consideration is ill-posed in the sense of Hadamard, meaning that
uniqueness and stability of solutions cannot be guaranteed without introducing additional
constraints.
A widely used strategy in such cases is to recast the inverse problem as an optimal control
problem, where the unknown source term is treated as a control variable.
This approach allows us to incorporate a regularization mechanism that stabilizes the
inversion procedure.

More precisely, the inverse problem is reformulated as the minimization of a Tikhonov-
type cost functional, consisting of two terms: a data misfit term that enforces consistency
with the final-time observation, and a penalty term that ensures stability by controlling the
norm of the source.
The admissible set of controls is restricted to bounded functions in L2(Ω), which reflects a
priori physical knowledge about the source.

This optimal control formulation serves as the foundation for the subsequent analysis. In
particular, it allows us to establish the existence of minimizers (Th2), to derive necessary
optimality conditions (Th3), and to prove stability estimates for the reconstructed source
(Th4). Hence, Section 3 plays a crucial role in bridging the direct analysis of the forward
problem with the theoretical and numerical treatment of the inverse problem.

4 Formulation of the Inverse Problem

The inverse problem addressed in this work can be stated as follows: given an initial condition
θ0(x) ∈ L2(Ω) and a final-time observation ω(x) ∈ L2(Ω), determine the spatially dependent
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source term f(x) such that the corresponding solution θ to the initial-boundary value
problem (1) satisfies the over-specified final condition

θ(x, T ) = ω(x), for all x ∈ Ω. (6)

To tackle this ill-posed problem, we adopt an optimal control framework. The inverse
problem is reformulated as the following constrained optimization problem: find f ∗ ∈ A such
that

min
f∈A

J (f) = J (f ∗), subject to θ[f ] solving (1), (7)

where the cost functional J : L2(Ω) → R is defined by

J (f) :=
1

2
∥θ[f ](·, T )− ω∥2L2(Ω) +

γ

2
∥f∥2L2(Ω), (8)

and γ > 0 is a regularization parameter. The admissible set A ⊂ L2(Ω) is given by

A :=
{
f ∈ L2(Ω) : c0 ≤ f(x) ≤ c1 a.e. in Ω

}
, (9)

for some constants 0 < c0 < c1. The regularization term in (8) ensures the stability of the
minimization problem and reflects a priori bounds on the unknown source.

Next, we establish the existence of an optimal solution to the minimization problem (7)
by means of the following result.

Theorem 2. Let θ0 ∈ L2(Ω), ω ∈ L2(Ω), and assume that the direct problem (1) admits a
unique weak solution θ[f ] for every f ∈ A, as guaranteed by Theorem 1. Then, the optimal
control problem (7) admits at least one solution; that is, there exists f ∗ ∈ A such that

J (f ∗) = min
f∈A

J (f).

Proof 1. Since J (f) ≥ 0 for all f ∈ A, the cost functional J admits an infimum over the
admissible set A, denoted by

d := inf
f∈A

J (f).

Let (fn)n∈N ⊂ A be a minimizing sequence such that

d < J (fn) ≤ d+
1

n
, for all n ∈ N∗. (10)

Since A ⊂ L2(Ω) is closed, convex, and bounded, there exists a subsequence (still denoted fn)
and a limit f ∗ ∈ A such that

fn ⇀ f ∗ weakly in L2(Ω). (11)

Let θn := θ[fn] denote the unique weak solution to problem (1) with source term fn. By
Theorem 1, the sequence (θn) is uniformly bounded in the spaces

L2(0, T ;H1
µ,0(Ω)), L∞(0, T ;L2(Ω)), and L2(0, T ;H−1

µ (Ω)).
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Hence, up to a subsequence, there exists θ∗ ∈ L2(0, T ;H1
µ,0(Ω)) such that

θn ⇀ θ∗ weakly in L2(0, T ;H1
µ,0(Ω)),

θn
∗
⇀ θ∗ weakly-* in L∞(0, T ;L2(Ω)),

∂tθn ⇀ ∂tθ
∗ weakly in L2(0, T ;H−1

µ (Ω)).

(12)

Furthermore, by the Aubin–Lions lemma and the compact embedding H1
µ,0(Ω) ↪→↪→ L2(Ω),

we also obtain the strong convergence

θn → θ∗ strongly in L2(QT ). (13)

Now, subtracting the weak formulations satisfied by θ∗ = θ[f ∗] and θn = θ[fn], and testing
the resulting equation by ϕ = θ∗ − θn, we obtain the energy inequality:

1

2

d

dt
∥θ∗(t)− θn(t)∥2L2(Ω) ≤ h(t)

∫
Ω

(f ∗(x)− fn(x))(θ
∗(x, t)− θn(x, t)) dx. (14)

Integrating both sides over (0, T ), we get

∥θ∗(T )− θn(T )∥2L2(Ω) ≤
∫∫

QT

h(t)(f ∗(x)− fn(x))(θ
∗(x, t)− θn(x, t)) dx dt.

Using the weak convergence fn ⇀ f ∗ in L2(Ω) and strong convergence θn → θ∗ in L2(QT ),
we deduce that the right-hand side vanishes as n→ ∞, hence:

∥θ∗(T )− θn(T )∥L2(Ω) → 0 as n→ ∞. (15)

To conclude, we analyze the convergence of the misfit term. Define:

In :=
∣∣∣∥θ∗(T )− ω∥2L2(Ω) − ∥θn(T )− ω∥2L2(Ω)

∣∣∣
≤ ∥θ∗(T )− θn(T )∥L2(Ω) · ∥θ∗(T ) + θn(T )− 2ω∥L2(Ω) .

Due to (15), we conclude:

lim
n→∞

∥θn(T )− ω∥2L2(Ω) = ∥θ∗(T )− ω∥2L2(Ω). (16)

Finally, applying weak lower semi-continuity of the L2-norm to (11), and using (16), we
obtain:

lim inf
n→∞

J (fn) = lim inf
n→∞

(
1

2
∥θn(T )− ω∥2 + γ

2
∥fn∥2

)
≥ 1

2
∥θ∗(T )− ω∥2 + γ

2
∥f ∗∥2 = J (f ∗).

Combining this with the minimality of the sequence (10), we conclude that f ∗ is indeed a
minimizer of the functional J , i.e., J (f ∗) = d. This completes the proof.
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Theorem 3 provides the first-order necessary condition characterizing the optimal control.
This condition links the unknown source term with the adjoint state and plays a central role
both in the theoretical analysis of stability and in the numerical implementation of the
Landweber-type method.

Theorem 3. Let f ∗ ∈ A be an optimal solution to the control problem (7), and let θ∗ := θ[f ∗]
denote the corresponding solution to the state equation (1). Then, the following variational
inequality holds:∫

Ω

[θ∗(x, T )− ω(x)] ξ(x, T ) dx+ γ

∫
Ω

f ∗(x) (h(x)− f ∗(x)) dx ≥ 0, ∀h ∈ A, (17)

where ξ ∈ L2(0, T ;H1
µ,0(Ω)) ∩ C([0, T ];L2(Ω)) is the unique weak solution to the following

adjoint problem:
∂tξ(x, t)− ξxx(x, t)−

µ

x2
ξ(x, t) = h(x)− f ∗(x), in QT := Ω× (0, T ),

ξ(0, t) = ξ(1, t) = 0, for t ∈ (0, T ),

ξ(x, 0) = 0, for x ∈ Ω := (0, 1).

(18)

Proof 2. Let h ∈ A and δ ∈ [0, 1], and define a convex perturbation of the optimal control
f ∗ by

fδ := f ∗ + δ(h− f ∗).

Since A is convex, it follows that fδ ∈ A for all δ ∈ [0, 1]. Let θδ := θ[fδ] denote the unique
weak solution to problem (1) associated with the control fδ.

We define the perturbed cost functional

Jδ := J (fδ) =
1

2

∫
Ω

|θδ(x, T )− ω(x)|2dx+ γ

2

∫
Ω

|fδ(x)|2dx. (19)

Since f ∗ is an optimal control, the function δ 7→ J (fδ) attains its minimum at δ = 0.
Therefore, the derivative of Jδ with respect to δ satisfies

d

dδ
J (fδ)

∣∣∣∣
δ=0

≥ 0. (20)

We now compute this derivative. By differentiating under the integral sign and using the
chain rule, we obtain:

d

dδ
J (fδ) =

∫
Ω

[θδ(x, T )− ω(x)]
∂θδ
∂δ

(x, T ) dx+ γ

∫
Ω

fδ(x)(h(x)− f ∗(x)) dx. (21)

Evaluating (21) at δ = 0, we define ξ := ∂θδ
∂δ

∣∣
δ=0

. Then inequality (20) becomes:∫
Ω

[θ∗(x, T )− ω(x)] ξ(x, T ) dx+ γ

∫
Ω

f ∗(x)(h(x)− f ∗(x)) dx ≥ 0, (22)

which is precisely the desired variational inequality (17).
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It remains to characterize ξ. Differentiating the state equation with respect to δ, we find
that ξ satisfies the following linearized problem:

∂tξ(x, t)− ξxx(x, t)−
µ

x2
ξ(x, t) = h(x)− f ∗(x), in QT ,

ξ(0, t) = ξ(1, t) = 0, t ∈ (0, T ),

ξ(x, 0) = 0, x ∈ Ω,

which coincides with problem (18). This concludes the proof.

5 Stability Results

In this section, we investigate the stability of the inverse problem with respect to
perturbations in the final-time observation data. Stability plays a central role in inverse
problems, especially due to their inherent ill-posedness in the sense of Hadamard. In our
context, the goal is to assess how the optimal solution f ∗ depends continuously on the
measured data ω ∈ L2(Ω).

We consider two final-time observations ω, ω̃ ∈ L2(Ω), and analyze the corresponding
solutions f ∗, f̃ ∗ ∈ A obtained by minimizing the cost functional (7). Under appropriate
assumptions, we prove that small perturbations in the data lead to small changes in the
recovered source, thereby establishing a Lipschitz-type stability estimate for the inverse
problem.

Inverse problems are typically unstable with respect to perturbations in the data.
Theorem 4 demonstrates that, under the proposed optimal control formulation, the

recovered source satisfies a Lipschitz-type stability estimate.
This result ensures robustness of the reconstruction and provides a rigorous theoretical
justification for the numerical performance observed in Section 6.

Theorem 4. Let f, f̃ ∈ A be two optimal controls corresponding to the final observations
ω, ω̃ ∈ L2(Ω), respectively, and let θ := θ[f ], θ̃ := θ[f̃ ] be the associated solutions to the state
equation (1). Then, the following Lipschitz-type stability estimate holds:

∥f − f̃∥2L2(Ω) ≤
1

2γ
∥ω − ω̃∥2L2(Ω). (23)

Proof 3. Let f, f̃ ∈ A be two optimal controls corresponding to the final-time data ω, ω̃ ∈
L2(Ω), and let θ := θ[f ], θ̃ := θ[f̃ ] be the associated solutions to the state problem (1).

We apply the first-order optimality condition (17) with f ∗ = f and h = f̃ , yielding:∫
Ω

[θ(x, T )− ω(x)] ξ(x, T ) dx+ γ

∫
Ω

f(x)(f̃(x)− f(x)) dx ≥ 0, (24)

where ξ solves the adjoint problem:
∂tξ − ξxx −

µ

x2
ξ = f̃ − f, in QT ,

ξ(0, t) = ξ(1, t) = 0, t ∈ (0, T ),

ξ(x, 0) = 0, x ∈ Ω.

(25)
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Similarly, applying (17) with f ∗ = f̃ and h = f , we obtain:∫
Ω

[
θ̃(x, T )− ω̃(x)

]
ξ̃(x, T ) dx+ γ

∫
Ω

f̃(x)(f(x)− f̃(x)) dx ≥ 0, (26)

where ξ̃ solves:
∂tξ̃ − ξ̃xx −

µ

x2
ξ̃ = f − f̃ , in QT ,

ξ̃(0, t) = ξ̃(1, t) = 0, t ∈ (0, T ),

ξ̃(x, 0) = 0, x ∈ Ω.

(27)

Adding inequalities (24) and (26) yields:

γ∥f − f̃∥2L2(Ω) ≤
∫
Ω

[θ(T )− ω] ξ(T ) dx+

∫
Ω

[
θ̃(T )− ω̃

]
ξ̃(T ) dx. (28)

Now, define the error functions E := θ − θ̃, and X := ξ − ξ̃. Then, E solves:
∂tE − Exx −

µ

x2
E = f − f̃ , in QT ,

E(0, t) = E(1, t) = 0, t ∈ (0, T ),

E(x, 0) = 0, x ∈ Ω,

(29)

and X solves the homogeneous problem:
∂tX −Xxx −

µ

x2
X = 0, in QT ,

X(0, t) = X(1, t) = 0, t ∈ (0, T ),

X(x, 0) = 0, x ∈ Ω.

(30)

Hence, by uniqueness of weak solutions, we conclude X = 0, i.e., ξ = ξ̃, and similarly E = −ξ
from comparing (29) and (25).

Substituting into (28) and using E = −ξ, we obtain:

γ∥f − f̃∥2 ≤
∫
Ω

E(x, T )ξ(x, T ) dx+

∫
Ω

(ω(x)− ω̃(x))ξ(x, T ) dx

= −∥ξ(·, T )∥2L2(Ω) +

∫
Ω

(ω − ω̃)ξ(·, T ) dx.

Applying the Cauchy–Schwarz and Young inequalities, we get:

γ∥f − f̃∥2 ≤ −∥ξ(T )∥2 + ∥ω − ω̃∥ · ∥ξ(T )∥

≤ −∥ξ(T )∥2 + 1

2
∥ω − ω̃∥2 + 1

2
∥ξ(T )∥2

= −1

2
∥ξ(T )∥2 + 1

2
∥ω − ω̃∥2

≤ 1

2
∥ω − ω̃∥2.
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Dividing both sides by γ > 0, we conclude:

∥f − f̃∥2L2(Ω) ≤
1

2γ
∥ω − ω̃∥2L2(Ω),

which completes the proof.

Corollary 1. Assume that assumptions of Theorem (4) hold. Furthermore, suppose that ω
matches ω̃ over Ω then f = f̃

6 Numerical identification

In this section, we present a numerical strategy for identifying the unknown source term f(x)
in the singular parabolic problem (1), based on the final-time observation ω(x). Due to the
ill-posedness of the inverse problem, direct inversion is highly unstable, and regularization
techniques are essential to obtain stable and meaningful numerical approximations.

To this end, we implement an iterative regularization scheme based on the classical
Landweber method, which is widely used in inverse problems due to its simplicity and
robustness. The approach consists of iteratively updating the source term by moving along
the negative gradient direction of the cost functional (7), evaluated via the solution of the
associated forward and adjoint problems.

6.1 Landweber iteration method

Let us define the input-output operator T associated with the parabolic problem (1), which
maps a source term to the final-time state of the corresponding solution. For simplicity of
computation, we assume the initial condition is homogeneous, i.e., θ0 = 0. Then, the operator
T is given by:

T : L2(Ω) −→ H1
µ,0(Ω),

f 7→ T f := θ[f ](·, T ),

where θ[f ] denotes the weak solution to problem (1) with source term f ∈ L2(Ω), and θ0 = 0
as initial data. In this framework, T f represents the output measurement at the final time
t = T .

In view of the above considerations, our inverse problem can be equivalently reformulated
as the operator equation

Find f † ∈ A such that T f † = ω,

where T : L2(Ω) → H1
µ,0(Ω) is the input-output operator defined in the previous subsection,

and ω ∈ L2(Ω) denotes the measured final-time data. Formally, the exact solution f † satisfies
the associated normal equation

T ∗T f † = T ∗ω,

where T ∗ denotes the adjoint of the operator T . This normal equation can be interpreted as
a fixed-point problem of the form

f † = f † − β T ∗ (T f † − ω
)
,
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where β > 0 is a relaxation parameter. Based on this formulation, we construct an iterative
Landweber-type method to approximate f †. Starting from an initial guess f0 ∈ L2(Ω), the
iteration proceeds as:

fm+1 = fm − β T ∗ (T (fm)− ω)

= fm − β T ∗ (θm(·, T )− ω) ,
(31)

where θm := θ[fm] is the solution of the forward problem (1) associated with the current
iterate fm.

It is well known (see, e.g., [9]) that the Landweber iteration (31) converges strongly
to the minimum-norm solution f †, provided that 0 < β < 1/∥T ∥2 and the initial guess
f0 ∈ D(T ). In practice, the iteration is terminated according to a suitable discrepancy
principle or tolerance-based stopping rule.

For the numerical implementation of the Landweber algorithm, it is essential to compute
the adjoint of the input–output operator.

Lemma 1 provides an explicit characterization of this adjoint in terms of the solution of
an auxiliary boundary value problem.
This result enables the efficient numerical realization of the iterative reconstruction scheme.

Lemma 1. Let ψ ∈ L2(Ω), and let η ∈ L2(0, T ;H1
µ,0(Ω)) be the unique weak solution of the

following initial-boundary value problem:
∂tη(x, t)− ∂xxη(x, t) +

µ

x2
η(x, t) = ψ(x), in QT := Ω× (0, T ),

η(x, 0) = 0, x ∈ Ω,

η(0, t) = η(1, t) = 0, t ∈ (0, T ).

(32)

Then, the adjoint operator T ∗ : L2(Ω) → L2(Ω), corresponding to the input-output operator
T f = θ[f ](·, T ), is given by

T ∗ψ = η(·, T ),

Proof 4. Let f ∈ L2(Ω), and denote by θ = θ[f ] ∈ L2(0, T ;H1
µ,0(Ω)) the unique weak solution

of the forward problem:
∂tθ(x, t)− ∂xxθ(x, t) +

µ

x2
θ(x, t) = f(x), in QT ,

θ(x, 0) = 0, x ∈ Ω,

θ(0, t) = θ(1, t) = 0, t ∈ (0, T ).

(33)

Then the input-output operator T : L2(Ω) → L2(Ω) is defined by

T f = θ(·, T ).
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Let ψ ∈ L2(Ω), and let η ∈ L2(0, T ;H1
µ,0(Ω)) be the solution of the following adjoint

problem:
∂tη(x, t)− ∂xxη(x, t) +

µ

x2
η(x, t) = ψ(x), in QT ,

η(x, 0) = 0, x ∈ Ω,

η(0, t) = η(1, t) = 0, t ∈ (0, T ).

(34)

We want to compute T ∗ψ using the definition of the adjoint. By definition, T ∗ is the
operator such that

⟨T f, ψ⟩L2(Ω) = ⟨f, T ∗ψ⟩L2(Ω), ∀f ∈ L2(Ω).

Now, compute the left-hand side:

⟨T f, ψ⟩L2(Ω) =

∫
Ω

θ(x, T )ψ(x) dx.

We aim to express this quantity in terms of f and η, and thereby identify T ∗ψ. To this
end, we define the auxiliary function v(x, t) := η(x, T − t). It is easy to verify (by direct
substitution) that v satisfies the backward parabolic problem:

− ∂tv(x, t)− ∂xxv(x, t) +
µ

x2
v(x, t) = ψ(x), in QT ,

v(x, T ) = 0, x ∈ Ω,

v(0, t) = v(1, t) = 0, t ∈ (0, T ).

(35)

We now multiply the equation for θ by v, integrate over QT , and use integration by parts
in time and space. We obtain:∫∫

QT

f(x)v(x, t) dxdt =

∫∫
QT

(
∂tθ · v + ∂xθ · ∂xv +

µ

x2
θv
)
dxdt

=

∫∫
QT

(
−∂tv · θ + ∂xθ · ∂xv +

µ

x2
θv
)
dxdt,

where we have used the fact that θ(x, 0) = v(x, T ) = 0.
Since v satisfies (35), the right-hand side becomes:∫∫

QT

ψ(x)θ(x, t) dxdt.

Thus, we have established the identity:∫∫
QT

f(x)v(x, t) dxdt =

∫∫
QT

ψ(x)θ(x, t) dxdt.

Now, reversing the change of variables v(x, t) = η(x, T − t), we have:∫ T

0

v(x, t) dt =

∫ T

0

η(x, s) ds.
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Similarly,∫∫
QT

f(x)v(x, t) dxdt =

∫
Ω

f(x)

∫ T

0

η(x, s) ds dx,

and ∫∫
QT

ψ(x)θ(x, t) dxdt =

∫
Ω

ψ(x)

∫ T

0

θ(x, t) dt dx.

Assuming that this identity holds for all T > 0, we formally differentiate both sides with
respect to T , obtaining:∫

Ω

ψ(x)θ(x, T ) dx =

∫
Ω

f(x)η(x, T ) dx.

Therefore, we have:

(T f, ψ)L2(Ω) = (θ(·, T ), ψ)L2(Ω) = (f, η(·, T ))L2(Ω),

and since this holds for all f ∈ L2(Ω), we conclude:

T ∗ψ = η(·, T ).

To summarize, we now outline the main steps of the iterative procedure used to
numerically reconstruct the unknown source term f in problem (1), based on the Landweber
method.

Algorithm 1 Iterative Landweber Method for Source Identification
Require: Relaxation parameter β > 0, tolerance ε > 0, final-time data ω ∈ L2(Ω)
Ensure: Approximate solution f † and corresponding state θ† to the inverse problem
1: Initialization: Choose an initial guess f0 ∈ A, and set k = 0
2: Solve Forward Problem: Compute θ0 := θ[f0] by solving (1)
3: Solve Adjoint Problem: Compute η0 by solving (32) with source ψ = θ0(·, T )− ω
4: Update Control: Set

f1 := f0 − βη0(·, T )

5: for k = 1, 2, . . . until convergence do
6: Solve θk := θ[fk] from (1)
7: if ∥θk(·, T )− ω∥L2(Ω) < ε then
8: Set f † := fk, θ† := θk, and stop
9: else

10: Solve ηk from (32) with ψ = θk(·, T )− ω
11: Update fk+1 := fk − βηk(·, T )
12: end if
13: end for



M. Nedjma, A. Chattouh 151

6.2 Numerical results and discussions

In this subsection, we present numerical experiments that illustrate the performance of the
proposed Landweber algorithm for reconstructing the space-dependent source term. The
experiments are designed to validate both the accuracy and stability of the method under
noise-free and noisy final-time data.

We begin with Example 1, where the exact solution of the forward problem is available in
closed form. This allows for a direct comparison between the reconstructed and exact source
profiles. In Example 2, the forward solution is generated numerically, thereby testing the
algorithm in a more realistic setting. In both cases, the reconstructions confirm the theoretical
predictions: the Landweber method converges towards the true source when noise-free data
are used, while in the presence of noisy data, the algorithm still yields stable and accurate
approximations, as shown in Figures 6.1–6.3.

The relative error E2(k) is also monitored as a function of the iteration index k. The error
curves demonstrate a rapid initial decrease followed by saturation, which is consistent with
the discrepancy principle and the finite accuracy of the numerical discretization. Overall,
these results validate the effectiveness and robustness of the proposed method.

6.3 Numerical Implementation and Discretization

This subsection is devoted to numerical examples that illustrate the performance of the
proposed Landweber algorithm for reconstructing the space-dependent source term f(x)
in the inverse problem (1). The solutions to both the direct and adjoint problems are
approximated using finite-difference methods.

We fix the final time T = 1, so that the spatio-temporal domain is QT = (0, 1) × (0, 1).
Let M,N ∈ N∗ denote the number of spatial and temporal subdivisions, respectively. Define
the mesh sizes

∆x =
1

M
, ∆t =

1

N
.

The spatial and temporal grid points are given by:

xi = i∆x, for i = 0, 1, . . . ,M, tj = j∆t, for j = 0, 1, . . . , N.

The functions θ(x, t) (solution of the forward problem) and η(x, t) (solution of the adjoint
problem) are evaluated at these grid points. The numerical schemes employed for the
discretization are based on finite-difference approximations of second-order spatial derivatives
and backward or Crank–Nicolson schemes in time, ensuring stability in the presence of the
singular potential µ/x2. Boundary conditions are imposed explicitly at x = 0 and x = 1.

In the numerical tests, we measure the accuracy of the reconstructed source using the
relative error at iteration k, defined by

E2(k) := ∥fk − f∥2L2(Ω) =
1

M + 1

M∑
i=0

(
f(xi)− fk(xi)

)2
,

where f is the exact source function and fk is the reconstructed approximation at the k-th
iteration, evaluated on the discrete grid {xi}Mi=0.
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To test robustness against measurement errors, we also consider noisy data. The perturbed
observation ωε(x) is generated from the exact final state ω(x) = θ(x, T ) by injecting a
multiplicative random noise:

ωε(x) = ω(x) + ε · ω(x) · rand(x), x ∈ Ω, (36)

where ε ∈ (0, 1) denotes the noise level and rand(x) ∈ (0, 1) is a uniformly distributed random
function over the spatial domain. This simulates realistic data perturbations encountered in
practice.

Example 1. In this first test case, we consider the inverse problem (1)–(2) with singularity
parameter µ = 1

5
, and a source term given by

f(x, t) = −5 sin(πt)
(
(x2 − π2x2 + µ) sin(πx)

)
, (x, t) ∈ QT .

It is easy to verify that the corresponding exact solution of the forward problem (1) is

θ(x, t) = x2 sin(πx)(1− e−t), x ∈ Ω, t ∈ [0, T ].

Consequently, the final-time observation used in the inverse problem is computed as ω(x) =
u(x, T ). This example allows for direct comparison between the reconstructed and exact source
terms.

Example 2. In this second test, we consider a synthetic example in which the exact source
term is prescribed as

f(x) = sin(πx), x ∈ Ω.

We set the singularity parameter to µ = 1
6
. The final-time data ω(x) = u(x, T ) is generated

by solving the direct problem (1) using this exact source. This test serves to validate the
reconstruction algorithm when the forward solution is numerically simulated, without using
an explicit expression for u(x, t).

Discussion on Example 1

For the inversion process, we employ moderate discretization parameters, setting ∆t = 10−3

and ∆x = 5× 10−2. The Landweber iteration is initialized with the admissible guess f0(x) =
x2. Figure 6.1 (a) shows a comparison between the exact source f † and the reconstructed
profile fk in Example 1 after k = 8000 iterations. The agreement is notably close, confirming
the convergence of the algorithm in the noise-free setting.

To assess the robustness of the method under measurement perturbations, we conduct
additional experiments using noisy final-time data ω, generated according to the perturbation
model (36). The reconstruction is evaluated after k = 400 iterations. As shown in Figure 6.2-
(a), the reconstructions remain satisfactory under moderate noise levels, and the computed
state θk(·, T ) matches the perturbed observations ω with high accuracy. However, for higher
noise levels, the reconstruction quality deteriorates significantly. The evolution of E2(k) is
shown in Figure 6.3-(a). We observe a monotonic decay of the error up to around k = 400,
after which the reduction halts due to accumulated discretization errors in the numerical
solution of the direct and adjoint problems.
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Figure 6.1: Numerical reconstruction.
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Figure 6.2: The numerical results with noise
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Figure 6.3: Behaviour of reconstruction error E2(k) as a function of k.

Discussion on Example 2

For the second example, we consider a synthetic source term f †(x) = sin(πx) with singularity
parameter µ = 1

6
. The final-time observation ω(x) is generated by numerically solving the

direct problem (1). The Landweber iteration is initialized with the same admissible guess
f0(x) = 0, and discretization parameters are set to ∆t = 10−3 and ∆x = 5 × 10−2, as in
the previous example. Figure 6.1 (b) displays the comparison between the exact source f †

and the reconstructed solution fk after k = 400 iterations. The reconstruction achieves high
accuracy with significantly fewer iterations than in Example 1, which is attributed to the
simpler spectral content of the source.

To evaluate stability with respect to data perturbations, we introduce noisy observations
based on the same noise model (36). The reconstruction after k = 400 iterations is reported
in Figure 6.2 (b). The results indicate that the reconstructed state θk(·, T ) approximates
the noisy data ω well for low to moderate noise levels. However, as the noise amplitude
increases, the reconstruction degrades, consistent with the sensitivity of the inverse problem
to measurement errors.

The convergence history of the relative error E2(k) is depicted in Figure 6.3 (b). Similar to
the first example, we observe a rapid decay of the error up to k ≈ 300, followed by stagnation.
The early saturation is again due to the discretization effects and the finite resolution of the
spatial grid, which limit further improvements in accuracy despite continued iteration.

Conclusion

In this work, we have addressed an inverse problem concerned with the identification of a
space-dependent source term in a diffusion equation governed by a singular inverse-square
potential. The proposed approach is based on an optimal control framework.

We began by establishing the existence and uniqueness of weak solutions to the direct
problem. The inverse problem was then reformulated as a constrained optimization problem,
for which we proved the existence of a minimizer and derived a first-order necessary optimality
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condition. This condition was further employed to demonstrate a Lipschitz-type stability
result with respect to perturbations in the final-time data.

On the numerical side, we developed an iterative Landweber-type algorithm to reconstruct
the unknown source term from noisy final measurements. A series of numerical experiments
were carried out, confirming the effectiveness, stability, and robustness of the proposed
reconstruction method, even in the presence of data perturbations.

As directions for future work, we plan to extend the current methodology to more
complex models, including systems of coupled singular parabolic equations and fractional-
order singular diffusion problems.
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MATHEMATICAL MODELING OF RADIATION DEFECT FORMATION
PROCESSES ON LIGHT TARGETS

The article analyzes the problem of studying the mechanisms of radiation defect generation in
materials under ion irradiation. During the research, algorithms were developed to calculate the
cascade-probability function (CPF) and the concentration of cascade regions as a function of the
depth of the irradiated material, which allowed for an increase in the accuracy of modeling defect
formation processes. The calculations of the CPF and the concentration of cascade regions revealed
patterns in the behavior of radiation defects depending on the physical parameters of irradiation.
The comparison of the obtained calculated data with experimental results confirmed the validity
of the developed algorithms and models. A distinctive feature of the proposed method is the
application of an analytical cascade-probability approach, which allows tracking the dynamics of
defect formation at any depth of the target, unlike traditional numerical methods that require
significant computational resources.
These results can be explained by the fact that the process of particle interaction with matter and
the formation of radiation defects is probabilistic, allowing for the determination of the probabilities
of ion interactions with materials (CPF) at any depth of the irradiated material, which enables
more accurate modeling of defect formation processes and their dependence on physical parameters
such as energy and depth. The developed models and algorithms can be applied in materials science,
micro- and nanoelectronics, and in predicting the radiation resistance of structural materials.
Key words: ion, algorithm, ion implantation, cascade-probabilistic function, concentration of
radiation defects.
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Математическое моделирование процессов радиационного
дефектообразования на легких мишенях

В данной статье анализируется проблема изучения механизмов генерирования радиацион-
ных дефектов в материалах при ионном облучении. В процессе исследования были созданы
алгоритмы для расчета каскадно-вероятностной функции (КВФ) и концентрации каскадных
областей в зависимости от глубины облучаемого материала, что дало возможность повысить
точность моделирования процессов дефектообразования. Выполненные расчеты КВФ и кон-
центрации каскадных областей позволили выявить закономерности поведения радиационных
дефектов в зависимости от физических параметров облучения. Сопоставление полученных
расчетных данных с экспериментальными результатами подтвердило достоверность разрабо-
танных алгоритмов и моделей. Отличительной чертой предложенного метода является при-
менение аналитического каскадно-вероятностного подхода, который позволяет отслеживать
динамику дефектообразования на любой глубине мишени, в отличие от традиционных чис-
ленных методов, требующих значительных вычислительных ресурсов.
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Эти результаты объясняются тем, что процесс взаимодействия частиц с веществом и образо-
вания радиационных дефектов является вероятностным и позволяет получить вероятности
взаимодействия ионов с материалами (КВФ), на любой глубине облучаемого материала, что
позволяет более точно моделировать процессы дефектообразования и их зависимость от фи-
зических параметров, таких как энергия, глубина. Разработанные модели и алгоритмы могут
быть применены в материаловедении, микро- и наноэлектронике, при прогнозировании ра-
диационной стойкости конструкционных материалов.
Ключевые слова: ион, алгоритм, ионная имплантация, каскадно-
вероятностная функция, концентрация радиационных дефектов.
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Жеңiл нысталарда радиациялық дектiктердiң қалыптасу процестерiн
математикалық модельдеу

Мақала ион сәулеленуi кезiнде материалдардағы радиациялық ақауларды генерациялау
механизмдерiн зерттеу мәселесiн талдайды. Зерттеу барысында сәулеленген материалдың
тереңдiгiне байланысты каскадты ықтималдық функциясын (КЫФ) және каскадтық ай-
мақтардың концентрациясын есептеу үшiн алгоритмдер әзiрлендi, бұл ақау түзiлу проце-
стерiн модельдеудiң дәлдiгiн арттыруға мүмкiндiк бердi. КЫФ және каскадтық аймақтар-
дың концентрациясы бойынша жүргiзiлген есептеулер радиациялық ақаулардың физикалық
сәулелену параметрлерiне байланысты мiнез-құлқын анықтауға мүмкiндiк бердi. Алынған
есептiк деректердi эксперименттiк нәтижелермен салыстыру әзiрленген алгоритмдер мен
модельдердiң дұрыстығын растады. Ұсынылған әдiстiң ерекшелiгi - ақау түзiлу динамика-
сын мақсаттың кез келген тереңдiгiнде бақылауға мүмкiндiк беретiн аналитикалық каскадты
ықтималдық тәсiлiн қолдану, дәстүрлi сандық әдiстердiң едәуiр есептеу ресурстарын талап
ететiндiгiмен салыстырғанда.
Бұл нәтижелер бөлшектердiң затпен өзара әрекеттесу және радиациялық ақаулардың түзiлу
процесi ықтималдықты болып табылатындығымен түсiндiрiледi, бұл иондардың материал-
дармен (КЫФ) өзара әрекеттесу ықтималдықтарын сәулеленген материалдың кез келген те-
реңдiгiнде анықтауға мүмкiндiк бередi, бұл ақау түзiлу процестерiн және олардың энергия,
тереңдiк сияқты физикалық параметрлерге тәуелдiлiгiн дәл модельдеуге мүмкiндiк бередi.
Дамытылған модельдер мен алгоритмдер материалтану, микро- және наноэлектроникада,
конструкциялық материалдардың радиациялық төзiмдiлiгiн болжауда қолданылуы мүмкiн.
Түйiн сөздер: ион, алгоритм, иондық имплантация, каскадты-ықтималдық функция, ра-
диациялық ақаулардың концентрациясы.

1 Introduction

Research in the field of ion implantation and radiation-induced defect formation has been
conducted and continues to be an important topic for the scientific community to this day.

This area is particularly relevant for the advancement of science in Kazakhstan, as many
organizations are engaged in experimental studies on the effects of various types of radiation,
including electron (1–10 MeV), proton and alpha (1–50 MeV), and ion (100–1000 keV)
irradiation. There is a need for further explanation and analysis of experiments related to ion
irradiation.

The relevance of the topic is confirmed by a number of factors. First, with the increasing
consumption of materials and the growing demands for their properties, it is essential to
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develop new methods for their production and processing. It is expected that in the coming
years, the demand for structural materials will significantly increase, highlighting the need to
optimize ion irradiation processes to enhance radiation resistance and other key properties of
materials. Second, the results of research in this area can have a substantial impact on their
practical applications. The development of algorithms for calculating defect distribution will
allow for more accurate predictions of material behavior under various operating conditions.
This, in turn, could lead to the creation of more efficient and reliable structural materials,
contributing to the advancement of technologies and increasing their competitiveness in the
market. For example, the Institute of Nuclear Physics in Almaty has a proton accelerator and
an alpha-particle accelerator (light ions), a cyclotron, and a nuclear reactor. The Eurasian
University in Astana has an ion accelerator, and work is being conducted at the National
Nuclear Center in the city of Kurchatov. Similar research is being carried out in countries
near and far abroad.

Previously, mathematical models were developed to describe the processes of radiation
defect formation within the framework of an analytical CP-method using the simple CPF
(probability of transition in n steps) that did not account for energy losses due to ionization
and excitation. Mathematical models have been developed taking into account energy losses
for alpha particles, protons, electrons and ions. Unlike electrons, protons, and alpha particles,
for ions it is necessary to find the actual result area for calculating transition probabilities
and the concentration of cascade regions.

The object of the study is a solid body. The subject of the research is the CPFs depending
on the number of interactions and the depth of particle penetration, the concentration of
cascade regions during ion irradiation. The aim of the research is to mathematically model
the processes of radiation defect formation in materials irradiated with ions, taking into
account energy losses. Accordingly, the following tasks have been formulated:

- to develop algorithms for calculating the CPFs and the concentration of cascade regions
as a function of the depth of the material irradiated with ions, and to create a software
package (SP) for performing the calculations of these characteristics;

- to carry out calculations of the CPFs and the concentration of cascade regions;
- to verify the developed algorithm through a comparison of the simulation results with

experimental data..

2 Literature review and problem statement

The paper [1] presents the results of research aimed at assessing the suitability of glassy
carbon as a material for packaging nuclear waste. It is shown, that ion bombardment with
xenon leads to the amorphization of the glassy carbon structure, which is confirmed by
Raman spectroscopy analysis. However, unresolved questions remain regarding the influence
of defects and radiation damage on the microstructure and surface of glassy carbon. This may
be due to objective difficulties related to the lack of data on the behavior of glassy carbon
under radiation exposure. A way to overcome these difficulties could be the use of computer
modeling methods to predict material behavior. This approach was used in article [2], but
the results indicated that a broader range of factors affecting the microstructure needs to
be considered. All of this suggests that it is advisable to conduct research for a deeper
understanding of the impact of radiation defect formation.
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In article [3], the problem of understanding how the energy transferred to electronic and
atomic subsystems can affect defect dynamics in materials is addressed. The interaction
of displacement and ionization cascades induced by irradiation in silicon carbide (SiC) is
investigated. It is shown that under ion irradiation, a delay in damage accumulation is
observed, which linearly depends on both the increase in ionization and the energy transferred
to the material. However, unresolved questions remain regarding the evolution of defects and
their influence on material properties. This may be due to the limitations of existing models,
making the investigation of this issue relevant. A way to overcome these difficulties could
be the use of more complex models, such as Monte Carlo methods, which are classified as
statistical trial methods and are numerical approaches to solving mathematical problems
by predicting random variables. This method began to be widely applied in the 1970s for
statistical modeling of particle trajectories and calculating the energy distribution transferred
from ions to the atoms of the material. This approach was used in article [4], allowing
for the calculation of particle penetration depth and the determination of radiation defect
concentrations, such as vacancy clusters and interstitial atoms, which became the basis for
quantitative analysis of radiation damage to materials. However, the results indicated that
the dynamics of defect interactions need to be considered, as the algorithm only allows for
the calculation of the distribution and concentration of primary defects, without accounting
for their subsequent evolution.

In article [5], the method of pulsed ion bombardment was used to investigate the
interaction of noble gas ions with potassium tantalate (KTaO3) and its influence on damage
formation and amorphization. It was shown that the mechanism of amorphization is primarily
due to defects caused by ion irradiation. However, the results indicated that additional factors
influencing defect dynamics need to be considered.

Article [6] presents the results of a study dedicated to the formation of nanostructured
TiAlN coatings on AISI 304 stainless steel substrates using reactive magnetron sputtering.
It is shown that irradiation of the coatings with argon ions at an energy of 200 keV leads to
changes in their mechanical properties, including hardness and Young’s modulus. However,
the calculations only considered the distribution of implanted ions, not the defects generated
by them.

Article [7] employs a more detailed analytical method, such as scanning electron
microscopy. However, the results indicated that the influence of various irradiation conditions
on mechanical properties needs to be taken into account.

Thus, existing research highlights the need for further investigation into the effects of
ion implantation and irradiation on material properties, opening new horizons for scientific
research.

One of the key issues of ion implantation is the formation of radiation defects. First and
foremost, it is essential to know the distributions of defects generated in atomic collision
cascades. Despite the well-known numerical methods and models, analytical methods have
undeniable advantages over them, even if they can only approximate certain phenomena. In
this regard, a cascade-probabilistic method has been developed using a CPF, which allows
for the creation of mathematical models in analytical form and, consequently, provides the
opportunity to track the entire defect formation process at any depth of the irradiated
material dynamically.

Previously, a simple CPF was used [8], which did not account for the actual changes in
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the range and angle of ejection of particles after each collision. This is not always justified,
especially if the interaction range depends on energy. Such an approach can at best be used
only for estimating results. Therefore, work has been conducted in this direction, resulting in
mathematical models of the CPF that consider energy losses, the dependence of range and
cross-section on energy for electrons, protons, alpha particles, and ions [9, 10].

This research aims to address the specified problems, which will allow for the management
of defect generation and evolution, ultimately leading to the production of materials with
desired properties.

3 Materials and methods

The interaction cross-section for ions is calculated using the Rutherford formula [11]. The
observation depths are based on data from tables [12]. The obtained interaction cross-section
values are approximated by the following expression:

σ(h) =
1

λ0

(
1

a(E0 − kh)
− 1

)
, (1)

where λ0, a, k, E0 − approximation parameters.
It is not possible to use the provided formula (1) from [13] for the calculations of the

CPF, as it leads to overflow issues when λ0 is small or when n takes on large values (which
can reach several million). By modifying this formula, we obtain:

ψn(h
′, h, E0) = exp

(
−
(
h− h′

λ0

)
+

1

λ0ak
ln

(
E0 − kh′

E0 − kh

))
∗

n∏
i=1

h− h′ −
ln

(E0−kh′)
(E0−kh)

ak

λ0i

 , (2)

where n – number of interactions; h′, h – depths of ion generation and registration, l = 1
λ0ak

In order to optimize the algorithms for calculating the CPF as a function of n and h,
as well as the concentration of cascade regions, Stirling’s formulas (5) and (6) from [14]
are applied. To automate the determination of the CPF result area based on n, h, and the
concentration of cascade regions, Binary [15] and Ternary [16] search algorithms are used.
When ions interact with matter, defects are formed in the form of cascade regions, which
consist of vacancy clusters and interstitial atom aggregates.

To calculate the concentration of cascade regions, the following formula from [9] is used:

Ck(E0, h) =

E2max∫
Ec

W (E0, E2, h) dE2, (3)

E2max =
4(m1c

2m2c
2)

(m1c2 +m2c2)2
E1,

E1 – the energy of the particle after energy losses at h, E0 – the initial energy of the ion,
Ck(E0, h) is defined considering that the energy of the particle at depth h is E1(h), E2max –
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the maximum possible energy gained by an atom, Ec – the threshold energy, E2 – the energy
of the primary knocked-out atom, m1c2 – the rest energy of the ion, m2c2 – the rest energy
of the atom.

The spectrum of primary knocked-out atoms (PKA) is calculated using the (4.26) from [9].
Modifying equation (3) , we obtain:

Ck(E0, h) =
Ed
λ2Ec

(E2max − Ec)

(E2max − Ed)

n1∑
n=n0

∫ h

h−kλ2
exp

(
−h− h′

λ2

)
ψn(h

′)
dh′

λ1(h′)
, (4)

where ψn(h′) is used as (2), Ed – the average displacement energy, n0, n1 –the initial and final
values of the number of collisions from the area of the CPF, k – is an integer greater than
one.

λ1(h
′) =

1

σ0n0(
1

a(E0−kh′) − 1)
∗ 1024 (cm),

λ2 =
1

σ2n0

∗ 1024 (cm).

The cross-section σ2 is calculated using the Rutherford formula; λ1, λ2 – are the mean
free paths for ion-atomic and atomic-atomic collisions, respectively, σ0 = 1/λ0.

4 Results and discussions

When approximating curves, difficulties arise in specifying the initial data λ0, a, E0, and k
in the approximation formula. The approximation expression best describes the cross-section
values, as the theoretical correlation coefficient is sufficiently close to 1. The approximating
curves of the dependence of σ on h are shown in Fig. 4.1. Table 1 presents the approximation
parameters and the theoretical correlation coefficients for boron in silicon at various initial
energy values. The targets are metal - aluminum and semiconductor - silicon.
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Figure 4.1: Approximation of the modified cross-section of the CPF for boron in silicon: E0 =
1000, 800, 500, 200, 100 (1-5) keV . Solid lines – approximation values, stars – calculated data
for the dependence of the cross-section on h

Table 1: Approximation parameters for boron in silicon
E0 σ0 ∗ 106 a k E ′

0 η
1000 1,96808 0,2161 584,57 4,3801 0,9961
800 1,96898 1,199 91,07 0,57988 0,9954
500 1,61508 2,01 55,807 0,2519 0,9887
200 4,16808 0,254 921,908 2,0801 0,978
100 3101242 0,32 2342,4 3,041 0,9811

The CPF represents the probability that a particle generated at a certain depth h′ will reach
a specific depth h(registration depth) after n collisions.

Let’s conduct a study of the CPF and examine its main properties:

1. Domain of the function: E0/ak(k − 1) < h < E0/k.

2. limh−→h′ψn(h
′, h, E0) = 0, limh−→h′ψ0(h

′, h, E0) = 1.

3. limk−→0ψn(h
′, h, E0) =

1
n!
(h−h

′

λ
)nexp(−h−h′

λ
), that is the probability of transitioning over

n steps, taking energy losses into account, reduces to the simplest CP-function without
considering energy losses.

4. The sum of the CPF over all interactions is equal to 1, i.e., K∞ =
∑∞

n=0 ψn(h
′, h, E0) =

1.

5. limn−→0ψn(h
′, h, E0) = (E0−kh′

E0−kh )
−lexp(h−h

′

λ0
) = ψ0(h

′, h, E0)

6. limn−→∞ψn(h
′, h, E0) = 0, that is the probability of a particle experiencing an infinite

number of collisions while traversing a depth from h′ to h is undoubtedly equal to zero.

7.
∫ h
h′

ψn(h′,h,E0)dh
λ(h)

= 1, where λ(h) = 1/(σ(h)n0).
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The results of the CPF as a function of n are presented in Figs. 4.2 and 4.3.

Figure 4.2: Dependence CPF on n for boron in silicon at E0 = 800 keV ; h = 5, 0×10−3; 5, 5×
10−3; 6, 0× 10−3; 6, 3× 10−3 (cm.) (1–4)

Figure 4.3: Dependence CPF on n for selenium in aluminum at E0 = 200 keV ; h = 1, 5 ×
10−4; 1, 7× 10−4; 2, 0× 10−4; 2, 2× 10−4 (cm.) (1–4)

The results of the CPF as a function of h are presented in Figs. 4.4 and 4.5.
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Figure 4.4: Dependence CPF on h for boron in silicon at E0 = 1000 keV ; n =
116611; 306622; 651245; 1421513 (cm.) (1–4)

Figure 4.5: Dependence CPF on h for selenium in aluminum at E0 = 800 keV ; n =
549; 866; 1288; 1564 (1–4)

The results of the calculations of the concentration of cascade regions for boron in silicon
are presented in Fig. 4.6 and Table 2 and for selenium in aluminum in Fig. 4.7 and Table 3.
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Figure 4.6: Dependence of concentration of cascade regions on h during the irradiation of
silicon with boron ions for: E0 = 800 keV , Ec = 200 keV (1), 100 keV (2), 50 keV (3)

Table 2: The boundaries of the region for determining the concentration of cascade
regions for boron in silicon at Ec = 50 keV , E0 = 1000 keV

h ∗ 10−3, cm Ck, cm E0, keV n0 n1

0,1000 0,011332 1000 1 9
0,5000 0,1567 900 1 14
1,1286 0,52027 800 1 20
1,7200 0,946 700 1 27
2,3330 1,3808 600 1 34
2,9770 1,91 500 1 44
3,6600 2,61075 400 1 57
4,0270 3,0578 350 1 65
4,4070 3,5944 300 1 75
4,5860 3,6484 280 1 77
4,7270 4,1036 260 1 85
4,8930 4,3868 240 1 90
5,0640 4,536 220 1 96
5,2390 5,012 200 2 103
5,4204 5,3427 180 4 110
5,6080 5,63 160 6 119
5,8030 5,9128 140 9 129
6,0070 5,9962 120 13 141
6,2215 5,7033 100 18 156
6,4470 4,1819 80 25 175
6,5640 2,40099 70 30 187
6,6860 0 60 36 200
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Figure 4.7: Dependence of concentration of cascade regions on h during the irradiation of
aluminum with selenium ions for: Ec = 100 keV , E0 = 1000 keV (1), 800 keV (2)

Table 3: The boundaries of the region for determining the concentration of cascade
regions for selenium in aluminum at Ec = 50 keV E0 = 1000 keV

h ∗ 10−4, cm Ck, cm E0, keV n0 n1

1,15 451,7 1000 21 173
2,21 477,7 900 74 288
4,33 544,8 800 214 521
6,71 417,84 700 320 678
8,49 412,58 600 429 831
10,23 406,59 500 671 1154
27,6 408,17 400 1713 2441
28,1 397,25 350 1749 2483
29,3 383,21 300 1835 2584
30,6 376,91 280 1925 2695
32,1 369,6 260 2036 2822
33,1 360,18 240 2109 2907
34,2 348,9 220 2189 3001
35,3 335,06 200 2270 3095
36,2 317,6 180 2336 3172
37,6 295,92 160 2440 3292
38,1 266,74 140 2477 3335
39,4 228,11 120 2573 3447
40,9 173,37 100 2686 3577
41,8 89,97 80 2754 3655
42,4 30,11 70 2799 3707

For comparison with experimental data, Fig. 8 shows the distributions of implanted boron
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ions with depth in irradiated silicon as a function of depth at an energy of 50 keV.

Figure 4.8: Distribution of implanted boron atoms with depth in Si: 1 – Experiment (50
keV ); 2 – SRIM (50 keV )

The distribution of implanted boron atoms in Si exhibits clear maxima, and their
concentration is unevenly distributed with depth. Comparing the calculated distributions of
implanted boron ions (50 keV ) in silicon with experimental data shows a good agreement. The
slight discrepancies between the calculations and experimental data for boron are attributed
to the incomplete consideration of the influence of the ambient temperature.

Unlike previously developed mathematical models of radiation defect formation that used
simple CPF [8], this work proposes improved models that:

– take into account energy losses due to ionization and excitation of the medium’s atoms,
as well as the dependence of interaction range and cross-section on energy, achieving a closer
agreement of the obtained results with physical experimental data (within 15%);

– they provide the ability to observe the entire process of ion interaction with the substance
as a function of h.

Unlike electrons [17], protons [18], and alpha particles [19], modeling the interaction
process of ions with matter is more complex [10], [13], [20–23]. In the proposed approach:

– it is possible to perform calculations for various incoming particles and targets from the
periodic table;

– patterns of cascade regions distribution are identified based on threshold energy,
penetration depth, and initial ion energy;

– the actual region of the result is found when calculating the transition probabilities and
the concentration of cascade regions.

5 Conclusion

Algorithms and SP have been developed to calculate transition probabilities as a function of
the number of collisions, the penetration depth of particles, and the concentration of cascade
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regions for ions. This enables the identification of patterns in the behavior of radiation defects
based on the physical parameters of irradiation. All CPF calculations were performed using
(2) , and concentrations were calculated using (4) in C#, with MS SQL Server 2022 used as
the database management system.

The developed SP enables the calculation of interaction cross-sections, ionization losses,
observation depths, and the determination of approximation coefficients. The created
algorithms have enabled the automation of the area of result finding and the identification
of patterns in the behavior of this area.

An analysis of the CPF has been conducted, and the properties that these functions should
possess have been outlined. A comparison of the calculation results of the distributions of
implanted particles for boron (50 keV) in silicon has been made with experimental data.

The study of the distribution of implanted ions and energy losses is crucial for
understanding the processes occurring during ion implantation. The application of the
obtained results can significantly enhance the understanding of radiation processes related
to defect formation in materials irradiated by charged particles.
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