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MaremaTuka Maremaruka Mathematics
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Abdukhali Shynybekov
Al-Farabi Kazakh national university, Almaty, Kazakhstan
e-mail: abd.shyn@gmail.com

ON PROPER EXPANSIONS AND PROPER CONTRACTIONS OF
NONLINEAR OPERATORS REPRESENTED IN THE FORM OF A
PRODUCT

Today there are many works devoted to the questions of expansion and contraction of operators
[1H12]. In all these works the questions of expansion of the additive “minimal” operator and the
questions of contraction of the additive “maximal” operator are considered. In this paper it is
shown that these restrictions on the additivity of the corresponding operators are not essential.
In [10] the questions of proper contraction of a maximal operator represented as a product are
considered, i.e., the relationship between the set of proper contractions of the operator A = LM
and the sets of proper contractions of the operators L and M is established. Here, an abstract
theorem is proved which allows us to establish the relationship between the set of proper extensions
of the operator Ay = LgMj, and the sets of proper extensions of the operators Ly and M. In this
connection, we prove an abstract theorem that allows us to describe the correct contractions of
one class of nonlinear operators represented as a product.

Key words: operator, correct expansion, correct contraction, regular expansion, Bitsadze-
Samarskii type problem.

Ab6nyxanu IIbiHbIOEKOB
A-Qapabu areiHgarsl Kazak yaTTelK yHUBepcuTeri, Anmarsl, Kazakcran
e-mail: abd.shyn@gmail.com
KebeiiTinai Typiumae 6epijireH CbI3BLIKTHIK, €MeC OollepaTopJapabiH AypbICc KeHelTimiMaepi meH
AYPBIC TapbLIBIMAAPbI TYPAJIbI.

Ochbl TaHa OIIEePaTOPJAAPIBLIH, IYPBIC TAPBLIBIMBI MEH JYPBIC KeHEHTiTiMi OOMBIHITA KOITETeH XKY-
MbicTap kapblK Kepren [1H12|. Bya kymbicrapga agaurusri "MuHEMAILIAB" OIIEPATOPJIADIBIH
KeHelTimiMaepi MeH auauTuBTi "MakcHMaJsbibl" OIEPATOPJIAPIbIH TapbLIBLIMIAAPHl KAPACThIPhI-
JraH. ByJl 2KyMbIcTa KapacThIPBLIATHIH OIEPATOPJIAPABIH aIUTUBTLIIN MaHBI3/bI OOJIMANTHIHBI
kepcerinred. Apropapiy |10] enberinge xkeGeHTiHAl TypiHJe GepiireH CBI3BIKTHIK MAKCHMAJIbIbI
OIIEpPATOPJIAP/IBIH, TYPBIC TAPBLILIMIAPhI KAPACTHIPbLIFAH, AFHU aTaaMbll eabekre A = LM ome-
PATOPBIHBIH OAPJIBIK, JTYPBIC TAPBLIBIMIAPHI 2KUBIHBL MeH L yxome M omepaTop/iapbiHbIH OADJIBIK,
JIYPBIC TapbLIGIMIAPBI 2KUBIHAAPHI apachbiHaa e3apa OipMoni coiikecTik opHarTbuiraH. By xy-
Mbicta Ag = LgMj oniepaTopbIHbIH, 6apJIbIK, JYPhIC KeHeliTiriMaepi meH Ly »koHe M| omeparopJia-
PBIHBIH, 0apJIbIK, JIyPhIC KEHEUTLIIMIEP] apachlHia ThIFbI3 OailjlaHbIc OApBIH KepceTeTiH abcTpak-
USRI TeopeMa masesaenred. Ocbl opaiifga JoJIe/IIeHreH TeopeMa KoOeHTiHal Typimnme Oepiiarex
KAChIOIP CBHI3BIKTHIK €MEC OIepaTop/ap CaHAThIHAHBIH, JIYPBIC KeHEWTiIiMIepin cumaTrayra OoJra-
TBIHBI MBICAJI APKBLIbI KOPCETI/IreH.

Tyitin ce3aep: onepatop, AypbIC KEHEHTIIIM, TYPHIC TAPBLILIM, PETYIAPJIbl KeHelTiaim, Buiaaze-
CaMapcKuii THIITEC ecenTep.

Abnyxanu IIbiHBIOEKOB
Kazaxckuit HarmonaibubIl yHUBepcuTeT uMenn aib-DPapabu, Anmarer, Kazaxcran
e-mail: abd.shyn@gmail.com
O KOpPPEKTHBIX PACIIMPEHUSIX U KOPPEKHBIX CYXKEHUSIX HEJIMHEWHBIX OIEepPaTOpOB,
[IPe/ICTABJIEHHBIX B BHU/I€ IPOU3BE/ICHUS
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4 On proper expansions and proper contractions of nonlinear operators ...

Ha cerojusi nMmeroTcsi MHOXKECTBO pabOT, MMOCBSIIEHHBIX BOIIPOCAM PACIIMPEHUsS] U CyKEHUs Olle-
paropos [1H12]. Bo Bcex 3TmxX paboTax paccMaTPUBAIOTCSI BOIPOCHI PACIIMPEHUS aJTATUBHOIO
"MuHIMAIBEHOTO" OmepaTopa M BOIIPOCHI CYKEHUS aJIUTUBHOTO "MakcuMajpHOro" omneparopa. B
JIaHHOHM paboTe MOKA3aHO, 9TO 9T OTPAHUYICHUS 8 JIATHBHOCTH COOTBETCTBYIOIIAX OMEPATOPOB HE
cymecTBeHHBL. B padore [10] paceMOTpeHBI BOIPOCH KOPPEKTHOTO CyZKEHHsI MAKCUMAJILHOTO Olle-
paTopa, IpeJICTaBIMOrO B BUJIE TPOU3BEICHNSI, T.€. YCTAHOBJIEHO B3aMMOCBSI3b MEKJY MHOYKECTBOM
MpaBUJIbHBIX CcykKeHuu oreparopa A = LM u MHOXKeCTBaMU IPABUJIBHBIX CYXKEHUU OIepaTOPOB
L u M. 3nech nokazana abCTpaKTHAs Te€OPeMa, TO3BOJISIONIAs] YCTAHOBUTH B3ANMOCBSI3b MEXK Ty
MHOXKECTBOM MPABWJILHBIX pacuupennn oneparopa Ag = LgMy 1 MHOXKeCTBAMU TPABUJILHBIX Pac-
mupenun ornepatopos Lo u My. B aToit cBa3u, qoka3biBaeTcsa abCTpaKTHAST T€OPEMa, TIO3BOJISATONIAS
ONHMCATH MTPABUJIHHBIE CYKEHUSI OJ[HOIO KJIACCA HEJMHEWHBIX OlEepaTOpPOB, MIPEJCTABUMBIX B BHJE
[IPOU3BEJIEHUSI.

KuitroueBsbie ciioBa: oneparop, KOPPEKTHOE PaCIIUpPEHUsi, KOPPEKTHOE CyKEHUE, PEryJIsipHOE Pac-
mupenune, 3aaada tuna bunanze-Camapckoro.

1 Introduction

In this work we consider following PDE

0*u ou  Ou
2n o . 2D ZL _
W anay T gy gy T Hw ) fley) € CG)

A condition of univariate solvability of one problem of Bitsadze-Samarsky type is shown.
Here C([0,1] x [0,1]) = C(G).

Keywords: operator, proper extension, proper restriction, regular extension, Bitsadze-
Samarsky type problem.

Let us briefly recall some provisions of [10].

Let the operator A = LM act in the Banach space B. Here, L is a certain additive closed
operator for which D(L) C B and R(L) = B. In the domain of definition D (L), we introduce
the norm

[ullon = llullg + [ Lullg, w e D(L). (1)

The closure of the manifold D(L) in the norm will be denoted by 9. It is evident
that 9t is a Banach space. Now, let the operator 9t map the manifold D(M) onto the space
M, i.e., R(M) = 9. Then, we define the operator A by the equality A = LM. Clearly,
D(A) = D(M) and R(A) = R(L) = B. If L and M are certain proper restrictions of the
operators L and M, respectively, then the following holds:

Theorem 1 The operator A=* = M~'L~' is invertible, and its inverse A is a proper
restriction of the operator A.

Additionally, the following lemma is proven:

Jlemma 1 ker A = B, where

B ={g=M"g1+g2,91 €ker L, g € ker M}.
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Using this lemma, an abstract theorem is proved, which provides a complete description of
the set of all proper restrictions of the operator A in terms of the sets of all proper restrictions
of the operators L and M.

Now, we will show that this method can also be applied to a certain class of nonlinear
operators that can be represented as a product.

Within the previously used notation, let us additionally consider a (generally nonlinear)
bijective mapping N : B — B such that N(0) = 0. Then, we can define the product

A=LMN (2)

Clearly, D(A) = D(MN) = D(M) and R(A) = R(L) = B. Let L and M still be certain
proper restrictions of the operators L and M, respectively. Then, the following holds:

Theorem 2 The operator A=' = NYM—1L~' is invertible, and its inverse A is a proper
restriction of the operator A.

Proof 1 The product N~ Ay defines a certain operator A1 Indeed, by definition,
wehcweR(L):D(L)—BandR(L)—D()C‘)ﬁD( M) D(M)zim.
Therefore, the operator A=' = N~'M~'L~" is well-defined with domain D(A™') = B and
range R(A™') = N"'M~'D(L) C B.

Now, if for some f € B the equality A~ f = 0 holds, then

f=LMN(N*MIL7 ) = A(A71f) =0,

which means that the operator A has an inverse operator A. Since the operator A7 is
continuous, it follows that A is a proper restriction of the operator A. The theorem is proved.

Previously, we considered proper restrictions of operators that can be represented as a
product. Now, we will show that it is also possible to consider proper extensions of such
operators.

Let L be a certain closed additive operator with domain D(L) C B and range R(L) = B,
where B is a Banach space. Let L be a restriction of the operator L, which has a continuous
inverse Ly on R(Lg) and satisfies R(Lg) # B , i.e., the operator Ly has a continuous left
inverse.

By taking the closure of the manifold D(L) in the norm (), we obtain the Banach space
M. Let My denote the closure of the manifold D(Lg) in the norm (I]).

Let the operator M satisfy the following conditions:

a) D(M,) C B, R(My) C Mo;

b) On the set R(My), the operator M, has a continuous inverse M, *

Then, the product Ay = LoM, is well-defined, and we have

D(Ay) = D(My) C B, R(Ap) = R(Ly) C B.

Clearly, the inverse operator Ay' = My 'Ly is well-defined on the set R(Ay).

Let L be a regular extension of the operator L, i.e., Ly C L C L. Let M be a proper
extension of the operator My. Then, the following holds:

Theorem 3 The operator A~' = M~'L! is invertible, and its inverse A is the correct
extension of the operator Ag.
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Proof 2 It is evident that the operator A™' is defined on the entire space B. Now, let us
show that the operator A~ is invertible. Indeed, zf for some f € B we have A~*f =0, then
ML= = 0. Since the operators M~ and L™' have inverses, we obtain L™ f = 0, which
implies f = 0. Therefore, the operator A= (A D=1 exists. Now, it is sufficient to show that
Ay C /Nl

Indeed, if ug € D(Ay), then Loug € D(M,y), i.e., there exists an element fo € R(Ap) such
that fo = Agug and ug = Aalfo. Then,

lf =ML~ 1f M~ IL fo lL fo = Up-
Therefore, uy € D(A), i.e., Aug = fo. The theorem is proven.

Next, using this theorem, as an example, let’s consider the proper extensions of a certain
nonlinear differential operator.
In the space C([0, 1] x [0,1]) = C(G), we consider the following differential equation:

0%u ou Ou
2n 2 2n—1
ozoy " oz oy

= flz,y),  [flx,y) € C(G), (3)

Let L denote the operator acting as the differential expression u; with the domain of
definition:

D(L) = {ueC(G): g—;‘ecw)}

Let M denote a Banach space obtained by closing the manifold D (L) with respect to the
norm:

[ullar = Nlulle@ + [ Lullee): (4)
Let Lo be the restriction of the operator L with the domain of definition:
D(Ly) ={u e D(L) : u(z,0) = 0,u(x,1) = 0}.
Then,

R(Lo) = {f(z.y) € C(G /fm Jir = 0} € C(G).

In the set R(Lg), there exists a continuous inverse L;':

Ly'f = /Oyf(x,T)dT

Let My denote the Banach space obtained by closing D(Lg) with respect to the norm (4).
Let My denote the operator My : D(My) — R(M,), where D(M,y) C C(G), R(M,) C By,
and: 5
D(My) = {u € C(G) : UQnE)_Z € By, u(z,0) = u(x,1) = 0},

R(Mp) = {f € By : /0 F(t, y)dt = 0}.

6
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In the set R(My), there exists a continuous inverse M

My'f=v2n+1 [/If(t,y)dt
0

} 1/(2n+1)

Let the operator L be generated by the following boundary value problem:
So=flz,y), flz,y) € C(G),
u(z,0) =0,

The operator L is a regular extension of the operator Ly: Ly C L C L, and:
L7'f= / f(x,7)dr.
0

Also, the operator M, generated by the following boundary value problem:

UQH%Z:f(x7y)a f(:v,y)EB,
u(0,y) =0,

is a proper extension of the operator My, and its inverse is:

3 p 1/(2n+1)
M7 f=von+1 U f(t,y)dt] .
0
JIlemmva 2 The unique solution to the boundary value problem

u2"68;§y +2n - uzn_l%% = f(z,y), [flz,y) € C(G),
u(z,0) =0, u(0,y)=0,

has the form:

z py 1/(2n+1)
w(z,y) =v2n+1 [/ / f(t,T)dth:| : (8)
o Jo
Proof 3 According to Theorem[3, the operator
At =ML

is invertible, and its inverse operator A is a proper extension of the operator Ay = LoMj.
Therefore, from (@ and (@, we conclude that the boundary value problem

0%u Ou Ou
2n Mm - n-1Z7277
u(0,y) =0, (10)
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(11)

8 'U/2n+1<x,0) — 0

Ox
has a unique solution of the form (@ The boundary value problems (@ and (@f are

equivalent. Indeed, integrating the condition with respect to z, we get u***1(x,0) —

u?*1(0,0) = 0, and from (§), we have u(0,0) = 0, so we obtain that u(z,0) = 0.
Now, let Lo be the operator generated by the following boundary value problem:

du
%_ (‘rvy)? f(x7y> GC(G>7
ar(y)u(0,y) + ax(y)u(o(y),y) + as(y)u(l,y) = 0,
Ou(0,y) _
or 0
where © = ¢(y) is a smooth curve located in the region G, a;(y) € C|[0,1], and
(12)

a*(y) = ai(y) + az(y) +as(y) # 0,y € [0, 1]

It is clear that:
(13)

Lilf = /0 F(ty)dt —

R(Ly) = {f(z,y) € C(G) : f(0,y) = 0}.

As a regular extension of the operator Ly, we take the operator Li, generated by the

az(y) [V Casy) [
a*(y)/o f(t y)dt a*(y)/o f(t y)dt,

and

following boundary value problem:

ou
% - f(ﬂ?, y)7

ar(y)u(0,y) + az(y)u(e(y), y) + as(y)u(l,y) = 0.
For this problem to have a unique solution, it is necessary and sufficient to fulfill the

condition ([19) (i.e., a*(y) # 0), and the unique solution is given by (13).
As the operator My, we take the previously considered operator, i.e., the operator M,

D(My) — R(M,), where D(My) C C(G), R(My) C By, and:
D(My) ={u e C(G) : uzn% € By, u(x,0) = u(z, 1) = 0}.

We also consider the operator M, generated by the boundary value problem (@ This

flz,y) € C(G),

operator is a proper extension of the operator My, and:
R x 1/(2n41)
M7 f=vVon+1 U f(t,y)dt] .
0

Then, by Theorem @ we have that the operator A; = LM is a proper extension of the

operator Ajg = LigMy. Thus, we have proven the following theorem:

8
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Theorem 4 In order for the problem

on Ou Lo, u2n71%au

0xdy ox 8_y -

flz,y), flz,y) € C(G),

a1 (y)u(0,y) + ax(y)u(é(y), y) + as(y)u(l,y) =0,
u(z,0) =0,

to be uniquely solvable, it is necessary and sufficient to fulfill the inequality a*(y) # 0, y €
[0, 1], and its unique solution is given by:

P Y ay(r) o(7) 1/(2n+1)
/O/Of(t,T)dth—/O a*(T)/O f(t, m)dtdr —

} 1/(2n+1)

u(z,y) =vV2n+1

)

—Von+1 {/Oy Zi’ET> /01 F(t,7)dtdr

7)
where
a*(y) = a1(y) + az(y) + as(y) #0, y € 0,1].

Remark 1 : The results of Theorem[]] can also be obtained by applying Theorem [ In this
case, as the bijective map N : C(G) — C(G), we take the operator N acting as N (u) = u*"*1,
u e C(G).

2 Conclusion

In this work an abstract theorem is proved which allows us to establish the relationship
between the set of proper extensions of the operator Ay = LoM, and the sets of proper
extensions of the operators Ly and M,. In this connection, author proves an abstract
theorem that allows us to describe the correct contractions of one class of nonlinear operators
represented as a product.
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OPTIMAL APPROXIMATION OF SOLUTIONS OF POISSON EQUATION
BY INITIAL DATA IN THE FORM OF ACCURATE AND INACCURATE
INFORMATION OF TRIGONOMETRIC FOURIER COEFFICIENTS

Partial differential equations along with a function, derivative, and integral are basic mathematical
models. Therefore, the problem of their approximation by accurate and inaccurate information with
the construction of optimal computational aggregates (approximation methods) of approximation
is relevant and many articles are devoted to this issue.

In the article is considered the problem of approximation of solutions of Poisson equation with
the right-hand side f from the Nikol'skii classes H5(0,1)% in the Lebesgue metrics L?(0,1)* and
L°°(0,1)%. The orders of error of approximation of solutions of the Poisson equation by accurate
and inaccurate information in the form of trigonometric Fourier coefficients of f are obtained.
Namely, a lower bound for the approximation error based on accurate information is found for all
possible computational agregates using an arbitrary finite set of trigonometric Fourier coefficients.
A computational agregate (approximation method) by the trigonometric Fourier coefficients of the
right-hand side f of the equation is constructed that confirms this lower bound. The boundaries
of €x of inaccurate information preserving the order of error of approximation by accurate
information are established.

Key words: Poisson equation, approximation by accurate and inaccurate information, Nikol’skii
classes, optimal computational aggregate, boundaries of inaccurate information.

A. Apsicranramukpizer , A 2K, 2Ky6Ganbimesa?
K. Ky6amos arbinnarsl Akrebe onipaik yHuBepcureri, Axkrobe, Kazaxcran
2J1.H. T'ymuieB areianarsl Eypasust yaATTHIK yHEBepcuTeTi, Acrana, Kasakcran
*e-mail: arystangalikyzya@gmail.com
Tpuronomerpusaiblk Pypbe k03D PUIMEHTTEPIHEH AJBIHFAH I9J1 2K9HE JI9JI eMec bacTankbl
aknapar ooiibmamma Ilyaccon TeHaeyiHiH mermiMaepin onTUMAaNIbI 2Ky BIKTAY

Hepbec TybIHABLIBL JuddepPeHIAIBIK, TeHAeYIep (DYHKIMS, TYBIH/bI XKoHe HHTerpajMeH KaTap
HEri3r MaTeMaTHKaJIbIK, MOJIEIbIep KaTapbiHa KaTaabl. COHIBIKTAH, 1)1 2KOHE JI9JI eMeC aKIapar
GOMBIHINA OJIADJLI XKYBIKTAYIbIH, ONTHUMAJJBI €CEIITEeY arperarTapbii (XKYBIKTay 9iCTepiH) Kypy
Moceseci ©3eKTi OOJIBIIT TAOBLIABI KOHE OCHI MICEJIEre KOIITEreH MAKAJIAIAD apHAJIFaH.
Maxasaza f on xarel H}(0,1)°® Hukonbckuii Kiacbiaga kararbie [lyaccon Tenzeyinin mernmim-
nepin L2(0,1)* sxone L>°(0, 1) Jleber MeTpUKaapbIHIa KYBIKTAY ecebi KapacThIpbLIaIbl. f hyHK-
[USICBIHBIH, TPUTOHOMETPUIIBIK, Pyphbe Ko3hdUImeHTTepi TypiHae OepiireH Mol KOHE JI9JI eMecC
akmapar 6otibrama [lyaccon Ten ieyinin mernmimaepin XKybIKTay KaTeTIriHiH peTi ajabiHIbl. ATarr aii-
TKaHa, TpUroHoMeTpusiiblK Pypbe KoabduimenTTepiHiy Ke3 KeJIreH aKbIPJIbl JKUBIHBIH KOJIIaHA~
HBITI, DAPJIBIK, MYMKIH €CeTey arperarTapbl VIITiH 19/ aKIapaTTapra HeTi31eareH XKy bIKTay KaTeTi-
riHiH, ToMeHHEH Garajaybl aJblHIbl. ToMeHHEH Garajiay/ bl PACTARTLIH ecenTeyin arperar (Kybl-
KTay OJ1icl) TeHJIey/IiH OH YKaK TPUroHOMeTpHsIbIK Pypbe KoadduimenTrepi GOMBIHIIA KYPBULIHL.
o akmapar OOUBIHINA YKYBIKTay KATETITIHIH PETiH CAKTAWTHIH JI9JI €MeC aKIMapaTThIH €y IIeKa-
paJjiapbl aHBIKTAJIJIBL.

Tyitin ce3znep: Ilyaccon Teraeyi, 1o/ KoHE DT eMec aKIapaT OOUBIHINA XKYBIKTay, HUKOIbCKMit
KJIACCTaphl, THIMJII €CENTey arperar, JI2JI eMeC aKlapaT IeKapaJjaphbl.

© 2025 Al-Farabi Kazakh National University
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A. Apsicranramuksss’l , A 2K. JKy6ambimesa?
! AkTrobuHCKuIit permonanbHEl yHusepcurer uM. K. 2Kybanosa, Akrobe, Kazaxcran
2Enpazuiickuit HanmumoHaJbHLIH yEIBepcureT uM. JLH. T'yymrepa, Acrana, Kazaxcram
*e-mail: arystangalikyzya@gmail.com
OnrumanbHOe NIpudIN2KeHUe penieHnil ypaBHeHnil IlyaccoHa 1mo nmcxogHbIM JaHHBIM B BHE
TOYHBIX U NPUOJINKEHHBIX 3HAYEHU TpUroHoMerpudyeckux KoddduiimenToB ®ypbe

Huddepenmnmaabubie ypaBHEHNS B YACTHBIX TPOU3BOTHBIX HAPSIY ¢ (DyHKIHEH, TPOM3BOIHOM, MH-
TErpajioM OTHOCSITCS K OCHOBHBIM MATEMATHIECKUM MOJIEJISIM.

CiefoBaTe/IbHO 3a/a49a UX PUOJIMKEHUsI 110 TOYHBIM U HETOYHBIM JIAHHBIM C ITOCTPOEHUEM OITTH-
MAJIbHBIX BBIYUC/UTEIbHBIX arperaToB (MeTOIOB IPUO/IMIKEHNs) ABJIIETC aKTyaJbHON U JaHHO-
My BOIIPOCY TOCBEIIEHO MHOXKECTBO crareil. B crarbe uzydaercs: 3ajada TPUOIUKEHUST PEIIEHUI
ypasrenus [lyaccona ¢ npasoit yacroio f u3 kiaaccoB Hukosnbckoro H3 (0,1)° B JlebGerosoii meTpu-
kax L2(0,1)* m L°°(0,1)*. IToyIensl TIOPSIKA TOTPEITHOCTH TIPUOINYKEHNs PereHnii ypaBHeHus
[TyaccoHa 110 TOYHBIM U HETOYHBIM JIAHHBIM B BHJe TPUINOHOMETpUIecKux KoddduimeaToB Oypbe
dbyuknun f. ImenHo, HaiijileHa OIleHKa CHU3Y IIOIPEITHOCTU TPUOJIMKEHUSI 10 TOYHBIM JTAHHBIM 110
BCEM BO3MOXKHBIM BBIUUC/IUTEBHBIM arperaTaM, UCIOJIb3YIONUM KOHEUHBII HAOOP TPUTOHOMET-
puueckux koadbdunuenro Pypoe. [Hocrpoen BuraucauTe bHBI arperar (MeTO MPUOIIMKEHUS )
1o TpUroHOMeTpraIeckuM Koaddurmentam Oypoe npaBoit qactu f ypaBHEHUsI, TOTBEPK TATOIINIT
JIAHHYIO OIEHKY CHU3Y. YCTAHOBJIEHBI TPAHMIIBI £y HETOYHON MHMOPMAINU, COXPAHSIOIIIE TOPs-
JIOK yOBbIBAHME IO TOYHOU WHQOPMAIIAHN.

Kurouessbie ciioBa: ypasaenue [lyaccora, npubmKkeHre o TOYHBIM U HETOYHBIM JTAHHBIM, KJIaC-
cbl HUKOTHCKOTO, ONITUMAJIBLHBIH BBIYUCIUTEBHBIN arperaT, TPaHUIbl HETOTHON HHMOPMAIIH.

1 Introduction

Solutions of partial differential equations, even when expressed explicitly by means of Fourier
series in the eigenfunctions of the corresponding differential operator or convolution with the
corresponding kernels, being represented by series or integrals, in fact again infinite objects.
Therefore, the problem of approximating them with finite objects again arises. In the article
is considered the problem of approximation of solutions of Poisson equations in the sence of
computational (numerical) diameter (denoted by C(N)D). Poisson equation has an various
applications. One of them is that it describes the distribution of an electrostatistics, potential
theory, scalar field, such as an electric potential or gravitational potential, in space. Thus, its
physical meaning is that it relates the distribution of field sources to the field itself. Therefore,
it is important to take this equation into account. Let at first consider the definition of
computational (numerical) diameter problem.

In computational (numerical) diameter the initial definition is (see, for example, [1]- [2])

5N(€N; DN)Y = (SN(SN;T; F; DN)Y = mf 6 (SN7 (l( ). ))Y
(IN)son)eDN

where

dn(en; (l( )790N>> =on(en; T5 F; (Z(N)HON))Y:

= e IO e WA B0 Rl
S

CIUNEE

(T 1 .N)

Here, a mathematical model is given by the operator T : FF — Y. X and Y are the
normalized spaces of functions defined on 2y and €y respectively, I’ C Y is a class of
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functions. Numerical information [V) = [(M)(f) = (l%)(f),...,lj(\],v)(f)) of volume N(N =

1,2,...) about f from class F' is taken by linear functionals l%)(f), - lJ(VN)(f) (in general, not
necessarily linear). An information processing algorithm @n(z1,...,2x;+) : CN x Qx — C' is
a correspondence, which for every fixed (zy, ..., 2xy) € C as a function of (-) is an element of
Y and ¢n(0, ...,0;-) = 0. If the class of functions under consideration is centrally symmetric,
then the last condition ¢x(0, ...,0;-) = 0 can be ignored. The record ¢y € Y means that ¢y
satisfies all the conditions listed above, and {py}y is a set composed of all p € Y. Further,
(IM): ) is a computational aggregate of recovery from accurate information for the function
f € F acting according to the rule gpN(l](\}), ...,lg\],v); -). The recovery of T'f by inaccurate
information is proceeding as follows. At first the boundaries of the inaccuracy are set: a vector

EN = (55\1,), ...,5%\7)) with non-negative components. Then, the accurate values l](\;)( f) are

replaced with a given accuracy EE\T,) > 0 by approximate values z, = z:(f), |z — Zg) (N < 8%)
(tr = 1,..,N), numbers z, = z(f) (t = 1,...,N) are processed using the algorithm ¢y
up to the function ¢y (z1(f), ..., 2x(f); ), which will constitute the computational aggregate
(IM):on) = on(z1(f), ..., 2n(f); -) constructed according to information of the precision ey =
(W, .., e

Let Dy = Dy(F)y be a given set of complexes (lgvl), o l%v); on) = (M, oy), we
emphasize, operators of recovery by accurate information.

For nonnegative sequences {Ay} and {By}, we write Ay < By (or, equivalently Ay =
O(By)) if there exists a positive constant ¢ > 0 such that, for all N(N = 1,2,...) hold
Ayxn < ¢Bpy. Furthermore, we write Ay < By if both Ay <« By and By < Ay hold
simultaneously.

Within the framework of given notations and definitions, the problem of optimal recovery
by inaccurate information, framed under the name computational (numerical) diameter,
according to the [1]- 2], consists in a collective sense in sequential solution of the following
three problems: C(N)D-1, C(N)D-2 and C(N)D-3.

For given T F';Y; Dy:

C(N)D-1: an order of < 0x(0; Dy)y = on(0;T; F; Dy)y is found with the construction

of a specific computional aggregate (Z(N),@N) from Dy = Dy (F)y supporting ordering
= 0n(0; D)y

C(N)D-2: for (Z(N),GN) is considered the problem of existence and finding a sequence

eEn =en(Dn; (1 );GN))Y with non-negative components such that

z(N) —

on(0; Dy)y = on(En; (I 5 0N))y =

= sup{||Tf(-) — By (21, 2wy : f € F |l (f) — 2| <P (r € {1,..., N})}

with simultaneous satisfying the following expression

Vin T 400(0 <y < nvy1, My — +00)

7(N)

Sl

;PNn))v/0n(0; Dy)y = +00;
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C(N)D-3: massiveness of limiting error £y is set: as huge as possible set My (Z(N);GN)
from Dy (usually associated with the structure of the (Z(N);@V)) of computional aggregates

(IMN) o) is found, such that for each of them the following relation holds
Vnn T +00(0 <y < Nny1, v — +00) -

lim dn (nven; (I, on))y /n(0; D)y = +oc.
N—+o00

In the article is considered the following concretization of computational (numerical)
diameter problem. T'f = u(z, f) — the solution of Dirichlet problem of Poisson equations

*u  O%*u 0%

Au= 4 + ...+ —
dx?  0x3 12

= f(x)a (1>

on a unit cube [0, 1]°, where f(x) = f(xy,...,z5) € F = Hj — Nikol’skii class, Y are Lebesgue
metrics L? and L* and recovery is performed over all computational aggregates, in which
numerical information is specified by trigonometric Fourier coefficients with an arbitrary
spectrum:

~ -~

Dy =&y = {IP(f) = FmD), 1) = Fm™) :mW € Z5( =1,..., N)} x {on}y,

where Y is L? or L,

f(m) = fla)e ) gy

[0,1]°
are trigonometric Fourier coeficients, (m,x) = mix; + ... + msxs, m = (my,...,mg), * =
(@1, .oy Ts).

In this article, the computational (numerical) diameter problem in the specified
concretization is solved in parts C(N)D-1 and the first part of C(N)D-2. Let’s move on
to a brief overview of the issue.

One of the first result, when f is odd, approximation of solution to Poisson
equation is considered by N.M.Korobov in [3, p. 187-189|. There are approximation
operator is constructed on the value of the function f (initial condition) at the points

({%},...,{“&k ),k € 1,..,N, ({b} — fractional part of b). If ay,...,as are the optimal

coeflicients (see definition of optimal coeffitients in |3, p. 96]) modulo N and /8 index, then

(InN)Z+*
the approximation of error is O |
N2 275

The authors of [4] were achieved sharp estimates in the power scale for the approximation
error, which is almost square times better in comparison with previous result of Korobov.

. . InN)(r+2/s)(s—1) InN)"(B+s)+s\ .
More precisely, with accuracy O (%) and O (%) in cases 1 — % — % >0

and 1 — % — % < 0 respectively.

For practical purposes, however, in [5] got the result about sampling on sparse grids by the
Smolyak’s algorithm. In 6] considered the approximation of a function in the Besov class and
used it to approximate solutions of Laplace equation. As well as, approximate the solution of
2D and 3D Poisson’s equations by the Haar wavelet method is considered in [7]. Research on
the problem of approximating solutions of the Poisson equation with accurate information
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in anisotropic Korobov classes E™"+(0,1)° has been studied recently in the papers [§]-
[9]. The problem of approximation of solutions to Poisson equation with right-hand side
from Nikol’skii-Besov classes Bj,(0,1)* and anisotropic Korobov classes Em-7s(0,1)° by
the value of the function at the points ({&Nk} . {ask ) k € 1,...,N is considered in [10].
Approximation by inaccurate information of solutions of P01sson equatlons with right-hand
side f € E™ " is considered in [11] and f € E! and W cases are considered in [12]-
[13] respectively. There are obtained upper bound of error of approximation by innacurate
information from values at the points of f in uniform metric. In [12|, the author approximates
the solutions of the Poisson equation in the L? metric using an approximation operator
constructed from a finite set of Fourier coefficients of the function with right hand side
f € EI. Here is given a complete solution for C(N)D problem.

2 Necessary definitions and statements

Definition 1 (see |14], p. 75-76). The Nikol’skii class Hj(0,1)° (s = 1,2,..;7 > 0;1 < ¢ <
+00) is the set of all functions f(x) € L9(0,1)® that 1-periodic in each of their variable
satisfying the inequality

sup 27| 3T F(m) - emima) <1, (2)
7Ol gmi<2 Lo(o,1)s
where the square bracket [...] means the integer part. For everywhere below for m =

(my, ..., ms) we set ||m| = max;_q,__s|my|.

Let F' be some class of f(z) = f(z1,...,xs) functions 1-periodic in each variable whose
trigonometric Fourier series converges absolutely.

Assume that f(0) # 0. It is easy to verify that, for any boundary condition there exists a
function w(z) depending on this condition such that w(x) is continuous on [0, 1}* and Aw = 1
on [0, 1]°. Moreover, solution of (1) has the form

wolr, ) = () - 10) ~ 15 Z*%ew(mw), (3)

If f(O) = 0, then for a solution of (1) to exist, it is necessary that the boundary condition
u|¢ = h(x) on the boundary of G satisfies

_ _L * f(m) 2mi(m,x)
h(z) = P} (m,m)e (z € G).

If f(x1,...,x5) is odd in each of the variables z1, ..., z; then the function (see, |3|, p.187-189)
1 * f(m> 2mi(m,x)
u, f) = e (m,m)8
mezs
is a solution of (1) with zero boundary condition on [0, 1]°. Here and everywhere below the
asterisk “*” over the sum means that m = (0, ...,0) is dropped in the summation.
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3 Main result and its proof

Theorem 1. Let are given positive integer s and r > s/2. Then the following statements
hold (N = (2" +1)*, n=1,2,...)

C(N)D-1:
(SN(O, DN)LQ =

= inf sup ||ue(-, f) — Fim®W e Flm™) x ‘ = _%2’ 4

ez ez (- f) = en(f(m'), ., f(m); ) o) (4)

PN
upper bound is sharps on computational aggregate
s ey

—_ —(1 —(N)\. o 2mwi(m,x
@N(f(m( )>77f<m( ))7'7:) _w(x)f(())_meI (m7m)e ( )7 (5>

here in (5) the set {m") = 0,m?, ..., m™M} is some ordering of the set Ion, i.e.

Ly ={m = (my,..,m,) € Z° : m;| <2"(j = 1,2,...,8)} = {m = 0,m® ... .m"M}. (6)

~ ~

C(N)D-2 (first part): For computational aggregates @y (f(m"), ..., f(m™), z) from
(5) and for the numerical sequence

r4+2

N~ ifs < A4,
En<{ (InN)"z- N~ ifs =4, (7)
N=572,ifs >4
satisfy
ON(0; Dn)r2 < On (En; DN )2 <
= inf swp [t £) = on (Fm®) + 502, o Flm®)+
mMezs, . . mMezs, feHs,
o (VA<
=1,...,N)
N N — 1 1 iy
R = s e ) = en (RO + B P
€H),
SIS NI IES
(r=1,...,N)
N N _r+2
+20 )| = v, (8)

Proof. Let f belongs to Nikol’skii classes H}. Then since r > s/2 from the definition of
class Hj follows u,(z, f) € L*(0,1)%. Let n be a given positive integer, we set N = |[on| =
(271 + 1)%. According to the definition of Dy, we set

By = {mY = 0;m?;..;m™}, By = Ion,

-~ —q -~

(T () = FmDy = F(0),17)(f) = fmD), j = 2,3, ..., N.
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Let’s start with an upper bound for the value of dy (én; Dy);> from C(N)D-2. Let are

given {ny 71 {’y](\,m)}mebn, ]’y](\m < 1(r = 1,...,N). By (3) and (5), we have (L* =
L%(0,1)%)

T 1 1 — N
|t 1) = Ba(FEED) + 8, . ) + 804050 | | <
7r==(1) £(77(N) ~ (0 1 *gN7§Vm) 2mi(m,z)
< [Juate 1) = o (FE), . T )i0)|| @iy’ = g5 30 e <

melon ! L2
Z f 27rz(m x) + (x)g 0) L *gN'Y](Vm) 627T1;(m7x) =
(m, m) NIN T g2 (m,m) n

mGZS/IQn L2 melyn 12

= [Lallze + (12l 22

Estimating from above for ||I1]|2 gives upper bound for dy(0; Dy)z2 in C(N)D-1. We will
evaluate upper bound of the error of approximation in L? metric by using (2), (3), (5) and
Parseval’s equality:

~ -~

u(z, f) = on(fmW), ., f(m™); )

13 = |

_ flm) 2rilma)|| — |f (m)?
Z mm) Z Z 167r4(m,m)2<<

meZS/Ign 2 JEnH1 20 Iml|<27 1!

<L 2 T <<Z 2 G -’f<m3\mj\2>2<<

J=n+12i<||m||<27+1 J=n+12i<||m| <29+ ST

+oo
1 -~ Dy
R B S EY; TE) e SR o

j=n+1 29 <||m|| <29+ J=n+l
< 2—4n 2nr - N~ 2(T+2>
Further,
sup ||uw(z, f) — Pn( (m(l)), ...,f(m(N));x)H < N~
fEHS L2
and
~ o~ _r42
O DN = it s [lu(e, ) — e (Fm®), o Fn™)a)|| < N7
m(l)EZS ..... (N)EZS feHr L2

which is the upper bound in (4).
Then let’s evaluate || 15|12 (see(7))

1
Iollrs = ~ o 1 Ny 2mi(m,z) ~ o 1 :
|| 2”L2 = W(ZL‘)SN’YN A2 (m m)e < en+ Z EN (m m)g <
mé&lgon ! 2 melon ’
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N|=
|

n—1 n—1
_ 1 N 1
<L EnN 1+ E E (m2+...—{—m2)2 <K EnN 1+ E 27] E 1 <
=0 20 <|jm||<2i+1 V1 s 7=0 7 2i<|m|l<2i+1

1
n—1 2 n—1
<z 1+ (Z = 2j8> z 1+ (Z 2j<s—4>)
=0 ‘

7=0
If s < 4, then
1
n—1 2
~ - ~ 742
L)l < en | 14 <Z 23(84>> =&y =< N~
=0
If s =4, then
1
n—1 2
~ ~ 1 ~ 1 1 r+2 1 r+2
|22 < En 1—|—< 1) =<éey-nz<ey-(InN)2 < (InN)"2-N"« -(InN)2 < N~ 1
=0
If s > 4, then
1
< ; ? n(s—4) 1_2 r_1 1_2 r+2
1Ll < En [ L4+ | ) 2007 =Fy-2 7 =&y-NisxN:i2.N27s =N "%,
=0
Then, for f € H} and {7](\; ~_1, such that |fy(7)| <1 (r=1,..., N) satisfies
y = N
(@, ) = 2n(FO) + 80, FO) + 805 052) | < Mhillee + 1 Ellze <
Further, by the arbitrariness of the function f € Hj and{%(\? A |'y(7)| <1l(r=1,..,N)
oy n_(1 oy N
s [l £) =BT + EPR o T + 200000 | <
eHy,
CI AN e
(r=1,...,N)

In the end, we obtain the required upper bound in C(N)D-2

(@, f) — on (FmM) + 2071, .

OIN(EN; DN)r2 = inf sup ’
mMezs, . . .mMNezs, feHT

PN T T
(VL I,
(T 17 ’N)

f(m(N))"‘g{J\]fV)’YN, H <

and, by the definition of 05 (0; Dy )2 and dn(En; Dy )2

5N(O; DN)L2 < 5N(§N;DN)L2 <
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Let’s evaluate lower bound for dx(0, Dy)r2. Now, let us prove the lower bound in the
case of approximation from accurate information. Let are given an integer N > 1 and set
Ay ={mW, ..mW™) :mU) € Z5(j = 1,..., N)}. According to the choice of Dy, we define the
functionals I (f) = f(m®), .. I (f) = F(m™). Let @n (7, ..., 7x: %) also be an arbitrary
algorithm for processing information, such that @n(0,...,0;2) = 0. We define an integer
n =mn(s,N) > 1 from the conditions |lon| > 2N and |I3.| < N.

Let consider the function

gy =Y Talmenime), (10)

melon \AN

where @™ = k;(m) = k(j,n, s) when [2/(™7Y] < ||m| < 270", m € I \ Ay, j =0,1,...,n.
For the number of points of Isn \ An:

N < |In| > |I» \ An| > |Ion| — [AN] > 2N — N = N,

therefore

|]2n \ AN| = N.
By using Parseval’s equality, let define the norm of g
gl = swp 27 Y ke =

=0,1,..., v .
! " < ml <27,

NI
[

= sup 277 Z *]kj\Q = sup 207 kg Z 1| <
[29-1]< [ml|<2, =0 [29=1)< lml| <27,
m¢AN m¢AN

< sup 27 k- 2% — sup 200+ k;.
7=0,1,....n 7=0,1,....n
k; is defined from the condition [|gflg; < sup;_q;,.,2/"2) - k; < 1 (in that case g belong
to Hj class)

kj=2790%2) 5 =0,1,...,n. (11)

By putting (11) into (10), there are exist a positive constant ¢(s) such that

g(x) = c(s)g(z) = c(s) Z *E,(Im)eQWi(m’x) = c(s) Z Z *2_j(r+§)62”i(m’x).(12)

melgn\AN 7=0 mGIQn\AN,
2771 ImlI<2

Then, according to definition of g(x) satisfies l](\})(g) =g(mW) =0,.., Z%V) (9) = g(m™M) =
0, so it should be px(G(m™M),...,g(m™);.) = 0. Then for the lower bound of error of
approximation by accurate information we have

uy(z, f) — on (f(m(l)), . A(m(N));xM

>

sup 2
LQ

fEHE(0,1)*
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> |Juw(z, 9) — on (GmW), ... g(m™);2) ||, = llue (2, 9)ll 2 -

By definition of function g satisfies g(0) = 0. Let calculate the error by using Parseval’s
equality.

2
1

_(m

s . b * Uy, 2mi(m,) —
ol 93 = @) 50) = 15 30 e )

meElm\ Ay L2(0,1)s

2
o ||~ T 2mi(m,e) = - =
472 Z (m,m)e Z (m, m)*
mEI2n\AN

LQ(O,I)S m€]2n\AN

n—1 . A 1 2
=y ¥ (el ) >
mi+ ...+ m:

J=0 27 <||m|| <2741,
me¢AN

n—1 2
s * ]_
someny ) >
75 j

- ) ) max;—y, ...
=0 29 <|jm||<2i+1, ’
n—1
1 *
B DIy
> 2 > i 1>
J=0 V< Im||<27H,

meg¢AN

n—1
> 2—2n(r+%)—4n—4 . Z Z 1 = 2—2n(r+%)—4n—4 . |[2n \ ANl -

J=0 27 <|m||<27+1,

— 2—2nr—ns—4n LQns 2—2nr—4n — N_%T_%.
Finally, for (4) we have
sup |[us(e, /) = on(Fm®), ... Fn™a)| > N5 (13)
feHs L2

Then, due to the arbitrariness of m®,...,m®) from Z* and the information processing
algorithm ¢y, satisfies

on(0, D)= inf sup |[wa(e, £) = on(Fm®), . Fon™)a)| > N2 04)
m(l)GZS,...,m(N)EZS;fGHg L2
PN

As a result, by (9) and (14) we have (8)

(SN(O, DN)LQ = 5N(gN; DN)L2 = N_HS—Z.

Theorem 1 is proven.

Theorem 2. Let are given positive integer s and r > s/2. Then the following statements
hold(N = (2" +1)%, n=1,2,...)
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C(N)D-1:
5N(0; DN)Loo =
= inf su — FimM), ..., fm™); . H = N5 i3 (15
mMezs .., m(N)GZS fEI’II)T ( f) SON( ( ) f( ) ) Loo(0,1)s ( )
PN

C(N)D-2 (first part): For the computational aggregates @y (f(mY),..., f(m™N), z)
from (5) and for the numerical sequence

N3 ifs=1,
En << (InN)™t - N—"% ifs =2, (16)
N=572ifs> 2.
satisfy
—ro2yl
5]\[(0 DN)LOO(O 1)s = (SN (€N, DN)LOO(O 1)s =N 5+2. (17)

Proof. The proof will be carried out snmlarly by Theorem 1. Let are given f € HJ positive

integer n, N = |In| = (271 +1)* and {77}, = {77 }nes,n, such that [7{7] < 1. Then for
the error of approximation by computational aggregates (5)-(6) by inaccurate information
(L% = L>(0,1)°)

w1y = (FEm) + 2090, . F) + 20005 0)|| <

LOO

-~

< ||uo (. £) = B (FED). o FE V)i +

HLOO

*EN,}/ 7T’melf
+ ()5N7N 47r2 Z N ¢’ )

méelaon

= | Lsllzoe + [[1all Lo

LOO

Let’s estimate from above || 3| and || 14|

~ ~

uo(z, f) = pp(fmM), ., f(m™N); )

HLOO

— _L f(m) 627ri(m,;t) = |f(m)|
i 2 o) €L 2 )

oo d=nHL2i<|m]|<2i 41

+00 Ny 400 iy
7 7
<y ¥y ey y <

J=n+12i<|m||<29+1
“+oo
<y ¥y [fm)l.

j=n+1 27 <m||<27+1

Applying Holder’s inequality and (2), we will get required upper bound

400 2

L~ <2 3 | fmP] | X 1] <

j=n+1 \ 20 <|lm|<2i+1 23 <||m]|<2i+1

[
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< 2" 2n Z 2~ ] 2]r Z f(m)e2wi(m,x) < 2 2n—nr4+17 N7§7%+%.
j=nt 29 < | <291 L2
From the upper bound for || 3| =, we obtain the upper bound for (15) the approximation

by the accurate information

5N(O; DN)Loo =

(- ) = o (Fm™M), .. fm™); )

= inf sup
mWezs,. . .mWNezs; feHs
4PN

Then evaluate of |14z~ (see also (16))

H[4”L°° <L en+ Z 5N

n—1
(1 < En 1+221 Z 1 <<5N<1+Z2j<5—2>>.

melyn 23 <||m| <27 +1 =0
If s =1, then
~ 3
[ 4l < En < N2
If s =2, then
n—1
~ ~ ~ r_1 r_ 1
[ 14]|Le < EN (1 + Z 1> =<ey-n=<Eyx-InN=<(InN)"'-N"272.[nN < N 2 2,
=0
If s > 2, then

n—1
L]l < En (1 +y 2“82)) = Ey 2" <5y NS < N7imr . NS < Noimete

J=0

Finally, by estimation from above || I3]| .~ and || I4]| L~ we obtain the required upper bounds
n (17)

IN(0,Dy) e < IN(EN, D)oo =

- inf sup ‘ uo(z, f) — en(Fm™) + 2090, .., Fm™)+
mMezs, .. .mMNezs: feHsy,
oN

{'YN Y 17|’Y<T>\§17
(r=1,...,N)

N _r_2,41
F0n0 )| NEEL

(19)

A lower bound in the case of approximation from accurate information gives the
desired relation. Suppose we are given an integer N > 1, N linear functionals l](\})( f) =
f(m(l)),...,lng)(f) = fm"™), {mW, . mW™N} € Z° and a function @n(71,...,7n;7),

©n(0,...,0;2) = 0. We define an integer n = n(s, N) > 1 from the conditions |Is»| > 2N and
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Let consider the function

g(x) = c(s)N‘g_% Z " e2rilme) HJ.

mefgn \AN

where ¢(s) is a positive constant, defined so that g(x) € HJ.

Then, for the lower bound of error of approximation by accurate information

sup
feHS

w(e, ) = on (Fm®), o fm ™) | >

> sup [Juu(z, 9) = on GmD), ... gm™N);2) || . >
feHy

2 |luw(z, 9) = on (0,0, 0 2) | oo = [l (2, 9) [ oo -

Let estimate from below the norm of the solution.

1 «N75~
uw(l‘7g)L°0Hm > o)

mEIQn \AN

627ri(m,:v) —

~—| I~

Lo

r_ 1

1 fN—872 1 «N-:3
~ o o X el L 5

2
zeo1 | 47 melm\Ay (m,m) melm\Ay (m,m)
n—1 1
—n(r+5) N S - =
> 2 : Z 22(j+1) Z 1=
J=0 27 <||m|| <27+,

n—1

J=0 27 <||m||<27+1,
mg¢AN

- 27nr72n+% — N*%*%+%.
As a result,
_£_2+l
On(0, D)oo > N7 572,

Then by (19) and (20) we have

Theorem 2 is proven.

(20)
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4 Conclusion

In the present paper, the problem of the approximation of solutions of the Poisson equation
with right-hand side from the Nikol’skii classes Hj(0,1)® by accurate and inaccurate
information of the trigonometric Fourier coefficients in the sense of C(N)D-1 and the first
part of C(N)D-2 is considered.

Firstly, two-sided estimates for the error 6, (0; Dy)y (Y = L{0,1)* and Y = L*(0,1)*) of

approximation by accurate informmation were obtained (C(N)D-1 problem) with indicating
a computational aggregate that confirms the lower bound. For this computational aggregate,
bounds arises of inaccurate information that preserve the order of the error of approximation
by accurate information were found—the first part of problem C(N)D-2.
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SOLUTION OF MULTILAYER PROBLEMS FOR THE HEAT EQUATION
BY THE FOURIER METHOD

The multilayer problems for the heat equation arise in many areas of heat and mass transfer
applications. There are two main approaches to finding exact solutions to multilayer diffusion
problems: separation of variables and integral transformations. The difficulty of applying the
Laplace transform method is redoubled by the difficulty of finding the inverse transform.
The inverse Laplace transform is often performed numerically. The most popular analytical
approach to multilayer problems for the heat equation is the method of separation of variables.
It is very important to obtain analytical solutions to such problems as they provide a higher
level of understanding of the solution behavior and can be used for comparative analysis of
numerical solutions. In this paper, the solution of the multilayer problem for the heat equation
by the Fourier method is substantiated. The solution of the initial-boundary value problem
for the heat equation with discontinuous coefficients by the method of separation of variables
is reduced to the corresponding non-self-adjoint spectral Sturm-Liouville eigenvalue problem.
Such eigenvalue problems do not belong to the ordinary type of Sturm-Liouville problems due
to the discontinuity of the heat conductivity coefficients. In addition, the non-self-adjointness
of the corresponding spectral problem also complicates the solution of the problem. Using the
replacement, the problem is reduced to a self-adjoint spectral problem and the eigenfunctions
of this problem forming an orthonormal basis are constructed. The considered problem
models the process of heat propagation of the temperature field in a thin rod of finite length,
consisting of several sections with different thermal-physical characteristics. In this problem,
in addition to the boundary conditions of the Sturm type, the conditions of conjugation
at the point of contact of different media are specified. The existence and uniqueness of the
classical solution of the considered multilayer problem for the heat conduction equation are proved.

Keywords: Heat equation, Fourier method, spectral problem, orthonormal basis, classical
solution.

C.M. Bapmaramberor®, V. K. Koiiabimos
Maremaruka >xoHe MaTeMaTUKaJIbIK MOJEJ/IbJCY NHCTUTYTHI, AHMaTbI, KaBaKCTaH
* e-mail: saginish.2000@mail.ru
2KbUTyeTKI3rimTiK TeH/ey YIINiH KermKadbaTTel ecentepai Pypbe d/1iciMeH mierry

ZKbrumyeTkisrimTik TeHeyine apHaJIraH KOUKAOATTHI €CerTep YKbLTY YKOHE MACCa aJIMAaCY/IbIH KOIl-
TeTeH CaJaJapbiHaa TybIHaai 6. KenkabarTs! 1uddy3usiblK, eCenTep/IiH /1 MerriMaepin Taby-
JIBIH €Ki Heri3ri o1ici 6ap: aftHbIMAIBLIAPILI a2KbIPATY KOHEe MHTErPAJIILIK TYpIeHIipyep. Jlammac
TYPJIEHIIPY1 OJIiCIH KOJIJIAHYIbIH, KUBIH/IBIFbI KEPl TYPJIEHAIPY/Il Taby IbIH, KYPAEiIiTriMeH e eHi-
cemi. Kebinece kepi Jlammac TypseHmipyl caHIBIK Typje OpbIHAAAa bl. 2KBLIyOTKISMIMNTIK TeH-
ey VIIiH KOemKabaTThl ecenTepre €H TaHBIMAJ AHAJUTUKAJIBIK, TOCII AHBIMAJIBLIADIbI AXKBIPATY
oici 6osbIT TabbLIa 6. MyHIall ecenTepail aHAJTUTUKAIBIK, MIEMTiMAEpi 6Te KYHIbI, OTKeHI o1ap
mrerTiM TOPTIOIH TYCIHY/IIH KOFapbl JeHreliH KaMTaMachl3 eTe/li »KoHe CAHJIBIK MIeNTiMIepIi ca-
JIBICTBIPMAJIBI TYPJIE TAJJIay VIIH MaiiIaaanblIybl MyMKiH. Bys reuibivu Makasiaga Pypbe oici
apKBLIBI XKBIIYOTKI3TINTIK TeH eyiHiH KonkabaTThl ecebiniy merrimi Herizaesemi. Kosaddurment-
Tepi y3UIicTi KBUTYOTKI3TIMITIK TEHIEY VIMH 6aCTANKbI-IITEKAPAIBIK, €Cell ATHBIMAJIBIIAD aXKbIPa-
Ty oici 6oitbiamma e3iHe-o31 Tyitinmec emec crekTpiik Itypm-JInyBusas menmikTi Mon ecebine
Kenripimeai. MyHgai MEHIIIKTI MOH/IEP ecenTepi KbLIYOTKI3TmTiK KoadduimenTrepiniy y3iayime
6aitsrarsicTel I TypM-JlunyBusms ecenrepiniy ojerreri TypiHe »KaTnai bl

© 2025 Al-Farabi Kazakh National University
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CoHbIMeH KaTap, CIIEKTPJIK eCelTiH o3iHe-031 TyiliHec eMec OOJIYBI Jla €CENTi eIyl KUbIH/Ia-
TaJIbl. AJIMACTBIPY apKBLIbI OEPiIreH ecern e3iHe-031 TYHiHIeC CIeKTPJIIK ecelKe KeITipiieal KoHe
OCBI €CEIITiH, OPTOHOPMAJIIBIK, Oa3uci 6OMATHIH MEHIKTI (DYHKIUIIAPBl KYPBhLIaIbl. KapacTbIipbi-
JIBITT OTBIPFAH MOCeJIe 9PTYPJI TepMOMDU3NKAIBIK, CUIIATTAMAJIAPBI bap OipHerte OOTIKTEH TYPATHIH,
Y3BIHJIBIKTAPBI aKbIPJIbI KIHINTKE TASKIIAIAFbl TEMIIEPATYPAJIBIK, OPICTIH KBTIy TapaJLy IpPOIEeCiH
mozeseiiai. Iltypm Tuningeri nmekapaJiblk, IMapTTapra KOCBIMINA, dPTYPJ/Ii OpTaIapIbIH KaHACY
HYKTeciHgeri Tyiiingec maprrapbl kKepceriareH. 2KbIIyoTKI3rimTiK TeHIey YITiH KAPaCTHIPBLIBIIT
OTBIpFaH KONKAOATTHI €CEITiH KIACCUKAJIBIK, IMIENIIMIHIH 6ap »KoHe YKAJFbI3 €KEHIIr JoJIe/IIeH/I].

Tvy iiin cesnep: 2Kounyerkisrimrik rergeyi, Pypbe oici, CHEKTPIIIK ecel, OPTOHOPMAJIIBIK, Oa3uc,
KJIACCUKAJIBIK ITIEIITiM.

C.M. Bapmaramberos™®, ¥Y.K.Koitibimos
Nucruryr Maremaruku u Maremarudeckoro Monemposanust, Aimarsel, Kaszaxcras.
*e-mail: saginish.2000@Qmail.ru
Pemmenne MHOTOCJIOMHBIX 3a4a4 JIJisi YPAaBHEHUS TEIJIOIIPOBOIHOCTH METOIOM
dypne

[IpobsieMbl MHOTOCTIOWHBIX 3aJad JJjIs YPABHEHUS TEIJIOMPOBOIHOCTH BO3HUKAIOT BO MHOTHX
00JIaCTSIX TPUMEHEHUsI TPOIECCOB TeIo- U Maccoobmena. CyImecTByeT JiBa OCHOBHBIX IIOJIXO/A
K IIOMCKY TOYHBIX peIleHuil 3ajad MHOroc/oiiHOi nuddy3un: pasjesieHre IIePpEMEHHBIX WU
WHTerpaJjibHble IpeobpaszoBaHus. TpPyIHOCTH IpPUMEHEHHE MeToja IipeoOpaszoBanue Jlamaaca
ycyrybuisiercs n3-3a CJ0YKHOCTH HAXOXKJeHIe 00paTHOro rpeobpasoBanne. JYacro obpaTHoe 1mpeod-
pasoBanue Jlamraca BeimosHseTCH dncienHo. Hanbosiee MOMyIsSpHBIM aHAJTUTAIECKIM ITOIXOIOM
K MHOIOCJIOMHBIM 3aJadaM I yPaBHEHUS TEIIOIMPOBOJIHOCTU SIBJISETCS METOM DPa3lesieHe
[IePEMEHHBIX. AHAJINTUYIECKHE PEIeHIsT TAKUX 38/1a9 OU€Hb [IeHHBI, TOCKOJIbKY OHU 00eCIIeInBAIOT
0oJiee BBICOKMII YPOBEHb I[IOHUMAHWS IIOBEJIEHUsI PEIIeHWs W MOIYT OBbITb HCIIOJb30BAHBI JIJIs
CPABHUTE/IBHOIO aHAJN3a YNUCIEHHBIX pelneHuii. B maHHON HaydHOI cTaThe 0OOCHOBAHO peEITeHNe
merorgoMm Dypbe MHOrOCIOWHON 3a/a9u [jisi yPABHEHUS TEIJIONPOBOIHOCTU. PerteHns MeTomoM
pasesieHne IepeMeHHbIX HAYaIbHO-KPAaeBble 3aJa4i JJIsi yPABHEHUS TEIIOMPOBOIHOCTH C pPa3-
PBIBHBIME KO3 UIIneHTaMU CBOJINTCS K COOTBETCTBYIOIIEH HE CAMOCOIPSKEHHON CHEKTPAJIHHOM
zasiade [MIrypma-JInysuinist Ha coOCTBeHHbIE 3HaUYeHUs. Takue 3a/1a4n Ha COOCTBEHHBIE 3HAYEHMUS
HE OTHOCHUTCsI K oObranomy tuiry 3agad Lllrypma-JIluysuiuisi u3-3a paspbiBa KO3(MD@OUIMEHTOB
TEIIONPOBOAHOCTH. KpoMe TOro He caMOCOIPS2KEHHOCTh COOTBETCTBYIONIEH CIEKTPAJIBHON 381891
TaKXKe YCJIOKHSET DeIreHne MoCTaBaeHHON 3amadn. C IOMOIMBI0 3aMEHBI IIOCTABJICHHAS 3aa4a
CBe/leHa K CaMOCOIPSI?KEHHON CIIEKTPAJbHON 3a/ade W IMOCTPOeHa COOCTBEHHBbIE (DYHKITUU ITOH
3aJla4M, KoTopasi obpa3yer OpTOHOPMHPOBaHHBIN Gasuc. PaccmarpuBaeMast 3ajiada MOJIEIUPYET
IIPOIIECC PACIPOCTPAHEHMsS TeIIa TEMIIEPATYPHOIO IOJisi B TOHKOM CTEPYKHE KOHEUYHON JIJIMHBI,
COCTOSIIIIEM W3 HECKOJIBKUX YYaCTKOB C PA3JUIHBIMUA TEIIO(MU3NIeCKUMA XAPAKTEPUCTAKAMI.
HonomuuTe bHO K TpanndabiM ycsroBusM tumna [ltypma 3aqai0Tcst yCaoBus CONPSKEHNS B TOUKE
KOHTAKTa Pa3/IMIHBIX cpe. JloKa3aHo CyIiecTBOBAHNE U €IUHCTBEHHOCTD KJIACCHIECKOIO PEIIeHIS
paccMaTpuBaeMOl MHOI'OCJIOMHON 3a/1a4u JJIsl yPaBHEHUS TEIJIOIPOBOHOCTH.

KuroueBbie ciioBa: YpaBHeHne TerionpoBogaoctu, Meron Pypbe, ceKTpaibHas 3a1a9a, OPTO-
HOPMHUPOBAHHBIN 0a3UC, KIACCHIECKOE PEIeHueE.

1 Introduction

Parabolic equations with discontinuous coefficients with one point of discontinuity have been
extensively studied [1]-[3]. In these works, the correctness of various initial-boundary value
problems for parabolic equations with discontinuous coefficients has been proved by using the
Green function and thermal potential methods. In [4]-[8], some boundary value problems for
the heat equation with a discontinuous coefficient, with one and two points of discontinuity,
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have been considered by the method of separation of variables.

The papers [9]-[13] are devoted to the solution of multilayer diffusion problems. Mathematical
models of diffusion in layered materials arise in many industrial, environmental, biological
and medical applications, such as thermal conductivity in composite materials, transport
of polluting chemicals and gases in layered porous media, growth of brain tumors, thermal
conductivity through skin, transdermal drug delivery and greenhouse gas emissions|14]-[17].
The considered problem may arise in describing the process of particle diffusion in turbulent
plasma, as well as in modeling the process of heat propagation of a temperature field in a thin
rod of finite length, consisting of several sections with different thermophysical characteristics.
In addition to the boundary conditions, the conjugation conditions (ideal contact condition)
at the contact boundary of these media with different thermophysical characteristics are
specified. It is a theoretical paper, however, the obtained analytical solution can be used for
numerical calculations.

2 Statement of problem

We consider the initial?’boundary value problem for the heat equation with piecewise constant
coefficients

Gui 2 82'&@'
i

g2

o i=1,2,....,m, (1)

in the domain

Q:UQZ«, Q={(z,t): iy <ax<l, 0<t<T},

with the initial condition
u(z,0) = p(x), lo <z <l (2)

The boundary conditions are of the form

a1 %(lo,t) + Brui(lo, t) =0,
o 0<t<T. (3)
0z S I 1) + B (I £) = 0,
The conjugation conditions are
wi(l; = 0,t) = w1 (l; + 0, 1),
ki%(li_ojt):]{Hl%(lijt()?t), 0<t<T, i=12,....,m—1, (4)

where the coefficients satisfy k; > 0 and o;,8; € R for i = 1,2,...,m and j = 1,2. In
addition, |a;| + [81] > 0 and |as| + |G| > 0.
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3 Method of Solution

To solve problem (1)7(4) we employ the Fourier method and seek a separated solution
ui(z,t) = X;(x) T(t) #Z 0.

Substituting into equation (1) and conditions (2)-(4), and separating the variables, we obtain
the following spectral problem:

k2 X!'(z) + A X;(z) = 0, Lioi<axz<l, i=12....m. (5)
The boundary conditions
a1 X1 (lo) + 51 Xi(lo) = 0,
Q9 X;n(lm) + 62 Xm(lm) = O,
and the conjugation conditions are
(, ) = Xin , ) =1,2,...,m— 1. (7)
ki Xl(lz — O, t) == kl'Jrl XZ-Jrl(li + 0, t),

The function T'(t) satisfies the ordinary differential equation
T'(t)+ XT(t) = 0.

Lemma 1. The spectral problem (5)-(7) is non-self-adjoint in Ls(lo, l,,,).
The proof is carried out by direct calculation.

After the following change of variables

Xi(x) =Y;(y), i=1,2,...,m, (8)
where

(1x — |

lﬁlo’ lo <x <l

€T — 1

, L <x<ly,

;L:'_lm—l
C e < a < L,
L k'm Y 1 x

Under the change of variables (8)-(9), the spectral problem (5)-(7) takes the form
Y;,/(y)—f-)\yz(y):O, O<y<h17 221727am7 (10)

with boundary conditions

« !
k—lyl(o) + 61 Y1(0) = 0,
1

(11)
Z—Q Y. (hn) + Ba Yo (hu) = 0,
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and conjugation conditions

Yi(hi —0) = Y;11(0+),
( ) = Yin(04) i=1,2,...m—1, (12)
Y/ (hi = 0) =Y/ ,(0+),
where
li— 1
hi_ k’l 17 221727 , M

Lemma 2. The spectral problem (10)-(12) is self-adjoint in
H = L3(0,h1) © Ly(0, hy) @ -+ - © La(0, by

The proof is carried out by direct calculation.

Next, we determine the eigenvalues and construct the eigenfunctions of (10)-(12). The
general solution of (10) has the form

.

Yi(y) = ¢1 cos(VAy) + easin(vVAy), 0 <y <hy,
Yo(y) = c3 cos(\/Xy) + ey sin(\/xy), 0 <y < ho,

Ym—l(y) = Com—3 cos(\/Xy) + Com—_2 Sin(\/Xy), 0< Yy < hm—l,
\ Ym(y> = Com—1 COS(\/X@/) + Com SiIl(\/Xy), 0< Yy < hm;

where c9;_1, c9; are arbitrary constants, 1 =1,2,...,m.
From the boundary conditions (11) we obtain

(%\/X02+ﬁ101:0,
1

(62 cos(\/x hm) — S—Qﬁ sin(\/x hm)>02m_1—i— (13)

Bs sin(\/x hm) + %\/X cos(\/x hn) ) Com = 0.
\ ko,

From the conjugation conditions (12) we obtain

(¢; cos(hVA) + easin(hiVA) = ¢s,
- sin(hl\/X) + ¢ COS(hl\/X) = ¢4,
¢3c08(haVA) + exsin(haVA) = ¢,
—c3 sin(hg\/X) + ey COS(hg\/X) = cg, (14)

Com—3 COS(hmfl\/X) + Com—2 sin(hm,l \/X) = Com—1,
\ — Com—3 sin(hm_l\/X) + Com—2 COS(hm_l\/X) = Com-
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Successively eliminating the constants ¢; from (14) gives

C1 COS((hl + hg + 4 hm_l)\/X) + o Sin((h1 + hg + -+ hm_l)\/X) = Com—1,
— (1 Sin((h1 + hz + -+ hmfl)\/X) + C COS((hl + hz + -+ hmfl)\/X) =

Substituting the obtained cg,,_1, ca,, into system (13), we arrive at

Bicr + Z—ll\/xcz =0,
(Bg cos(sm\/X) — O‘—JX sm(sm\/X)>cl + (ﬁg sin(sm\/X) + —\/X cos(sm\/X)>cg =0,

kp, ko,
where
= iy
o Zl hi= Zl .

The characteristic determinant of the last system has the form

A()\) = (041042/\ + 6162k1km) sin(sm\/X) + (04251]61 — Oélﬁgkm) \/X COS(Sm\/X) = 0. (15)

We now consider all possible special cases.
1) Suppose ajag # 0, b0k, — asfiky =0, B2 =0 (that is, Y{(0) =0, Y. (h,) = 0).
Then from (15) we obtain

g A sin(sm\/X) = 0.

From sin(sm\/X) = 0 we find the eigenvalues

2
Ap = (ﬂ) , n e Z.
Sm

The corresponding eigenfunctions are

( ™

Yin = (— 1”008(—3/), 0<y<hy,
Sm
—cos(:—n y+h3+---+hm)), 0 <y < he,
T
—cos(— y+h4+--~+hm)), 0 <y < hs,
Ya(y) =C
Ym—1n = cos(Z—n (A1 — Y + hi)), 0<y<hmi,
Ypn = COS(@ (hom — y)), 0 <y < hy,
\ Sm

where C' is an arbitrary constant.

2) Suppose ajas = 0, Pk, —asfBiky =0, and (102 # 0 (i.e., Y1(0) = 0 and Y,,(h,,) = 0).
Then, similarly, the eigenvalues are

2
An:(ﬂ) . nez,
Sm
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with the corresponding eigenfunctions

(yln = (_1)n+1 Sin(ﬂ y)7 0< y < hla
Sm
ygn:Sin(:—n(hg—y—i—hqu---—f—hm)), 0 <y < ho,
T

n=sin(— (hs —y+hs+- -+ hy)), 0<y<hs,

Ya(y) = C- Ys Sm(sm( 3~ Y 4 )) Y 3
Ym—1,n = Sin(z_n (h'm—l —y+ h'm))> 0< y < hm—1>

ymn:sin(:—n (him — ), 0 <y < hp,

where C' is an arbitrary constant.
3) Now let ajae =0, 102k, — asfBiks # 0, 182 = 0. Then from (15) we obtain

(alﬁgkm - agﬂlkl) VA cos(sm\/X) =0.

At A = 0 equation (10) has only the trivial solution. From cos(sm\/X) = 0 we find the
eigenvalues

2
)\n:<w) , neZ.

25m

To determine the eigenfunctions, consider two possible cases.

Case 3.1: a1 =0, 0 # 0, 1 # 0, B =0 (i.e., Y1(0) = 0, Y/ (h,,) = 0). The corresponding

eigenfunctions are

Yin = (—=1)" sin( 5 y), 0<y<hy,
Sm
2n+1
y2n:COS(7T(27:L9 )(hg—y+h3++hm))7 0<y<h2,
7(2n+ 1)
Yn(y):C y3n:COS( 23m (h3_y+h4++hm))7 O<y<h37
m(2n+1)
Ym—1,n = COS( %s (hm—l —y+ hm))a 0< y < hm—h
o+ 1
ymn:COS(’]r<2n+ ) (hm_y))7 0<y<hm7
\ Sm

where C' is an arbitrary constant.
Case 3.2: ap # 0, ag = 0, f1 = 0, B # 0 (ie, Y{(0) = 0, Yu(hm) = 0). Then the
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eigenfunctions are

( m(2n + 1
Yin = (—1)" cos(g y), 0<y<h.
Sm
2 1
yQ”:Sin(%%—%hﬁ---wm))? 0 <y < hy,
(20t 1)
Y,(y)=C - { y3”:SID(T(h3_y+h4+"'+hm))7 0<y < hs,
. m(2n+1)
R ) N Py
m+ 1
Ymn = Sm(% (hm =), 0<y < hp
N m

4) Consider the case ajag # 0, ay Soky, — aofrky # 0, and (182 = 0. Then from (15) we have
Q10 A sin(sm\/X) — (alﬁgkm — ozgﬁlk:l)\/X cos(sm\/X) =0.

It is easy to check that for A = 0 equation (10) admits only the trivial solution. Hence the
eigenvalues are given by the roots of

km ﬁZ
) 61 = Oa 62 7é 0 (3/1/(0) = 07
tan(sm\/X) ={* \/X Ko

041\/X7

It is not possible to write the eigenvalues in explicit form. However, by Rouche’s theorem one

6%)]

Y’r;z(h'm) + 52Ym<hm) = 0)7

™
can obtain their asymptotics. Clearly, the zeros of the equation tan(sm\/X) = 0are VA= —.
Sm

Hence, by Rouche’s theorem the zeros of

Oélkm52 - 042’@51
tan(sm\/X) = alag\/X

have the form

2
)\n:(ﬂ—l—én) , n € 7,

Sm

1
where |d,| < M and, moreover, ¢,, = O(—).

n
If p1# 0 and P2 = 0, the eigenfunctions are

(cos((hl—y+h2+~-+hm)\/)\n), 0<y<hy,
COS((hQ—y+h3—|—-"+hm)\/)\n), 0 <y < ho,
Y (y) = C- cos((h3—y+h4—i—---+hm)\/)\n), 0 <y < hs,

COS((hm—l -y + hm)\//\_n>7 0< y < hm—b
\COS((h/m - y)\/A_n)> 0< y < hm7
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corresponding to the boundary conditions %Y{ (0) + £1Y1(0) = 0 and
1
Y, (hy) = 0.
If ;=0 and fy # 0, the eigenfunctions are

’COS(y\/)\_n)a 0< Yy < hla
cos((h1 + y)vAn), 0<y< ho,
Y, (y) = C - cos((h1 + ha + )V ), 0 <y < hs,

cos((h1 +ho+ 4 hpo —i—y)\/)\n), 0<y < hm_1,
\COS<(h1+h2+"'+hm—1+y)\/>\n)7 O<y<hma

«

corresponding to the boundary conditions Y/(0) = 0 and k2 Y, (hm)+

52Ym(h'm) = 0.
5) In the case ajag = 0, «a1f2ky, — asfik; # 0, [B1Ps # 0, an argument analogous to the
previous one shows that the eigenvalues are the solutions of

_kmﬁa alzoa a2%07
t(smVA) =4 92
V=N s

041\/}7

explicit forms for the eigenvalues are not available. By Rouche’s theorem we can, however,
m(2n +1

obtain their asymptotics. Since the zeros of cot(sm\/X) =0 are V) = %, it follows

S
from Rouche’s theorem that the zeros of "

k —ark,,
COt(Sm\/X) = a2 151%\0;% B

have the form

2
An:<w+6*>, 6% < M, 5:;:0(1).

25, " n
If a3 # 0 and ay = 0, the eigenfunctions are
(sin((h1 —y +ha + -+ ha)VA), 0<y < hy,
sin((ho —y+hs + -+ h)VAn), 0<y< ho,
Ya(y) = C - sin((hs —y +ha + -+ hn)VAn), 0<y < hs,

Sin((hm—l -y + hm)\//\_n)a 0< y < hm—h
\sin((hm — y)\/)\_n), 0<y < hp,
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corresponding to the boundary conditions

ZY(0) + BiYi(0) =0, Yiu(hu) = 0.

k1
If a3 =0 and ay # 0, the eigenfunctions are
(sin(y\/)\_n), 0<y<hy,
Sin((hl + y)\/)\_n), 0 <y < ho,
Ya(y) = C- sin((h1 + ha + y)vVAn), 0 <y < hs,

sin((h1 + hg 4+ -4 hm—2 + y)v An), 0< y < hm—la
\sin((hl +hy+ ooy —|—y)\/)\n), 0<y<hpy,

corresponding to the boundary conditions Y;(0) =0

and Z‘—Qy,;(hm) + BoYo(hum) = 0.

6) In the case ajag # 0, 102k, — azfBik; =0, and (182 # 0, equation (15) reduces to
(alozg)\ + ﬂlﬁgklkm> sin(sm\/X) =0 (equlvalently (‘“‘12 A+ Blﬁg) sm(sm\/X) = ()).
Thus, if sin(sm\/X) = 0, the eigenvalues are
™m\>
A = (_) .
Sm
The corresponding eigenfunctions have the form: The corresponding eigenfunctions (for

sin(s,, V) = 0) are

kism .
(= o T - P15 70 b<y<nn
m TN Sm
kism .
Yon = COS(—(hl + )) Prkrsm sm(ﬂ—n(hl + y)), 0 <y < hg,
Sm o Sm
kiSm . n
Y3n = COS( (hl + hg + y)) Bl ! Sln(ﬂ.—(}h + hg + y)), 0< Yy < h3,
S o Sm
Yo(y) =C
Y 1n—cos<s (hi+ ho+ -+ —i—hm,g—i-y))—
Eikrom sin(g(hl +hy ot hya + y)), 0<y <l
Ymn = COS< (hi +ho+ -+ Ryt + y))—
\% sm( " (hy 4+ hg + -- +hm_1—|—y)>, 0<y<hy,.

Here we have used the relation
aq Qg

Blkl B B2km

o ok, — asik =0 —
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If
kik,,
M02 ) L BBy =0, e A= DREm
kik, Q109
and taking into account that
a1 32 B 04251 -0 — 51161 _ 52]%7
ky km aq Qo

we obtain the special eigenvalue

o (Blkl)Q _ (@km)?
o [6%)

(The explicit form of the associated eigenfunction is given next.) For the special eigenvalue

\_ (Pik 2Bk \?
n (05} n (0%)] ’

an associated eigenfunction can be chosen as

r
_ Bk y
e a1 ) 0 < Y = hl’
Biki
eia_l(h1+y)7 0 < y < h2’
Biki
=S LA S
Y(y)=C-(¢ ar (Pthaty) 0<y<hs,
B1k
- ;{11 (h1+h2+“‘+hm_2+y)7 0< Yy < hm—la
Biki
_ hithotthm 1+
\ oy (hithe 1+y) 0<y<hp.

04152 Oé2ﬁ1

ky Em

7) In the last case, ayay # 0, # 0, and [15y # 0, equation (15) applies.

Introduce the functions
g(A\) = aqag\ sin(sm\/X),

W(N) = (a1 Bk — aafiky) VA cos(smVA) — B Baki ki sin(s, VA).
By Rouche’s theorem, if |g(A)| > |1(N)] for large A, then g(\) and g(A\) + ¥ (\) have the same

number of zeros.
The eigenfunctions can be written as

(

q)(y\/)\_n), O<y<h1,
((s1+y)vVA.),  0<y<hs,
Yaly) = C - ((s2 + y)vVAn), 0 <y < hs, (16)

(I)<(Sm—2 + y)\//\_n)a 0< y < hm—la
L 2((8m-1 +9)VA), 0 <y < h,




S.M. Barmagambetov, U.K. Koilyshov 37

where s; = 3>7_ h; (with s = 0) and

®(z) = ajcosz — [y sin z. (17)

1
VAn
A explicit-form expression for the eigenvalues is not available, but Rouche’s theorem yields

™m
their asymptotics. Since the zeros of tan(sm\/X) = 0 are VA = —, it follows that the zeros

Sm
of

kmPa — ask k1kp,
tan(sm\/X) _ g 6512&2\7; 151 N ﬁlﬁQ)\l tan(sm\/X)

have the form

2
A, = (ﬂwn) L0 < M, 5n:0(1>.
Sm n

Since {Y,,(y)} are the eigenfunctions of the self-adjoint problem (10)-(12) (see Lemma 2), they
form an orthonormal basis |18]. We choose C,, from the normalization condition; equivalently,

m l; 7 2
com (S [ (6o 5 m) )

Then the solution to problem (1)7(4) has the form

wilw ) = 3 pa Xif@) e =3 Yaly)e ™,
n=1 n=1
where
on=) / @i(kin +1i-1) Ya(n)dn,  yis defined by (5).
i=1 70

Making the change of variables

_ %

§=kin+li_, dn s

in the last integral we obtain

m I _ 1
=31 [ o (S5 e 5
i=1 "t i1 t

Therefore, rewriting formula (16) we get

/

(V). lo <z <1y,
@((81 + %)\/ )\n)7 ll <z < lQ,
r—1l;_
(25 <, e ). <, 19
(I)((Sm—Q + xi]ijil)\/ /\n)a lm—? <z < lm—17
@((Sm_l + x_,i%l)\/)\n), It < x < lpp,
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where @ is given by (17) and s; = ;:1 h, (with so = 0).

We now proceed to prove the main theorem.
Theorem 1. Let ¢(z) be a twice continuously differentiable function satisfying the
boundary conditions (3) and the conjugation conditions (4), namely,

a1 (lo) + Brpr(lo) = 0, @20, (lm) + Baom(lm) = 0, (20)

gOz(lz—O) :(,02+1(l1+0), klgﬁi(lz—O) :k1+130;+1<lz+0), 7= 1,2,...,m— 1. (21)

Then the function

_ Z (’pn Yn (x _klll) 6—)mt) (22)
n=1 v

where the coefficients ¢,, are defined by (18), is the unique classical solution of problem
(1)-(4).

Proof. First we prove existence of the solution (22). Since {Yn(%)} are the
eigenfunctions and {\,} are the eigenvalues of problem (1)-(4), it is straightforward to verify
that the function u(x,t) defined by (22) satisfies the equation, the initial condition, the
boundary conditions, and the conjugation conditions of (1)-(4). The series (22) is a sum of
the functions

T e (23)

We show that for any fixed € > 0 the series

;um,t), ;%@:,w, ;a;;m

converge uniformly on {(z,t) : lp < & < l,,, t > €}. Clearly, |¢| < K7, hence from (18) it
follows that |¢,| < K,. Using (23) and the equalities

8un Tr — li—l At 82un )\n Xr — li—l ot
= _)\n nYn " = - nYn ™
ot 4 ( ks ) ‘ 022~ k27 k)¢

we obtain, for t > ¢,

ou,,
ot

0%u,,

0x?

|un(z,t)| < K3 e e, {

} S K4 )\n 67)\,16’

where the constants K; > 0 (¢ = 1,2,3,4) do not depend on n.
Therefore, using the asymptotics A\, ~ (7n/s,,)?, we have

{imn(x,t)\, S5 Z‘M" z, ‘} ZKn e (E)

n=1 n=1

aun
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for some constant K > 0 independent of n. Since the series on the right-hand side converges
absolutely, the Weierstrass M test implies that the series for u, u;, and u,, converge uniformly

ou(zx,t) 0?u(z,t)

for t > &; hence u(z, 1), , and -— are continuous for ¢ > £. Now we must show

x
that the series (22) converges uniformly on the whole domain 2. Note that the n-th term of

(22) is majorized by |¢,|. Integrating by parts the integral in (18), we obtain

Cn% D52/ An) — w @(slﬁ) -

/: “0\/;_;? @((sl +5;211)\/A_n) dé

©m-1(lm-1—0) Om—1(lm—2+0)
Ch { T Bsm-1v/An) — New @(sm_gﬁ)] -

lyn—1 A _
P18 g ((sm_2 4t > l’H) \/A—n) dé+

lin—2 \/)‘_n m—1
©m(lm) Om(lm—1 +0)
cn{ 2] (s /) - Enlln 20 @(Sm_lw—n)} B

tm Qolm(g) 5 — L1
hnlvx;@<@ml*"‘ﬁf‘)“xgd§

where @ is given by (17) and

~ k
®(2) = oy sin z + f—

Vn

COS 2.

Taking into account the first relation in (21), ¢;(l; — 0) = @ 1(l; +0) for i = 1,2,.. .,

and integrating once more, we obtain

i’ ko ks
on = Co| = 22 ) = B9 1) + B 1y — 0y d(si V0,

. . X,

l1 Vi _

/k1€01(§)¢<5 lo\/)\—n> de | +

lo /\n kl

k /
C, )\—2@ P52/ A (Il +0) D513/ An)—

/—<<—>f> d

(24)

m—1,
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Ko K
Ch [/\—1 Prn—1(lm—1 = 0) ©(Sn—1v/ An) — )\—1 Prn—1(lm—2 +0) (Sm—2/An)—

[ e s ) )

m—1

+

m—2

c, [%ﬁ” Bl W) + 52 ) B )

km " ki —lm—1
- Fnlln +0) B(sm-1v/\n) —/ Fon'o (€) @((sm_l + gk_> \/A_n) dg] ,

lm—l An m

ki

\/}\_ncosz (cf. (24)). Using the second
relation in (21) together with (17) and (24), one checks that

An ©m(lm) &)(Sm \/)\_n) + km\/A_nSD;n<lm> (I)(Sm \/)\_n) = A(M\), (26)

i.e., the left-hand side coincides with the characteristic equation evaluated at \,,. Hence, using
(20)-(21) and (26) in (25), we obtain

Pn = —Cngm: /\% /ll @i (&) CI)((si_l + : _kfi_1> \//\_n> d¢.

=1

where @ is given by (17) and ZI;(z) = aisinz + [y

From this representation we derive the estimate

[0 K = max k7, (27)

< n
|SO7Z|—K n27 lélgm
where «,, are the Fourier coefficients of the function ¢”(x) on the interval [ly, ,,] with respect
to the orthonormal system of eigenfunctions Yn(x_,i;l) defined by (19). From (27) it follows
that

n=1

Thus the majorizing series converges absolutely; hence the series (22) converges uniformly on
2 and defines a continuous function u(z,t) on 2. This proves existence of a solution.

Uniqueness. Assume there are two solutions u(x,t) and u(z,t). Let v(z,t) = u(z,t) —u(x, t).
Then v solves
8% 2(921}1'

= k; Q, 1=1,2,... 2
at k’L ax27 (:C7t> e (2 ? ) ) 7m7 ( 8)

with the initial condition

v(z,0) =0, lo <z <lpy, (29)
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the boundary conditions

ov
aq 8_1(107t) + 61 U1(107 t) = 07
ax 0<t<T,
v
_mlmat mlm7t :07
a2 o (s t) + B2 Um (L t)
and the conjugation conditions
vi(li = 0,t) = viy1 (i +0,1),
ov; Vi1 0<t<T, 1=1,2,...,m—1.
ki—(l; — 0,t) = k; l; +0,t
81’( ) +1 75 ox ( + )

The solution of (28)-(31) can be expanded in the basis Yn( "Efli“l

) ; namely,

where

Transforming (33) and differentiating with respect to ¢, we obtain

i 9P, t) —1;_
C Zk/llgTiq)(<Si_1+x L 1)\/)\_n)dl‘,

(2

where @ is given by (17) and C,, are the normalization constants.

(30)

(31)

(32)

Proceeding similarly, integrate twice by parts, using the boundary conditions (30), the

conjugation conditions (31), and the identity

@”((sil—l— x_kfi‘l)\/A_n) - —22 q><<s,-1+ x_kfi‘l)\/A_n), i=1,2,...

We obtain
v () = = Ao, (t

n

hence  w,(t) = che™ n=1,2,....

);
Substituting this v, (¢ ) into (33) gives

— ;i
)Y, (x m 1) dr = c,e M.

,m.

(34)

Passing to the limit in (34) as t — 0 (which is permitted by the continuity of v(z,t) on Q),

we obtain

R T —li
12%2_;5/; vi(x,t)Yn( ? )dx—vn(O)—cn,

7

and therefore ¢, = 0 for all n = 1,2,.... It follows from (32) that v(x,t) = 0, whence

u(x,t) = u(w,t). This completes the proof of the theorem.
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4 Conclusion

In this paper, the solution of a multilayer problem for the heat equation with a discontinuous
coefficient by the method of separation of variables is substantiated. The existence theorem
of a unique classical solution of this problem is proved. The technique used here can also be
applied to more general boundary problems and more general conjugation conditions.

Analytical solutions to such problems are very useful and necessary because they provide a
higher level of understanding of the solution behavior and can be used for numerical solutions.
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ASYMPTOTIC SOLUTIONS TO INITIAL VALUE PROBLEMS FOR
SINGULARLY PERTURBED QUASI-LINEAR IMPULSIVE SYSTEMS

This paper investigates a singularly perturbed quasi-linear impulsive differential system with
singularities present both in the differential equations and in the impulse functions. The boundary
function method is employed to derive the main results. A uniform asymptotic approximation
with higher accuracy is constructed and a complete asymptotic expansion is obtained. Theoretical
findings are supported by illustrative examples and numerical simulations. The analysis reveals
the presence of boundary and interior layers caused by the singular perturbation and impulsive
effects. Sufficient conditions for the existence and uniqueness of the solution are established. The
results contribute to the theoretical understanding of impulsive systems with complex singular
structures and may be applicable to various problems in applied mathematics.
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YCTaHOB/IEHB! JOCTATOYHBIE YCJIOBHUS CYIIECTBOBAHUS W €IWHCTBEHHOCTH perreHus. [losyueHubie
Pe3yJIbTATHI CIIOCOOCTBYIOT PA3BUTUIO TEOPETHYECKOTO MOHUMAHUS UMITYILCHBIX CHCTEM CO CJIOXK-
HOI CHHTY/ISIPHON CTPYKTYPO# U MOTYT OBITH MPUMEHUMBI B 33/1a9aX MPUKJIAIHON MaTeMaTHKH.

KuirroyeBbie cJjioBa: CHHIYJISIDHO BO3MYIIEHHBIE CHUCTEMBI, UMILYJIbCHBIE U depeHInabHbIe
YPaBHEHUSI C CHHTYJISPHOCTSIMU, MAJIBII ITapaMeTp, MeTO/l TPAHUIHBIX (DYHKIIHIA.

1 Introduction

Perturbation methods deal with problems that contain a small parameter, usually
denoted by e, which perturbs or slightly modifies a simpler, well-understood problem. These
problems arise frequently in applied mathematics [1,2], physics and engineering [3]. There
are two main types of perturbation problems: Regular perturbation problems — the solution
varies smoothly with ¢.

Singular perturbation problems — the small parameter multiplies the highest derivative |4,
causing drastic changes in the nature of the solution as ¢ — 0.

Singularly perturbed differential equations represent a challenging and fascinating class of
problems where small parameters significantly impact the solution behavior. These equations
require specialized methods like matched asymptotic expansions to accurately capture the
full dynamics of the solution across different scales.

This work is associated with one of the effective asymptotic methods in the theory
of singular perturbations about the method of boundary functions, the mathematical
foundations of which were laid in the works |5,6]. The boundary layer method is a powerful
analytical technique used to study differential equations with rapid changes in a small region
of the domain — typically near a boundary. This method is especially useful in fluid dynamics,
applied mathematics, and singular perturbation theory. In many physical systems (especially
fluid flow), variables like velocity or temperature change very sharply near boundaries (e.g.,
surfaces), but slowly elsewhere. The thin region of rapid change is called the boundary layer.
Outside this layer, the solution varies smoothly this is the outer region.

Impulse effects describe the response or reaction of a system to a sudden, short-duration
force or signal. These effects are critical in understanding how systems behave under rapid
or transient conditions. Impulse differential equations (or impulsive differential equations)
are used to model systems that experience sudden changes (impulses) at specific moments
in time [7]. These equations combine continuous dynamics (ordinary differential equations)
with discrete jumps or instantaneous changes.

Singularly perturbed impulsive systems present significant difficulties. An exact solution
of impulsive differential equations with singular perturbations is elusive, which explains the
relatively small number of studies in this area. Major works in this field were performed
before 2000 (see [8-13]), including the research of Kulev (1992) and Bainov et al. (1996) on
uniform asymptotic stability, as well as the work of Zhu et al. (2007) on the exponential
stability of singularly perturbed equations with impulsive delay.

In [14H17], singularly perturbed Tikhonov-type systems with impulsive effects are studied.
These systems are distinguished by the presence of both slow and fast dynamics, as well as
by discrete state discontinuities occurring at fixed time instants. The combination of multi-
scale behavior and impulsive phenomena provides a rigorous mathematical framework for
the analysis and modeling of complex processes exhibiting rapid transitions and time-scale
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separation induced by a small perturbation parameter.
Akhmet and Cag [18-20] extended the Tikhonov theorem to a class of singularly perturbed
impulsive systems of the form

pz = f(z,y,t), 9=g9(zy,t),

(1)
MAZ|t:91 = ](27 Y, :u)v Aylt:nj = J(Za y),

with initial condition

2(0,p) = 2%, y(0,p) = 9", (2)
where z, f and I are m-dimensional vector valued functions, y,g and J are n-dimensional
vector valued functions, 6,7 ,,0 < 0; < 0y < ... <6, <T, and 77]-?:1, are distinct discontinuity
moments in (0,7).

Unlike the study referenced in [10], the authors considered systems in which not only the
differential part but also the impulsive parts are singularly perturbed. In this framework,
the impulsive function depends explicitly on the small parameter p, and the moments of
discontinuity for the functions z and y are not coincident. The extension of Tikhonov’s
theorem to such systems necessitates the treatment of additional complexities arising from
the perturbation of impulses.

In [18], two types of singular behavior are analyzed: single-layer and multi-layers
structures, both arising due to the nature of the impulse functions. The singularities in the
impulsive part are addressed using techniques from singular perturbation theory. Stability
of the reduced system in the fast (rescaled) time is established through Lyapunov’s second
method.

Papers [21-23] are devoted to the study of impulsive systems with singularities. Using
the boundary layer method, the authors constructed a uniform asymptotic approximation of
the solution for 0 < ¢t < T, and obtained higher-order approximations as well as complete
asymptotic expansions for systems with singularly perturbed impulses.

2 Formalities of approximation

Let us consider on the segment [0, 7’| the following system

ILLZ, = F<y7t)z + G(yat)a :U“AZ|t:0i - Il(y>p“)z + IQ(Q,#),
Y = fly,t)z+ gy, 1), Ayli—g, = J1(y, 1)z + Jo(y, 1)

with initial condition

0

2(0,p) = 2%, y(0, ) =4, (4)

where p is a small positive real number, 2 and y° are assumed to be independent of i,

0) 1,0 < 0y < by < ..<0,<T,are distinct discontinuity moments in (0,7"). We define

Ax|i—g, = x(0;+) — x(6;), assuming that the right-hand limit z(6;+) = lirerl x(t) exists and
t—0,+

that the left-hand limit satisfies x(0;,—) = z(6;). l
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Assume that 4 = 0 in equation . In this case, system reduces to the following
system

02F(§7t>E+G(y7t)7 02]1(@70)z+]2<y70)7

y, = f(ya t)z + g(ga t)? Ag’t:&' = Jl (ya O)E + JZ(@) O):
which is called to as a degenerate system, since its order is lower than that of system .
Therefore, for system the number of initial conditions to be less than the number of initial

conditions for . For system we should retain only the initial condition for ¥ since no
initial condition for Z is needed:

7(0) = 4", (6)

In order to solve system (), one needs to find Z from the equations 0 = F(y,t)Z +

G(y,t) and 0 = I,(9,0)Z + I2(7,0). Then, one selects a root of the system in the form

z = o(yt),t) = IC;'Ey,t which satisfies the equations 0 = F(7,t)p(y(t),t) + G(7,t) and

0= 1(y,0)p("(t),t) + I2(y,0). Substituting this expression into equation together with
the initial condition @ yield system

¥ =f@te@t),t) + 9. 1), AYle=o, = J1(7, 0)e(¥ (1), 1) + (¥, 0),
5(0) =y".
The following conditions are assumed to hold.

(C1) The functions F(y,t),G(y,1), f(y,t),9(y,t) and Li(y,e), Ji(y,€),i = 1,2 are infinitely
differentiable on the interval 0 < ¢ <T.

(5)

(7)

(C2) F(y,t) <0,0<t<T.
(C3) The system (7)) has a unique solution g(t) on 0 <t < T.
(C4) 1+ (7, 0)0(H(1),t) + J2(7,0)) # 0.

(z.9,)=(0,,0) H
moment at the points t = 6;,i = 1,2, ..., p.

(C5)

= 0, where ¥ = 7(#;) are the values for each impulse

An asymptotic approximation to the solution z(¢, u), y(t, 1) of problem (B)—() will be
sought in the form

. 0;
Z(uﬂ) :E(tvﬂ)—i_w(z)(Tiau)u Ti = ) 2'2071727“‘7137
2

(8)
y(t, ) =7t 1) + p (i, ), 0; <t <01, 6o =0, Opi1 =T
where
Z(tp) =Y phEt), gt p) = Z 1FT (t)
k=0 (9)

N7, 1t Zu w ), 7, 1t Zu I/kl) (7).
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The coefficients w( )(7;) and y,gi) (1;) in (EI) are called boundary functions, for which the

following additional condition is imposed,
w(00) =0, v (00) =0,i =0,1,2,..., p. (10)

By substituting the expansions into system , we get at the following equalities

pz (t, 1) + &9 (75, 1) = F(@(t, ) + s (i, 1), 0) (Z (8, 1) + 0 (73, 1) — F(G(t, ), 1)2(E )+
+ F(y(t, p), )2(t, p) + (Gt ) + p (7, 1), t) — GGt ), 1)) + G(@(t, ), 1),

U (t ) + 09 (7, 1) = F@(t ) + D (73, ), ) E(E 1) + 0@ (75, 1) — F@E ), 0Z(E )+
+ F @t ), 02 1) + (9@t ) + D (73, 1), ) — g (@t 1), )] + g(@(Et, ), 1)

Separating the expressions with respect to the variables ¢ and 7;, we derive two systems

le(t, HJ) = F(g(t> :u)v t)z(tv :u) + G(y(t> H’)7 t)’ (11)
Yt ) = ft, w), Ozt p) + 9@t 1), t),

and

W (i, 1) = F(t, p) + D (73, 1), )0 (73, 1) + [F @Gt 1) + gD (73, 1), 8) = F(G(t, ), )2 (¢, p)+

G(t, p) + ' (1, ), 1) — GY(t, )., 1),

o (73, ) = f@(t, 1) + D (75, 1), ) (75, 1) + [F @ 1) + D (75, 1), ) — F@(E ), 0]Z(E, p)+
+9(@(t, ) + (7, 1), 1) — g(@(t, ), 1).

_I_

(12)

Let us express F', f, Iy and I, in the form of power series in i as follows:

F(y(t, p), )zt pn) + Gt p),t) =
= F(_o(t) + Myl(t) + ...,t) (taﬂ) + G@o( ) =+ N?Jl(ﬂ + . ,t)
= ( D71 (t) + ...+ 1 Fy (1), T (8) + ..) (Zo(t) + pza(t) + .. )+

F(@o(t), 1) + pFy (5o (1), )y () +
o(t), 1) + nGy ([Go(t), T (1) + .. + 1 Gy (T (), )T () + ..) =
= F(Go(1),)Z0(t) + G(To(1),t) + plE @ (1), 1)Z1(1) + (Fy()Z0(t) + Gy (8))7: ()] +
o(t), 1)Zk(t) + (Fy (1) Z0(t) + Gy (0))Tx(t) + Hr ()] + ... =
= F(@o(t), t)Zo(t) + G(@o(t),t) + pHr(t) + ... p Hi(t) + ...
where functions F),(t) and G,(t) are calculated at the point (7,(t),t) and Hy(t) are defined
recursively in terms of Z;(t) and y;(t) for j <k,

F@(t, p) + p@ (5, p),t) — F(G(t, p), t) =

105+ 1mi) + o ) () + 12 (1) 0+ ) —
7, (0; + pry) B0+ um) =

= 1, (5o(%:), 0 uo>< ) + H2LE, G (0:), 00147 (7:) + Fa(6:)] + .+

+ 1 [Fy @o(6:), 0y () + Fe(0)] + .. = iILF(7) + .+ i T F (73) + ..

+
+

A++
=
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Fy(t, p) + p (73, ), )™ (73, 1) + [F(@(t, ) + gD (75, 1), 1) = F(G(t, ), )]z (¢, )+

+ G, p) + (75, 1), t) = G(y(t, p), 1) =

= F(y(0: + pmi, 1) + /D (73, 1), 0; + pr)w (73, ) + [ILF(73) + .+ p TG F(7) + . J2(0; + i, )+
+ L G(7) + .+ pFIRG(T) + . = F(Gy(6:), 0wt (73) + uF(yow ), 0wl (7) + .+

+ I F(73) + ..+ p L F () + ...]( 0(0:) + uz1(0;) + ..) + pIlLG(7) + ..+ pF LG (i) + ... =

= F(G(0:), 0:)w %) + ulF @ (6:), 6:)wi” (73) + ThF(7:)%0(6) + ThG(7)] + ...+

+ 1 [F@o(0:), )i (72) + T, F (73)Z0(6:) + TG(7)] + ... =

=g H () + pdL H (1) + ... + pFIH (1) + ..,

Z2(0; + pri, 1) = Zo(0; + pmi) + pz1(0; + pri) + ... = Zo(6;
+ w(Z1(0:) + priZy (0:) + ) o= Z0(0:) + pl[Z1(0:) +
1(7i

+ 12 [Z9(0;) + 2, (07 + 20 (0:) =] + ... = Wo(7i) + pw

where the functions Fj(0;) are calculated at the point (Yo(6:),0:),i = 1,2,..,p, and
0. F (), 1z G(7;),i = 1,2,...,p, are defined recursively in terms of w](z)(T) and v
j < k. Analogously, one can get that

) = Li(7o(0:),0)Z0(0:) + L2(To(0:),0)+ (13)
)71 (0:) 4+ 112(0:)] + €[12,(0:)7, (9') + e (6)] + ...+

where the terms I1,(6;), I2,(6;), [11(6;) and Io;(6;) are calculated at the point (7,(6;),0),i =
1,2,...,p, and I11(0;), Iox(0;) are defined recursively in terms of Z;(6;) and g;(6;) for j < k.
Analogous expansions hold for the expression Ji(y, )z + Ja(y, i).
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The problems , with and can be rewritten in the following form

Ho(t) + pHy () + ... p"Hy(t) + .. .,
ho(t) + phy(t) + ... pFhe(t) + ...,
11
1T

p(zo(t) + pzy () + .+ P2 () + )
To(t) + pwh () + -+ 1", (1) + .
g () + peo” (1) + .+ pFo (m) +
D((] )(Tz) + é’:‘VfL)( ) +...+¢€ V,Sf)(n) +.

oH(7;) + pIl H(73) + ... + WL H () +
oh(7;) + ell h(r;) + . .. 4+ pFILh(T) +

M(Z,u AZg|i—0, +Z,uk D)) =To(0:) + pT1(6;) + ...+ pPTu(0;) + . ..,
k=0 k=0

> T UEAGlia, + 1Y 100 (0) = So(0:) + uS1(6:) + -+ 1 Sk(8:) +
k=0 k=0

By inserting the expansion @D into conditions , we get

oo

2(0, 1) = Z 1152, (0) + Z ,ukw;(go ;

k=0

and

=K m0) + o (0) =
k=0 k=0

The expansions are performed up to order n and the coefficients are equated by powers
of u. For the zero-order approximation io(t),yo(t),wél)(n) and Vél)(n),i = 1,2,...,p, the
following systems are obtained:

0= F(io(t), 70(t) + Gla(0). 1), »
T(t) = F@o(), 70(t) + 9(Tolt), 1),

(1) = F(Go(6:), 0:)wl (1) = o H (1),
’)(gi)(ﬂ') = f(¥o(6:), ei)w(())(Ti> = Ilyh(m),

AZolimg, + wi(0) = Li(Go(0:), 0)Z1(0) + (11 (0:)Z0(05) + Ty (6))7:(6) + Tu(0:) = T1(6),
ATole=o, = J1(Fo(6:),0)Z0(6:) + J2(Ho(0:), 0) = So(6s), (17)
20(0) +w”(0) = 2°, Til0) = .
To find the coefficients of *(k > 1), the following equations are used

Za (1) = F@o(t), 1)Z(t) + (Fy () Z0(t) + Gy 1))y, (1) + Hi (1),
() = F(@o(1), )2k (t) + (fy(H)Z0(t) + gy ()75 (1) + I (D),
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(1) = F@y(0), 0y (1) + P (73)Z0(6:) + LG () = T H (73),
o) (1) = F(@o(60). 6w (1) + e f (r)Z0(6) + Mg () = Hih(ri).

AZklig, + i (0) = Lo (6:), 0)Zks1(0) + (11, (0:)Z0(0) + Loy (0:))Ti 1 (0)) + Trga (65),
ATlim, + )1 (0) = Ty (To(60:), 0)Z(6:) + (J1y (0:)Z0(6:) + oy (0:))T(6:)) + Ti(6:), (19)
20(0) + wi”(0) = 0, F,(0) + 4 (0) = 0.

Now we consider the interval ¢ € [0, 6,]. To obtain the leading-order approximations Zy(t) =
Z(t) and 7, (t) = y(t), we solve system

0= F(Yo(t),t)Z0(t) + G(To(1), 1),
To(t) = f(@(t), )Zo(t) + 9(Fo(t), Fo(0) = 3.
By virtue of the first equation in , equation can be rewritten in the form
.0 _ 0
&y (1) = F(5(0), 0)eg” (70)-
From the last equation, together with the initial condition
W (0) = 2° — %(0)
(0)

the function wy’ (79) can be determined. According to condition (C5), wéo) (170) admits the
exponential estimate

W (70)| < cexp(—rm), (20)

where ¢ > 0 and xk > 0.
The final step is to solve equation

% (10) = F(7y(0), 0)wy” (10) = Hoh(ro).
In view of condition , the initial condition is given by

W0 (0) = — / Moh(s)ds,
0
from which it follows that

V(()O) (10) = — /00 [Myh(s)ds.

70

Since Il f(79) decays exponentially, i.e., |IIyf(79)| < cexp(—#k7y) the same holds for Véo) (70) :

5" (10)] < cexp(—rm).

The coefficients of p* in the approximations Z,(t) and 7, (t) are obtained by applying
system
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To get w,(co) (70), the following system must be solved

0 (1) = F(7,(0),0)w0i” (70) + T F(16)Z0(0) + TG (70) = 1. H (7o),
W (0) = —24(0).

The remaining task is to solve the equation
0 (10) = £(7(0), 0)w'” (10) + i f(70)Z0(0) + Mg (7o) = My ()

Taking into account condition , the initial condition is given by

v2(0) = — / I1,h(s)ds,
0
from which it follows that
1/,5,0)(7'0) = —/ [Ih(s)ds.
0

Both II;,H(79) and II;h(7) satisfy exponential estimates of the type given in (20). As a
consequence, the following inequalities are satisfied,

Wi (r0)] < cexp(—rm),
|1/,E,0) (10)| < cexp(—kTy).

Let us now consider the interval t € (0;,0,,1],7 = 1,2, ...,p. To obtain the leading-order
terms Zo(t) = z(t) and y,(t) = y(t), corresponding to the power €°, we make use of system

0=F(Yy(t),1)Z0(t) + G(o(t), 1), 0= L(To(6:),0)Z0(0:) + L2(Fo(0:), 0),
To(t) =f(To(t),1)Z0(t) + 9o (1), 1), AYoli=o, = J1(Ho(0:),0)Z0(0;) + J2(T(0;), 0).

In view of the first equation in ([14)), equation takes the form

g (i) = F(Go(0:), 0w (1:),1 = 1,2, ....p.
Based on the last equation and the initial condition
w3 (0) = Ta (o (0:), 0)71(6:) + (L1 (0:)70(6:) + Loy (0))F1 (0) + T (0:) — AZoli=s,, 1 = 1,2,
the function w(()i) (7;) is to be determined, where w(()i) (0) represented in the modified form below.

Differentiating both sides of the first equations in and yields the following

Fy ({69 090(8) + Gy (3o(61). 09 = ~F(3(69.6) (21)
21
Ly (Ho(6:), 0)Z0(0:) + Loy (Yo (6:), 0) = —L1(Yo(6:), O>le_;

Inserting the first equation of into results in

Z0(0:) = F(Fo(0:), 0:)Z1(0:) + (F(0:)Z0(0:) + G ()7, (6:) + Hy(6;).
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Hence, it follows that

SO =gy = R @00

Inserting the second equation of into gives

(22)

i _ _ _ dz — _ .
WP(0) = L (701, 0)[F1(0) — 7,(0) 2]+ T(6) — AZoliegyi = 1,2, ..o, .

Substituting equation (22)) in place of the square bracket yields

(i _ Il(gjo(ei)vo) —r _ -
Wi (0) = W(zo(é’) Hy(0;)) + 1,(0;) — AZp|imp;,i = 1,2, ..., p.
(4)

According to condition (C5), the function wy’(7;) satisfies an exponential estimate of the
form

|Wél)(7—z)| S Cexp(_l‘fﬂ_i)vi = 17 27 - D,y (23)

where ¢ and k denote positive constants, which values may differ across various inequalities.
The remaining task is to solve the following equation

%) (1) = F@o(0:), 0:)0s” (7)) = Hoh(r) i = 1,2,....p.

Using condition (|10)), we determine the initial condition as follows

0(0) = — /0 " Hoh(s)ds.

Consequently, the following result is derived

W(r) =— / Toh(s)ds.

i

Since |IIph(7;)| < cexp(—kT;), it holds that
\V(()i)(nﬂ < cexp(—km), i =1,2,..,p

The coefficients of £* in the approximations zj(t) and 7, (t) are determined from the following
system

Hy(t),
),

Zp 1 (t) = F(Go(t), )Zk(8) + (F,(£)Z0(t) + G, (1), (t) +

Th(t) = F@o(t), k() + (f,(D)Z0(t) + g, (£)Ti(t) + hu(t
ATglizo, + 2 1(0) = T (To(6:), 024 (6:) + (J1y (0:)Z0(6:) + Toy (6:))T(63)) + Ti(6;).
(4)

The functions w;’(7;) are determined as the solutions of the following system

(1) = FGol6:), 0w (r2) + TP (7:)Z0(6,) + TG () = TLeH (73),
wz(:)(U) L (Go(0:),0)Zks1(0:) + (11y(0:)Z0(63) + L2y(0:)) Ty 1 (05) + Tira (0;) — AZk|i—p,,
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where the initial value w,(f)(O) can be represented in an equivalent form below

(@) _ [1(y0(9i>70) — T _
wy (0) = W(zk(ei) — Hy1(0:)) + L1 (0:) — AZ|i=e;,

Finally, it is necessary to solve the equation
o (1) = (@ (6:). 6:)0” () + T f()Z0(6:) + Tag(r) = Thyh(m),i = 1,2, . p.

By applying condition , we obtain

v9(0) = — / I1,h(s)ds,
0
and
v (7)) = — / I1,h(s)ds.

The functions Il H(7;) and Il h(7;) admit exponential estimates of the form (23).
Accordingly, one can prove that the following inequalities are satisfied,

lw,,”(1:)| < cexp(—kT;),i=1,2,...,p, 20
‘Vk (1:)| < cexp(—kT;),i=1,2,...,p.

Hence, the expansions in @ are constructed at least up to the terms of order k£ = n.

3 Main Results

In this section, we prove Theorems [I] and Theorem [2] which address two different behaviors:
a single layer singularity and a multi-layers singularity. The first behavior corresponds to a
layer concentrated near ¢ = 0, while the second deals with the presence of multiple layers
near t = 0 and at the points t = 6;, 2 = 1,2,...,p. It is demonstrated that the partial sums
of the series form a sequence of uniform approximations to the solution of the problem

B-@.

3.1 Asymptotic expansion of singularity with a single layer

We consider the case in which the convergence of the solution is non-uniform in a

neighborhood of ¢ = 0, as a result of the initial condition z(0, ) = 2° satisfying 2° # ¢

for all g > 0. The interval where this non-uniformity occurs is referred to as the initial layer.
In accordance with condition (C5) of ([13), the following identity holds,

Li(To(6:), 0)Z1(60:) + (11 (0)Z0(0:) + Loy (0:))71.(6:) + 1.(6:) = 0, = 1,2, ... p.
As a result, the first equation of becomes

(U(()Z)(O) = _A20|t:9iai =1,2,...,p.
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Substituting the above expression into , we obtain
20 1) = Zo(6i+) + i (0) + O(w) = Z0(6:) + O(n), i = 1,2, ..., p.

It can be concluded that the region of non-uniform convergence has a thickness of order
O(p), since for ¢ > 0 the estimate |z(¢, ) — ¢| = O(u) holds and can be made arbitrarily
small by choosing sufficiently small ;. This indicates that, for sufficiently small values of p,
the solution z(¢, 1) to the problem , does not exhibit boundary layer behavior in the
vicinity of the points t =6,,1=1,2,...,p

Theorem 1 Let conditions (C1) — (C4) and (Cb) be satisfied. Then there exist positive
constants o and ¢ such that, for all i € (0, o], the problem (@, admits a unique solution
2(t, 1), y(t, 1) that satisfies the inequality

St<
t (25)

where

Za(ts 1) = ZD(t, 1), Yalt, u) = Y, (t, 1), 0; <t <Oip,

n

Zﬁi)(t,u)ziukzk +Zuw =k

I

Y(lt,u Z,uyk —l—,uz,uuk )i =1,2,.

Proof 1 Substituting the expressions z(t, p) = u(t, p)+Z,(t, ) and y(t, pn) = v(t, p)+Y(t, 1)
into equations (@ and , we derive the following system

du
ua = F(Yo,t)u+ [F,(Yo,t) Zo + G, (Yo, t)|v + T1(u, v, t, 1),
dv
= = T )u+ [£,(Yo, ) Zo + 9y (Yo, B)]v + To(u, v, o), (26)

/LAUh:@i — Il (YE)v O)U + [Ily(%a O)ZO + I2y(}/07 0)]U + Sl (U, v, 61'7 :U’)7
AUlt:Qi = ']1(%7 O)u + [le(Yb’ O)ZO + J23/<Yba O)]U =+ SZ(uv v, eia /L),

with initial condition

w(0, ) =0, v(0,u) =0, (27)

where the components of the functions F,, F,, f, and f, are calculated at the points (Zo(t) +
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W (1), 7o (), 0),i = 1,2, .., p,

Ti(u,v,t,u) =F(v+ Yy, t)(u+ Z,) + Glo+ Yy, t) — F(Yo, t)u—
dz,
— [Fy (Yo, 1) Zo + G (Yo, t)]v — e
T2(u7 v, tv lu) (U + Yn7 t)(u’ + Zn) + g(“ + an t) - f(YO7 t)u_
dY,
[fy(yba )ZO + gy(Yb,t)]U - W?

S1(u,v,0;, 1) =1 (v + Yn(”l), ) (u+ fo’l)) + L(v+ Yn("’l), w) — I (Yo, 0)u—

— [11,(Y0,0) Zo + Loy (Yo, )] + pZ8Y — uz0,

n

Sa(u, 0,05, 1) =1 (v + Y,V ) (w+ Z57D) + (v + V8, 1) = i (Yo, 0)u—
— [J1y (Yo, 0) Zo + Jay (Yo, 0)]v + V07D — Y@,

The functions T (u,v,t, u) possess the following two properties,

1) TI(()? 07 tv :U’) = O(Mn+1)7 T2(07 07 t7 /L) = O(MH—H)

2) For any p > 0, there exist constants co > 0 and g > 0 such that, for all p € (0, po)
and for u;,vi, 1 = 1,2, the following inequalities are satisfied,

|Ti(uy, v1,t, ) — Ti(ug, va, t, )| < copplfug — ur| + |va —v1]), i =1,2.

We now proceed to prove property 1). Fort € (0;,0;11], it follows that

T1(0,0,t, 1) = Flo+ Y, t) Z, + Glo+ Yy, t) —

Zu e(t) + uy) (7)), )+
Zu t) + vl (1) ZM (Z(t) + wy () ZM (£) + &y () =
Zu Tyt Zu Zi(t) + G Zu (T (t Zu

n

F@(0; + pri, i) + D (i, 1), 0+ pmi) > il (7) + Z (" (T F (73)Z0(6;) + T1,G (7)) —
k=0

Z'uk (Z ) Zuka n+1 ZM
Zﬂnk (73) + O(u"*) Zw 7)) = O™,

similarly to that for the functions yk(t),l/,?)(n),i = 1,2,...,p. The validity of the second
property of the functions T}, j = 1,2, can be derived by applying the mean value theorem. In

fact,

ﬂ(uhvht)l’b) - T(u27v27t M) = sup |a Tl (ul - Ug) + sup |a:T| ’ (Ul - U2)7
[0;T] (0;T7]
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where T = 0T (u
a), v*(s) = w(s) = o
(w7 (5), 0" (5), 8 1) = F(v + Yo, t) = F(Yo,1),
Ti(u™(s),v™(s), 8, ) = Fy(v + Yo, t)(u+ Zp) = Fy (Yo, 1) Zo + Gy (v + Yo, t) = Gy (Yo, 1),

( ) (S)afwﬂ)a G:T = a:T(u*<S)7U*(S)7t>N)7 U*<8) = uz + S(ul -
ve + s(v; —v2), 0 < s < 1. But

and

u™(s) + Zn(t, 1) = Zo(t)] < [u™(s)] + Cp,
[v"(s) + Ya(t, ) — Yo(t)] < [0"(s)[ + Cp.

The continuity of the first-order partial derivatives of the functions F(y,t), G(y,t), f(y,t) and
g(y,t) ensures the validity of property 2). The functions S;(u,v,0;, 1), i = 1,2, possess the
following two properties,

1*) For 0 < p < po

51(0,0,6;, 1) = O(™™), S2(0,0,0;, ) = O(u"*H).

2%) For any p > 0, there exist constants c; > 0 and po > 0 such that, for all p € (0, po) and
for u;, v, 1 = 1,2, the following inequalities are satisfied,

|Si(ur, v, t, ) — Si(ug, v, t, )| < eop(ug — wr] + lva —w1), i =1,2.

The proofs of properties 1*) and 2*) follow analogously to those of properties 1) and 2),
respectively.

We now reformulate the impulsive system (@f as an equivalent system of integral
equations

u<t7 M) :% A CI)(t7 S, /“L)[(FyO/(b S)ZO + Gy()/()v S>>U<S7 :U’) + Tl(ua v, S, :u)]d3+ (28)
T Z CI)(t, 0i, :u)(l + II();O, O> )71([[11/(%7 O)ZO + IZy(YO’ 0)]?)((91-, :u) + Sl(“? v, 0;, M))?
oltop) = [ W05 £ Sl ) + Tal ot (29)
+ 3 U0, ) (1 Tiy (Yo, 0)Z0 + Jay (Yo, 0)) ™ (Ji (Yo, 0)ully, 1) + Sa(u, v, 65, 1)),
0<O;<t

where ®(t, s, 1) and V(t, s, ) denote the fundamental matrices of the corresponding system

dd
Py = F(Yo, )@, t # 60;, pA®|i—p, = I1(Yo,0)P, $(s,s,1) =1,
A
a = (fy,(Yo,t) Zo + g,(Y0, 1))V, t # 0;, AV|i—p, = (J15(Y0,0)Zo + Joy (Y5, 0))W, W(s,s,pu) = 1.

The following holds for the fundamental matriz ®(t, s, p)

@ (t, 5,1)| < cexp(——(t —5)), 0<s<t<T.
"
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By inserting the representation of v(t, 1) from equation (@ into the first equation, we derive

t
ult, 1) = / H(t, 5, w)uls, p)ds + Ny (u, 0,1, 1),
0

where H denotes a bounded kernel, and the function Ny satisfies the same two properties as
the function T(u,v,t, ). The last equation may be replaced by an equivalent one of the form

t
u(tnu) = / R(tv S7M)N1(U7U>S7/j’)d5 + Nl(u,v,t,u) = Ml(uav7taﬂ)7 (3())
0

where R is the resolvent corresponding to the kernel H. Substituting the representation (@)
for u(t, p) into equation (@) yields

U(tvlu) / \I[(t s M)[f(YEhS)Ml(u?U?SaM) +T2<U7U7S7/“L)]d8+

+ Z t 917/1 1+ le(}/ba())ZO + J2y(Yb70))71(%]1(}/67O)Ml(uvv79iaﬂ)+ (31>

0<;<t

+ 52(u7 v, Qia :u)) = Mg(U, v, 1, :u)

The functions My and My possess the same two properties as the function T'(u,v,t, u). The
method of successive approximations applied to systems (@) and yields a unique solution
that fulfills the corresponding estimates

lu(t, p)| = |2(t, 1) — Zyp(t, )] < cp™, 0<t<T,
l(t, w)| = ly(t, p) = Yoa(t,p)| < e, 0<t < T,

The theorem is proven.

3.2 Asymptotic expansion of singularity with multi-layers

In the previous subsection, it was shown that there exists a single initial layer. Using an
impulse function, the convergence can be nonuniform near several points, that is to say,
that multi-layers emerge. These layers occur on the neighborhoods of t = 0 and ¢ = 6,%_;.
In the preceding subsection, the existence of a single initial layer was demonstrated. The
introduction of an impulse function leads to nonuniform convergence in the vicinity of multiple
points, resulting in the formation of multi-layer structures. These layers are localized near
t=0andt=6;,1=1,2,...,p.

In order to generate a singularity exhibiting a multi-layer structure, we examine system
(B) subject to conditions(C1)—(C4) along with the additional requirement condition

I I
(C6) . 1y, )z + L(y, 1)
(zy,1) = (2,5,0) j

where [; is a constant, p(y(6;),6;)+1;,i = 1,2, ..., p, are the values for each impulse moment at
the points ¢t = 0;,i = 1,2, ..., p. By virtue of condition (C6) from equation (13), the following
equality holds

LYo (0:),0)21(0:) + (11, (0:)Z0(0:) + L2y (0)71(0;) + 1,.(6;) = 1; #0,i = 1,2, ..., p.
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Accordingly, the first equation of system can be rewritten in the following form
Wi (0) = I; — AZglimg,,i = 1,2, ..., p.
By substituting the previously derived expression into , we arrive at
204, 1) = Zo(0,4) + w(0) + O(1) = Zo(6:) + li + O(p),i = 1,2, ..., p.

According to condition (C6), after each impulse moment 6;, the difference |z(6;,4, 1) — | =
l;+O(p) does not vanish as p — 0. Consequently, the convergence is nonuniform. Therefore,
it can be concluded that the solution z(t,u) of system with the initial condition
exhibits a multi-layer structure, with layers forming in the neighborhoods of ¢t = 0 and t = 6;
fori=1,2,...,p.

The proof of the next theorem follows by analogy with the proof of Theorem [I]

Theorem 2 Let conditions (C1) — (C4) and (C6) be satisfied. Then there exist positive
constants o and ¢ such that, for all i € (0, o], the problem (@, admits a unique solution
2(t, 1), y(t, 1) that satisfies the inequality

Zn(tv :u) = Z}zi)(ta :u)v Yn(tv :u) = Y(i) (t’ :u)a ‘91 <t< 0i+17

i - . i t—0;
k=0 k=0

n

V() = D n w3 n v (7),i = 1,2 p.
k=0 k=0

4 Numerical examples

4.1 Example 1

Consider the impulsive system with singularities

pz' = —ytz+y’ —bpty,  pAzli—g, = 2y —y — 2p°y°,

32
y = 2zy — 8y, Ayli—g, = 2yz — 8y, (32)

initial conditions
2(0,p) =2, y(0,p) =3, (33)

where 0; = i/5,1 = 1,2,...7. Assume that g = 0 in the considered problem. In this case, the
first equation of system (32)) reduces to the form —%?z +%? = 0,2y — ¥ = 0. which yields the
solution Z = ¢ = 1. Nevertheless, according to condition (C2), the root Z = 1 is uniformly
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asymptotically stable. Inserting the value Z = 1 into the second equation of yields the
following result

yl = _6y7 Ag’tzai = g + 17
y(0) =3.

(34)

This system possesses a unique solution 7(t). Next, we examine the validity of condition (C5)

Y 2y —y = 2p°y°
11m =
(2,y,1) = (,5,0) 2

0.

The solution z(t, i) of system with the initial condition (33| exhibits a single initial layer
at t = 0. The simulation results presented in Figure [I] confirm the presence of this single-layer
behavior. As i — 0, Figure [2| shows that the solution to problem , converges to the
solution of the corresponding degenerate system ([34]).

i}fFTffrf

i i =
4 1.2 1.4 1.6

=

t

251
2 -
N
15
1 —
0.2 0.4 0.6 0.8 1 1.

t

2

Figure 1: The blue and green curves illustrate the solutions of system with initial
conditions , corresponding to the values p = 0.1 and p = 0.05, respectively. The red line
represents the solution to problem (34).
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1.8

Figure 2: The blue and green curves illustrate the solutions of system with initial
conditions , corresponding to the values = 0.1 and p = 0.05, respectively. The red line
represents the solution to problem ([34]).

4.2 Example 2
Now, we now consider the following system

pe' ==y’ — 3y* — dptyz,  ulzli—g, = 2y + 3y — 6 yz — 4sin(2u),
/ (35)
y = 2zy — 8y, Ayli—s, = 2y — z,

initial conditions

Z(O,M) = _17 y(()?/L) = 37 (36)

where 0; =i/5,i=1,2,...7. Setting u = 0 in transforms the first equation into —7%z —
3% = 0, which simplifies to zy + 3y = 0. This yields the root Z = —3. The corresponding root
¢ = —3 is uniformly asymptotically stable, as it satisfies condition (C2). Inserting zZ = —3
into the second equation of system yields

Y = —14y, Ayl =27+ 3,
y(0) =3.

One can confirm that condition (C6) is satisfied

(37)

— 6p2yz — 4sin(2
b Y T3y = 6uyz — dsin ”):—87é0.

(2,9,1) = (,5,0) 1
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The solution z(¢, 1) of system with initial condition exhibits multi-layers near ¢t = 0
and at each point ¢t = 6,7 =1,2,...,7. Figure |3| reveals the presence of multi-layer behavior
in the solution, while Figure reffigd shows that, as ;1 — 0, the solution of the original problem
, approaches the solution of the degenerate system (37)).

STTTTT7T7 T

-10 - T
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
t
4 T T T T T T T
3 -
> 2t -
1 — -
0 Il 1 Il 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

t

Figure 3: The green and blue curves illustrate the solutions of system with initial
conditions , corresponding to the values p = 0.1 and p = 0.05, respectively. The red line
represents the solution to problem (37).
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Y

Figure 4: The green and blue curves illustrate the solutions of system with initial
conditions , corresponding to the values = 0.1 and g = 0.05, respectively. The red line
represents the solution to problem (37]).

5 Conclusion

In this paper, the singularly perturbed quasi-linear impulsive differential equation is
considered. The boundary function method is employed to construct asymptotic solutions
with arbitrary accuracy. Both single-layer and multi-layers phenomena are analyzed within
the framework of asymptotic expansions. This approach allows a detailed description of the
solution behavior in regions characterized by rapid transitions and boundary layers. The
theoretical results are supported by illustrative examples and numerical simulations.
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ON EXPERIMENTAL PROOF OF "P VERSUS NP"THEOREM

We propose a simple and intuitive algorithm for solving md-DFA problem using algorithm concepts
within extended operators, our approach shows quadratic polynomial time and hence proves the
equivalence between polynomial and non-polynomial classes, we have also shown that minimal non-
emptiness of automata problem can be solved in polynomial time with help of modified subset
construction, rather that building a product automaton, which lead to factorial size of the memory
and time, in this work we also have used many non-tractable existing examples and computed them
in polynomial time, which guarantees that our algorithm solves NP-complete problem in almost
linear polynomial time, we have also avoided the problem of product automata by an algorithmic
approach, we are also giving the starting ground for the proof of back-reference problem which
was discussed before, notion to the globally local increment is also given as the main argument
towards the resolution of "P versus NP"theorem, which coincides with the finitarity term in general

mathematics. ) ]
Keywords: P versus NP, complexity, theorem, experimental, proof.
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006 skKcIIepuMeHTAJIbHOM JoKa3aTeJbCcTBe TeopeMbl «P nmporuB NP »

Ms1 npejjiaraeM IMPOCTON M MHTYUTUBHO IMOHSATHBIN ajroputm Jjisi pemtenus 3agadu md-DFA c
HUCHOJIb30BaHUEM KOHIIENIINI aJrOpUTMa B PACHIMPEHHBIX OIepaTopaXx, Halll IIOJX0J ITOKa3bIBaeT
KBaJIpATUYHOE IOJIMHOMHAJIBHOE BPEMS U, CJIE/IOBATEJILHO, JIOKA3bIBAET SKBUBAJEHTHOCTD MEXKTY
MIOJIMHOMMAJIbHBIMUA 1 HEIIOJIMHOMUAJIbHBIMU KJIaCCaMM, MBI TaKzKe IIOKa3aJsd, YTO MUHUMAJIbHAA
HEIIyCTOTa aBTOMAaTa MOXKET OBITh pellleHa 3a IIOJIUHOMHAJIBHOE BPEMs C IIOMOIIbIO MOAUMUIIDO-
BaHHOI KOHCTPYKIUU TTOJMHOYKECTBA, & HE ITIOCTPOEHUSI aBTOMATA-ITPOU3BEIEHUS, YTO ITPUBOJIUT K
dakTOpHaJbHOMY pa3Mepy HMaMsTH U BPEMEHU, B 3TOI paboTe MBI TAKXKE HUCIOJIH30BAJIN MHOXKE-
CTBO HEPa3pEeNIUMBbIX CYIIECTBYIONINX IPUMEPOB M BBIYUCIININ UX 3a IIOJIMHOMUAAJILHOE BPpEMs, YTO
rapaHTHpYeT, 9TO HaIl aJroputm perraet NP-mosmyio 3agady 3a mouTn JuHEHOe TOJTNHOMIAIBHOE
BpeMsi, Mbl TaKzKe n30ekasiu MpodeMbl AaBTOMATOB-IIPOM3BEIEHII C IIOMOIIBIO AJITOPUTMUAIECKOTO
IOIX0/1&, MBI TaKKe JIAeM OTIPABHYIO TOUKY JIJIs JOKA3aTETHCTBA MPOOJIEMbl OOPATHBIX CCBHLIOK,
KOTOpast 00Cy2K1aj1ach paHee, MOHATHE TJI00aIbHO JIOKAJBHOIO IIPUPAIIEHUS] TAKYKE [IPUBOJUTCS B
KadecTBe OCHOBHOT'O apryMeHTa K pazperneHuio TeopeMbl «P mporus NP», koTopas coBmajaer c

TEePMUHOM (PUHATAPHOCTH B ODOIIEH MaTeMaTHKe.
Kuarouesbie cioBa: P nporus NP, Teopema, moka3areabCTBO, CJI0KHOCTD, TPUKJIAIHAS MaTeMa-

THUKa.
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Bi3 keHeiiTisiren omeparopJap iniiHe aJropuT™M YFBIMIAPBIH aiigaiana oTeipbin, md-DFA ecebin
eIy H KapanaiibiM YKoHe WHTYUTUBTI AJITOPUTMIH YChIHAMBI3, OI3/IH OJiC KBaJPATTHIK, KOIIMY-
IIEeJTIK YaKBITThI KOPCETE Il 2KOHE OCBHIIANIIA KOIIMYIIIETK KOHE KOIIMYIIEIIK eMeC CHIHBIITAD apa-
CBIHIArbl 9KBUBAJEHTTLIITIH O/, COHBIMEH KaTap 0i3 aBTOMATTAHIBIPLIIFAH €CENTiH MU-
HUMAJIIBI 60C eMecTirin MoandUKAIMAIAHFAH IITK] YaKbIT OHIMIH KYPY apKbLJIbI ITEITyTe 00IaThIH-
JBIFBIH KOPCETTIK. KA Ibl MEH YaKBITTBIH, (DAKTOPJILIK OJIIIIEMiHe DKeJIeTiH aBTOMAT, OYJI KYMBICTA
613 COHBIMEH KaTap KOIITEereH TPaH3aKIIUsIIAHOAWTHIH 6ap MbICAIIAPIBI KOJJIAHIBIK, }KOHE 0JIap bl
KOIMYIIEIK YaKbITTa ecenTemik, Oy 0i3miH aaropurmimiz NP-ToJiblK ecenti mepiiik ChI3BIKTBIK,
KOIMYIIEIK yaKbITTa IIeIeTiHIHe KeIiIaiK Oepe/li, COHbIMEH KATap aJrOPUTMIIK TOCLT apKbLIbI
OHIMHIH, aBTOMaTTaphl MICEIECiH OOMALIPTIANBIK, 613 OyraH meffin mosesngeme OepreH MoceIeHi
Jie TAJKBLIAIBIK,. KahaHIbIK KEPriTiKTI eciMre KaJmbl MATEMATUKAIAFbl COHFBLIBIK TEPMUHIMEH

cotikec kenetin «P kapcet NP» Teopemachin mienty/iin Herisri mgosesi petinge jie 6epiiarex.
Tyitin ce3nep: P xapcet NP, Teopema, jomesnjiey, KypaesiiiK, KOAJaHOAIbI MAaTEMaTAKA.

1 Introduction

The NP-hardness was first defined in [1], also there’s a defined lower linear bound for deciding
arbitrary non-deterministic finite automata on regular languages or even other arbitrary [2].
The problem was first seen on the partial case of non-deterministic automata [3,4]. The
problem of md-DFA is to find a minimal finite automaton which is a subset of any given
automata and isn’t included in others [5].

The relationship between P vs. NP is one of the greatest open problems in computer
science. The central challenge is whether problems whose solutions can be efficiently verified
(NP) can also be efficiently computed (P). Here, we propose a new perspective: Is there a
deeper mathematical structure that enables a more efficient computation of NP problems?
We investigate whether parallels exist between quantum mechanics, the fractal structure of
the Riemann zeta function, and the superposition of NP problems.

NP-Completeness in DFA Problems An important class of NP-complete problems arises
from automata-based computation. Two key problems are: - Minimal Distinguishing DFA
Problem: Determining the smallest deterministic finite automaton (DFA) that distinguishes
between two regular languages. - DFA Non-Emptiness Problem: Deciding whether the
intersection of multiple DFAs is non-empty. Both problems are NP-complete [5,/7]. - The
product construction for DFAs has a complexity of O(|A;| * ... x |A,|), which grows
exponentially with the number of automata. - A modified subset construction can help reduce
the complexity, but a fundamental lower bound remains. Question: Is there a hidden structure
that allows for more efficient computation?

Superposition of NP Problems In classical computation, NP problems are solved
sequentially: all possible solutions must be explicitly checked one by one. In quantum
mechanics, states exist in superposition: - A quantum system can exist in multiple states
simultaneously until a measurement collapses it to a single definite state. - Quantum
computers could solve NP problems more efficiently by evaluating all solutions simultaneously
and amplifying the optimal one (e.g., using Grover’s algorithm). Hypothesis: NP problems
are not randomly distributed but follow a hidden mathematical structure that enables a more
efficient computation.
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1.1 Connection to the Zeta Function Fractal Structure & Superposition

According to Kardeis |14], the analytic continuation of the Riemann zeta function exhibits
remarkable symmetry: the function has poles at s = 1 and possibly at s = 0, as supported
by the functional equation; the critical line R(s) = 0.5, R(s) = 0.5 contains infinitely many
nontrivial zeros, reflecting the structure of prime numbers; the self-similarity of the zeta
function suggests a fractal order in its structure; a key point in Kardeis’ work is the hypothesis
that the structure of the zeta function resembles a superposition of states: the statement
"0 = 1 simultaneously like a superposition suggests that the zeros of the zeta function
represent a simultaneous existence of multiple solutions, this directly corresponds to the idea
that NP problems do not need to be solved sequentially but can be structured within a
higher-order fractal framework.

Hypothesis: The zeta function may reflect a deeper order in NP problems, enabling a
more efficient computation.

Connecting DFA, Quantum Mechanics, and the Zeta Function DFA & NP problems are
exponentially complex: classical algorithms require sequential computation, superposition in
quantum mechanics allows for parallel states.

The zeta function exhibits a fractal order: the self-similarity of its zeros and their reflection
symmetry could serve as a mathematical analogue to quantum superposition, this suggests
that NP problems are not randomly distributed but follow a fractal structure.

Implication for P vs. NP: if a deeper structure in NP problems can be identified, this could
break the exponential complexity barrier, the fractal organization could provide an alternative
ordering principle for search algorithms, similar to how quantum algorithms already offer
advantages today.

The fractal structure of the zeta function could provide a new perspective on NP problems.
Superposition in quantum mechanics could serve as a natural mathematical analogy for the
distribution of zeta function zeros. The existence of a fractal order in NP problems could
open new pathways for efficient computation.

No strict mathematical proof yet: a formal demonstration is needed to show that NP
problems can indeed be described by a fractal structure, specific quantum algorithms must
be developed to leverage this structure for efficient computations.

Future question: "Could the mathematical structure of the zeta function contribute to a
new theory of P vs. NP?"

2 Re-writing algorithm

We give the subtraction re-writing method to solve this problem in linear-logarithmic time
as per our previous research. The technique known as re-writing is summarized, for the &-
operator we use the overridden state with logical consumers as well as for the subtraction
operator which is defined within the same terms, however, differing only in logical statement,
the complement operator in this manner is also re-written using the alphabet star and
subtraction from the operand. Thus, the mix of re-writing and logical state composition
gives the way to the modified subset construction, which rather than visiting every possible
composition, produces exact answer on each iteration, thus giving the polynomial running
time, rather than exponential or even factorial. The DFA constructed from the subtraction



M.B. Syzdykov, Y.L. Kardeis 69

of DFA1 and DFA2 was constructed experimentally on the example in [5|. The first DFA
corresponds to the regular expression ((aaaa) * a|(aaaa) * aa|(aaaa) *x aaa), as the second one
to (a|aalaaalaa(aaa) * |aaa(aaa)*), the figure above shows the result produced by Regex-+
software package. Thus, the decision problems based upon the extended operators can be
solved in full and more efficiently if we will choose the strategy of computing locally optimal
solution which gives the optimal step to the global one - this technique we will call as the
globally local increment (GLI). This decision problems which we encountered are only two:
minimal distinguishing DFA (md-DFA) and non-emptiness DFA of the given automata: both
of which has the state space of factorial size, which, in turn, means that we have to choose the
better strategy and solution in order to get to the certificate of acceptance in non-polynomial
problem within the visible time limit, in our experiments, it didn’t exceed more than minute.
In the next section we will give the compound benchmarks for the derived examples.

Figure 1: The distinguishing DFA for example in [5]

Re-writing works as it was outlined, thus, we can state that the DFA corresponding to
the expression Ry — Ry is a subset of DFA(R;) and isn’t contained in DFA(R5).

3 Proof by Product Automata

As it was presented in [6], the maximal complexity of product construction is the product
of its operands, which can be factorial due to the number of automata, however, we can
use same methodology as we have presented before using re-writing and event call, thus,
giving polynomial solution to various number of operands with variable cardinality. As it was
present in [7H9] the minimal intersection of arbitrary automata cannot be approximated using
product construction as it gives the factorial number of solution to be searched, otherwise,
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Figure 2: Example md-DFA for the expression ((aaaa) * a{l,4}){4000} —
(a{1,3}(aaa)*){4000}

the better strategy is to use modified subset construction approach. The term "minimal
distinguishing"can be also viewed from the approach we invented before as we can compute
the minimal possible automaton by simply computing the shortest path between starting
and ending points using Dijkstra algorithm. The non-emptiness problem which is known to
be NP-hard will be also proved to be solvable by a polynomial algorithm in the next section.
Another counter-example is from [10], where the expression in the form (ab)*&... was studied,
we have shown in the next section that it can be computed in time of several seconds for the
string of length 8000 containing 1000 intersection expressions - this gives the contrary towards
the minimal DFA recognizing this language which has an exponential complexity. During the
review of the present results we haven’t met other counter examples which could get the
running experimental program to work with errors or in not observable time frame. Another
case we get from |11] for intersection operator, which gives the exponential estimation of the
time and space complexity, our results give the reasonable amount of time not greater than
12 seconds for one thousand intersections. The proof of correctness of re-writing algorithm
and modified subset construction can be done by viewing the cut, as it was presented much
more earlier. We also point the regression of complexity to almost linear and quadratic with
respect to the back-referencing problem in extended regular expressions, one can see that
number of decompositions decreases as we proceed further with the given search and, thus,
certificate of acceptance is achieved almost "on the fly". The co-NP complete problem [12]
can be by analogy solved in reasonable time as of our experimentation procedure, which
states that co-NP classes lie within polynomial P classes.
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4 Benchmarks and Experimentation

In table 1 there is a summary of the tests on the expression in the form of ((a*) * al-*)* —
(a**(a* )% )",

String DFA Number of

K length States Time (sec)
0 63 16 0.155
1 93 25 0.018
2 129 36 0.032
3 171 49 0.042
4 219 64 0.053
5] 273 81 0.071
6 333 100 0.065
' 399 121 0.093
8 471 144 0.185
9 549 169 0.261
10 633 196 0.817
11 723 225 0.403
12 819 256 0.389
13 921 289 0.509
20 1803 576 2.808
30| 3573 1156 13.06
40 5943 1936 41.488
50 8913 2916 188.674
60 12483 4096 276.88
70 16653 5476 585.398
80 21423 7056 1222.708

Figure 3: The results of expression tests using re-writing algorithm

On the next figure there is a visualization of the data in Table 1, as it can be seen results
converge to quadratic polynomial function.

With respect to the term fixed-parameter tractability (FPT) as our alphabet before in
tests consisted of only letter, we have run tests for arbitrary alphabet "abcd"for cases in form
((alblcld)«)*(alblcld)* — ((alblc|d)*((alblc|d)+)*:

In the other test we will use the regular expression in the form a* * &..,k = 1..n, the
results are as follows.
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Figure 4: Visualization of the benchmarks in first table

5 Discussions

5.1 On Effective Algorithms and Cook’s Conjecture

This section is a review of the advancement methods in modern combinatorial optimization
within some major results in usage of dynamic programming on trees as well as main
conjectures in graph theory and theory of computational complexity, which in recent time
is studied more as we get in time within modern trends like social networks and publicly
available hubs, most of which rely on artificial intelligence, however, this work won’t deal
with Al, better we will propose several fundamental approaches, conjectures and questions
as per which we can give a clear and positive answer that this problem isn’t an ending case
and, thus, can be probed on the particular basis which include the deep review of the newest
papers on graph theory and other conforming topics, which are, in turn, become popular
during the past decade of the research within tractability, application and generalization
progress, we also give the important relation to chromatic numbers in graphs.

In this preamble paper we give the definition of some effective algorithms like subset
construction and variable maximum flow problem using potentials which was better studied
before as the analogy by Malhotra-Kumar and Maheshwari; we will also go further and
show that the Stephen Cook’s conjecture of the NP-complete problem implies the uncertain
complexity classes which were classified by us before as to be impractical while the certificate
of correctness remains of polynomial complexity.

As it was proposed and defined before in a seminal paper the NP-complete problem is a
problem whose verifying certificate is linear, however, it was incomplete to define the number
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DEA

String  Number of

k length States  Time (sec)
0 104 14 0.284
1 158 12 0.08
2 224 13 0.059
3 302 14 0.1

4 392 15 0.132
5 494 16 0.131
5] 608 17 0.209
7 734 18 0.307
8 ar2 19 0.335
9 1022 20 0.338
10 1184 21 0.437
11 1358 22 0.394
12 1544 23 0.423
13 1742 24 0.529
20 3464 31 1.78
30 6944 41 7.442
40 11624 51 17.878

Figure 5: Tests for the quadratic alphabet

of possible solutions to form the multiplicative space over the operator (*).

Dana and Scott also remained many unspecified in their decision of the subset construction
algorithm which was actually superseded by Berry-Sethi algorithm which produces the linear
number of states in deterministic automaton with respect to the preliminary construction
algorithm.

Since the definition of the networks and optimal flows on them, number of many
algorithms was proposed — one of them is due to Malhotra, Kumar and Maheshwari which
has a polynomial cubic complexity. We also give the notion to the super string problem as
it’s EXPTIME- and EXPSPACE-complete, thus gives the way of defining it as NP-hard.

As the efficient algorithm which includes both the optimization process as well as the
conversion of non-deterministic automaton to deterministic one can be viewed as the splice
between the initial and accepting states, thus giving the notion to the cases where the
exponential blow of number of states occur which we have well studied before and gave
the unary O(1)-time complexity check. Thus, this tendency gives the proof of the linear
nature of the subset construction algorithm whose minimal upper bound is O(n * log(n)),
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Figure 6: Visualization for example arbitrary alphabet

however the minimal one is O(n). In this method we make the choice by the divide-and-
conquer strategy from beginning to the end of the state graph describing the automaton —
this gives the possibility of avoiding variety of optimization techniques which doesn’t pass
the dead point of the exponential growth of spaces, however, rather our algorithm makes it
possible “on-the-fly” which predominant viewing on the combined techniques of construction
and optimization applied together. On the figure below the basic idea is depicted which shows
how the algorithm works on non-deterministic finite automaton while making it deterministic.
The super string problem can be viewed from the minimal bound of exponential complexity
as there is the minimal string of variable length n = 27() — for each s in the set of all string
S as the any minimal string containing all the strings in S as sub-string can be viewed on the
other hand as a minimal string along the “trie” for which the dynamic optimization is applied
and, thus, the correct composition is sought on the every node of the string forrest. Also
Malhotra-Kumar-Maheshwari algorithm is a good sense of creating the variable algorithm
with potentials defined for each of the element of the flow network, where the optimization is
applied according to the hierarchical order. At least, this is true, for variety of networks and
lead to the exponential blow-up for the networks of finding maximal pair whose algorithm
uses maximal flow algorithm along the augmentation paths.

We have defined the optimal cases for the subset construction algorithm which was proved
to be linear in complexity, also we have shown that the definition of NP-complete problem
originally has to be expanded to the class of the uncountable spaces which cannot be realized
in time of the arbitrary polynomial function. From the above it follows that DFA has same
power as NFA and can be used practically in the testing or membership problem. Also, we
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DEA
String  Number of
length States | Time (sec)

6 0.135
13 0.008
14 0.005
21 0.009
22 0.004
23 0.007
30 0.008
31 0.006
32 0.009
33 0.006
40 0.011
41 0.014
42 13 0.013
55 61 0.016
i 421 0.197
93 841 1.003
109 2521 6.094
125 2521 5.678
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Figure 7: Results for non-emptiness test

have revisited the maximum-flow problem with the definition of arbitrary potentials of each
of the vertex which is defined as its minimum of the incoming and outgoing flow. Also the
superstring problem is actually is NP-hard as we have shown shortly in this paper due to the
variable complexity of the string to encompass any other defined set of strings to be checked
against the correct answer.

5.2 Argument towards Cook-Rabin-Scott Conjecture in Complexity Theory

We give the full proof of the equivalence of complexity classes like polynomial (P) and non-
polynomial (NP) according to Cook-Rabin-Scott conjecture and our prior results of the subset
construction which were first proposed by Berry-Sethi. The “P versus NP” has a long-lasting
history of its interpretation and first appearance and definition . As it follows from the original
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Figure 8: The visualization of the performance of the non-emptiness test algorithm

paper the problem can be classified as NP-complete if there’s a defined subset of certified
words in language DL(M), where M is a Turing tape automaton or non-deterministic finite
automaton (NFA) as they are isomorphic due to our prior objective finding. As it was well
presented and discussed by Scoot and Rabin, the NFA can be well converted to deterministic
finite automaton (DFA) encoding arbitrary set of accepting words over the language L(M),
also: DL(M) is a subset of L(M). Berry-Sethi gave the definition of the linear size automaton
and the undefined complexity of the pre-computation stage on the abstract syntax trees of the
input regular expression . Also it was shown before that complexity classes have the barriers
of their weight along the computational space . It was shown before that linear programming
(LP) can be used to solve NP-hard problems with the given customization of constraints .

Cook-Rabin-Scott conjecture can be obtained as a theorem proving the equivalence of
P and NP-classes along the full proof of the linear pre-processing and main algorithm
complexities when converting the sub-automaton DL(M) to deterministic.

As we have shown before the complexity of converting NFA to DFA is linear in time and
space, also any DL(M) can be represented by the regular language and, thus, we have that
P equals NP for the subset of the certificate language.

5.3 Homomorphism of Regular Languages is NP-complete

We consider the problem of homomorphism on regular languages by defining the mapping
over the set of alphabets on two difference language, we will also show that this problem is
actually NP-complete and can be solved by polynomial algorithm.
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Figure 9: The non-emptiness DFA for the expression

((a)%)&((aa)*)&((aaa)*)&((aaaa)*)&((aaa)*)

The Cook’s statement of “P versus NP” still remains actual to the present day as many
researchers tend to get the argumentative response on the practical meaning of the open
problems which can give the open to the new applications of regular languages theory . The
partial proof of the existence of the semiring homomorphism on the account of alphabet
substitution problem was given in — this problem is to find the mapping between two regular
languages for their alphabets, so that they are homomorphic. We solve this NP-complete
problem by using maximal bipartite matching algorithm, which can be even parallel .

Obviously the certificate of acceptance of the Homomorphism Problem on Regular
Languages (HPRL) stands against the undefined, infinite or arbitrary set of input, moreover
the possible measure of matchings is of factorial complexity, thus we proof that HRPL, or
HOM, is NP-complete.

We give the set of measures on the bipartite matching graph, where the left side is of one
alphabet and right side is of another alphabet: at each time of iteration the matching weight
is increased according to the relation difference function between two symbols in both set of
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Figure 11: The viewing and strategy of optimal subset construction algorithm

symbols. As we know the algorithm complexity in this case is at most cubic for the relatively
small set of letters.

5.4 Differentiating between Complexity Notation within Upper and Lower Classes

We present the final outcome on the account of upper and lower bounds for complexity
classes like polynomial and non-polynomial, including exponential and factorial growth as
per subset sum problem or classical Travelling Salesman Problem, the further distinguished
relation can be used further in particular domains of application of complexity theory like
Applied Mathematics and pure Mathematical way of expressing relations between Cook’s
main 3SAT-theorem and its partial cases like functional divergence and other related theorems
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and foundations.

When the “P versus NP” was first introduced, it was still unclear if there is at most a
connection between complexity classes, their big-O notation and asymptotical complexity
in mathematics, which states that there exist a limit between the complexity and its first
definition by Cormen et al. Recent research also showed that even linear programming within
additional constraints gives the profound solution to TSP and 3-SAT problems. We will show
further the full relation between O-notation and asymptotics in terms of pure mathematics
for its further application.

Thus, we get the following statement for P and NP complexity classes and their
classification function like O(f(n)), where f is a function: N* — N*:

O(f(x)) = {f(x), f(x) € NP;a", f(x) € P A f(x) < 2"}

While we have already classified the class of NP-complete functions to be starting from
exponentiation and factorial, including Ackermann’s function, which is a super potentials
over others. Polynomial functions are actually solvable functions and can be computed in the
observable amount of time.

As it was presented in the partial function O(In(In(x)) is polynomial of the order 1, while

o(In(In(x)) = 0, the middle and actual theta-function will be as follows — theta(In(In(z)) =

(O(f(z))+o(z))

5 = %, thus it’s obvious that series S converge to Riemann’s complex number z.

5.5 Algorithm Deciding Automata Ambiguity Problem

We give the proof of NP-completeness of arbitrary automata ambiguity problem which shows
that according to our functional hypothesis, there’s a function spawning the polynomial
algorithm to solve it, we will also show that it’s of affordable complexity.

We start from well-known “P versus NP” theorem, which proves the full invocation
impractical content in order to decide any NP-hard problem, we will use further the final
version of subset construction algorithm . Also it’s known that first definition of derivatives
and extended operators was well-studied by Berry-Sethi . Orna Kupferman et al., later gave
a cubic algorithm for the decision of extended operators like intersection, subtraction and
complement . The problem itself is stated in .

The problem is to decide if the given set of initially non-deterministic finite automata
(NFA) are equivalent, as well as their subsets like deterministic ones (DFA). Obviously, the
problem lies in recurrent relation which leads to the undefined behavior of acceptance and
search of the accepting states defined as certificates — this gives the full proof of the NP-
completeness of this problem. In order to solve it we use the Modified Subset Construction
(MSC) by using the subtraction operators in extended finite automata (EFA), the algorithm
complexity, as it was shown, before is linearly logarithmic, O(n * log(n)) — to be exact.

5.6 On Account of Regular Automata Separability Problem

The recent research showed the new problems coinciding with our algorithm for extended
operators including intersection, we will use it in order to solve the separability problem as
it was stated before.

As we already know there’s a set decidable and non-solvable problems . The subset
construction algorithm gives the determinisation of non-deterministic finite automata (NFA
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to DFA), also intersection operator was well studied in along the regular sets or, in other
words, sets produced by any regular language. The separability problem was first presented,
the problem is coNP-complete which is by definition the both sides of non-decidable or non-
polynomial problems, we will give the polynomial method of computation which gives the
answer of the verification against separability of arbitrary number of sets on the automata
for extended regular expressions.

As we can conclude the only relation of intersection of the sets K and L in spawns
arbitrary language which can be non-regular as regular languages are actually subsets of any
language as a set of words by definition, thus we can simply test the intersection operator
using Modified Subset Construction (MSC) with state activators in the way it was presented
in our seminal paper. The complexity of algorithm lying in P-class is linear and constitutes
the number O(| K|+ |L|) - this is by the way the lowest bound for any coNP-hard separability
problem on regular sets or other non Parikh automata.

5.7 Disproof of Unsatisfiability of Boolean Circuits

We give the full disproof and shade the light towards generalized MAX-SAT problem, also
classically known as 3-SAT, which cannot be solved on any Turing automata in observable
amount of time even if there is a tie between polynomial and non-polynomial complexities.

In this preamble we follow the certain source of the foundations of Computational
Complexity Theory by Stephen Cook, who also showed that 3-SAT problem and its general
case MAX-SAT on boolean circuits cannot be handled by Turing tape automata or their
isomorphisms like non-deterministic finite automata and deterministic one. For the past time
the SAT problem was well applied and studied in-depp, however the main ridiculous challenge
is about to build the universal SAT automata — the author of this work shows that there
could be boolean function which can make the automata producing positive answer on some
set of inputs and their co-variants.

Yes, the problem is still open and innovative as any boolean function on the mirror
circuit can produce either positive or negative answer, however, this problem is a case of the
generalized MAX-SAT problem which is known to be NP-complete and, thus, unable to be
solved in reasonable amount of time using computational materials like present day hardware.

5.8 Full Proof of Universality of Regular Languages

We give the fool proof of the universality of regular languages, which states that any language
is regular and every regular language can be arbitrary.

The proof problem of regular languages is actually NP-complete as there is no state
automata which could be deterministic and descriptive at the same time — this fact is well-
stated for any regular language and for any arbitrary language . We will show further that
these languages are actually equivalent using Aho-Corasick algorithm .

Obviously, Aho-Corasick tries are linearly deterministic and can form a logarithmic regular
language — this fact shows that both regular and arbitrary languages are equivalent.

5.9 Star Packing Problem Algorithm in Linear Time

We give the full exact algorithm to star packing problem.
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The problem is considered to be NP-hard and obviously NP-complete due to the reduction
to classical Vertex Cover Problem which has a parameterized invariant . Star packing graphs
were studied before in and the actual statement of the problem is given in .

We build the tree from the graph and optimize it linearly using the leaf traversal strategy
which gives full and exact answer.

5.10 On Consensus of Cardinality of Complexity Classes

We give the notion towards Louiz’s partial conjecture about inequivalence in classical “P
versus NP” theorem and other related research.

We are all well-known about undecidability of 3-SAT problem . The term ‘cardinality’
in computational complexity and its bordering applied sciences was recently raised upon
the necessary level . Dr. Akram Louiz gave all the necessary partial solution towards
axiomatization of non-conforming complexity classes like polynomials and non-polynomials
. The critics behind the scene is completely wrong and further we will give the full shed of
light on the mystery in science and its application.

Yes, indeed the exponential, factorial or even Ackermann’s complexities cannot be
considered as countable — and this is what gives the strong border of the non-existent classical
solutions, and as we know until the present time none of the NP-complete problem was solved.

The author of the ‘critical work’ is completely wrong as he sees Louiz’s conjecture as a
first argument towards resolution of “P versus NP” concept and we show that these classes
cannot be even comparable — this shows that Jamell Ivor Samuels is completely wrong in his
critical work.

5.11 Polynomial Solution for Detour Problem

We give the full polynomial solution for finding the detour in graphs in its general case.
The detour problem is NP-complete, detours were used in many aspects of science on
graphs . The detour problem was first initiated in . We give the full solution using dynamic
programming . Our solution depends on the length of the detour among any pair vertices as
we are using dynamic programming approach with memoization which gives the recurrence
relation along the two connected vertices and the visited length. We have given the full
general solution to graph detour problem using dynamic programming which runs in time
O(n x k), where n is a number of vertices in graph and k is the maximal length of detour.

5.12 Optimization Techniques on Automata and Graphs

We give the profound notion along algorithmic optimization techniques to manipulate with
graph and automata structures.

The automata theory was well defined for the past time, the homomorphism of graphs and
these automata and the application of this finding was also presented in the prior works. At
the present time publication shows the connection between languages described by automata
and their mapping to graph automata.

We have a novel technique based upon the strongly-connected components on arbitrary
graphs like oriented and non-oriented in general — this technique shows a strong method of
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describing any graph by its underlying regular language and its finite non-deterministic or
deterministic automaton.

5.13 Order on Trees and Hierarchical Logical Problem

We introduce the optimized algorithm solving optimization problems in linear polynomial
time, also we give the notion towards the solution of hierarchical logical problem.

The graph theory remains still actual due to its wide range of applications, the problem of
finding strongly connected components gives the solution towards the existence of the logical
order relation between these components and hierarchy which can be seen on the depth or
breadth first search. We are using Fenwick trees for range min query in order to give the
full relation between the hierarchical logical system consisting of operands and comparison
operators like less, greater or equal.

The optimization towards trees is computed using the directed edge and its subtree by
the preserving dynamical programming and the ordered computation of not more than two
values for the general case with star vertexes.

The hierarchy according to which our algebra can give the answer to the query in the form
of relation between two any operands in a directed graph can be done using the range min
query as of Bender-Farach-Colton method of finding least common ancestor in a graph before
vertex labeling operation — we are using the same approach which gives the linear-logarithmic
complexity of the solution.

5.14 Isomorphism Problem on Graphs within Regular Language Notation

We give the notion towards the algorithm of indentifying isomorphism on graphs using the
finite automata and their regular languages.

The graph isomorphism problem is NP-complete . It has a long-lasting history and
application. Regular languages were introduced previously in . We will give the notion towards
the automata describing graphs upon their internal structure with respect to some of the
values like degree of vertexes and their adjacency property.

5.15 Permutation Pattern Waves and Polynomial Solution

We give fully polynomial solution to the permutation waves problem.

Since Cook’s first statement the problem is considered to be NP-complete due to the
existence of certificate of criteria as per integer sets with permutation pattern waves.
Permutations were well studied before, the first appearance of the permutation pattern wave
problem is given in .

As we can see we can use any notation building the corresponding relation on an oriented
graph and performing the valid labeling.

5.16 Configuration Swap Problem on Describing Trees

We give the definition of the exact and sub-optimal algorithm to the configuration swap
problem on graphs.
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The graph theory is a theory which has a long-lasting history and its application . The
swapping problem was introduced in and is of very practical meaning.

We simply build the tree from the graph after which we apply the oriented edge
optimization as per the given circumstance where all other sets are settled — this gives exact
and optimal solution to the minimal swapping problem.

5.17 On Boolean Circuits and Optimal Prefix Codes

We give the full notion on the boolean circuits and their relation to finite automata as well
as the definition of the optimal prefix codes for the binary encoding of the words in text.

The boolean circuits were defined in, with its prior statement on the solution of the defined
function — as it can be seen they can be converted to the deterministic finite automata defining
the language on which the boolean function will be satisfied or, in other words, equal to “true”.
Efficient encoding and prefix codes is a far more historical problem .

The boolean circuits can form a typical non-deterministic model which can be determined,
thus giving the observation towards the solution on a random function and random
configuration.

Optimal encoding prefix codes are to be formed from the assumption of the division of the
sums of occurrences of the symbol in source text, thus together forming the combinatorial
optimization problem, where the division strategy is due to pivot selection and obeys the
certain subset sum problem.

5.18 Non-polynomial Complexity of Permutation Automata

We give the full coverage of the notion of the permutation automata deciding complexity to
be NP-complete.

The definition of non-solvable problem was first introduced, permutation automata in
general were also presented, the problem of permutation automata acceptance without
weighted function was proposed in .

As we have already shown that there is a local bound for permutation automata which
can be re-presented in regular languages with extensions like back-references, it’s obvious
that full optimization network complies with the classical NP-complete problem as Traveling
Salesman Problem (TSP). The above fact shows that there could be non-countable number
of pre-permutations before visiting the layer on the arbitrary state of automaton.

5.19 Token Sliding Problem on Graphs in Polynomial Time

The quadro-linear polynomial algorithm is given for the token sliding problem on graphs.

Graph theory has a long history and meaning as a model, the token sliding problem is
well-known also, we will show further that this problem can be optimized on a produced tree
from an arbitrary graph.

At each step of optimization we change the order of independent set series according to
the orientation of the leaf and its sub-tree due to this orientation — this gives a quadratic
worst case method to compute the number of swaps in order to get the right configuration
of independent sets.
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5.20 Solving Optimization Problems on Graphs using Automata Composition

We give the full definition of the optimization problem and its isomorphic transformation
to the non-deterministic finite automata as per the order of traversal and its corresponding
settlement as in undirected as well as in directed graphs.

The optimization problems on graphs are known to be NP-complete, since the
optimization function can be easily verified and hard to get to the optimal point . Graph
theory is a model on which even finite automata can be operated in a pre-defined method.
The strongly connected components of directed graphs give the notion towards the ordered
relation between each of the node which can be optimized as per the sample problem like .

We can construct the correct automaton recognizing the language of the paths in the
graph after which we apply the optimization according to the order in the strongly connected
components of the directed graph, for general case of undirected graphs we can consider the
same option with respect to the search strategy.

5.21 Polynomial Algorithm for Clique Problem using Matrix Space

We give a polynomial algorithm in quadratic complexity for finding cliques in graphs
according to the matrix space with single operation like boolean multiplication of the
adjacency matrix of the given set of vertexes, we will show that this is a fully polynomial
solution with the current lower bound on the number of operations in order to find the clique
in graph of the defined rank.

The hardness of the problem is a key of its classification, graph theory is described,
the clique problem is known to be NP-complete and, thus, is to be solved efficiently using
conceptual algorithmic approach.

We give the matrix of adjacency an algebra with single closed operation like boolean
multiplication, after forming the maximal independent set and applying the multiplication
of this matrix and its transposition we can devise the sets for which this can be implied
according to the matching within the kernel of the clique — this operation reduces the size of
sought input up to the given order.

5.22 Subgraph Enumeration Problem on Graphs

The polynomial algorithm is presented along which the number of subgraphs of the given
graph can be counted.

The NP-hardness of this problem is defined as there are many subgraphs and only
isomorphic certify for the given subgraph in order to count all its isomorphisms in the given
graph. Graph theory is well-defined during the past time, subgraphs and their isomorphisms
are defined in . The counting problem is presented in .

We give the solution towards finding the number of subgraphs or simply enumerating
them during the descent on a produced tree for the given graph and subgraph, thus, we can
solve the problem by applying recurrent relation on the edge which divides the tree in several
parts with respect to the structure of the subgraph.
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5.23 Solution to Triangle Finding Problem in Graph

The fully quadratic algorithm in maximal number of edges is presented in order to find the
number or enumerate all subgraph triangles in graph.

Graph theory is presented, the triangles are discussed, the problem of finding triangles in
graphs is in .

We use at maximum quadratic space and time and number of edges at most which is
the most optimal exact solution to the stated problem. At first we build the sub-tree of a
graph and the adjacency of any two pairs for the pre-computed set of vertexes where the
third vertex is a middle and, thus, has the adjacent two vertices in the edge of the tree.

5.24 Solution to Disjoint Paths Problem on Graphs

The linear algorithm in the number of edges and vertices in graph is given for finding k-disjoint
paths.

Graph theory has a long-lasting history and application . The path or vertex disjoint set
problem in a graph is given in .

We start from the set of each pairs from the left to right and from right to left by building
the fully directed tree ascending in both directions so that there would be a cut of size more
than k, thus, satisfying the condition of disjoint path on vertexes or edges.

5.25 Solution to Maximum Satisfiability Problem and Minimal Vertex Covers on
Graphs

We give the solution to partial maximum satisfiability problem on the example of enumerating
minimal vertex covers which coincide and are non-polynomial, our solution is fully polynomial
and exact.

The problem of not more three variables in logical satisfiability problem was proved to be
NP-complete as well as its case on graphs for finding the minimal vertex cover .

We build the tree in which we descend from the produced tree and use memory in order
to store the bitmap of all satisfied conditions as well as per model of minimal vertex cover
on graphs.

5.26 Solution to Even-Path Problem in Arbitrary Graphs

We give a polynomial solution to even-path problem on graphs between two given vertices
in arbitrary graph as it can be either directed or undirected, our approach also states the
minimal bound of number of edges and vertexes in graph.

The problem can be seen as NP-complete, graph theory was well described, the even-path
problem is defined in .

5.27 Solution to Minimal Decomposition Problem on Graph

We give an algorithm and minimal bound for linear decomposition of the graph with given
maximal degree of its vertex.

Graph theory is described, the linear arboricity conjecture is stated, according to which
there is not more than half of the maximum degree of the paths.
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6 Recurrent Diversification of Counting Alternation Permutations

We give the recurrence relation towards the counting of alternation permutations thus
providing the exact formula in order to compute the number of alternating iterations within
the insertion operation and the union of the sets.

The permutations are well presented, alternating permutations are permutations with
pre-defined order .

Since implication we give the upper bound using the recurrent relation which is defined
as the oracle function PA(n): PA(n) = f(n) x PA(n — 1).

Where f(n) is a function defined as the error factor for which the alternation decision
holds true, obviously f(0) =1 and PA(0) = 1.

To define the function f(n), we are using each triplet consideration with respect to each
trlplet in the form: A; < Qiq1 > Qiq9, A > Qi < Ajg2,

The above definition is a result of the term alternating permutation in its canonical sense.
As we see from above the second condition cannot hold true as we cannot insert the biggest
element n in any of the position when this fact is satisfied. Let’s consider this occurrence:
a; < N> Qi1 > Qo < Qigg G < N> Ay < max(aiyr, aiys) > min(air, aigs).

For the second condition we have: n > a;41 < max(a;, a;40) > min(a;, a;2),n >
min(a;, a;42) < max(a;, air2) < aiv1, min(a;, a;ir2) < max(a;, airo) > a1 < N.

Thus, we have four subsets to devise the function f(n), thus giving us the following exact
relation like: f(n) =4+ PA(n—1): Ay U Ay U A3 U Ay.

Obviously: 4,, * Pa,uau4su4, < f(n) < 4,.

Where in above relation probability is the union of all the cases when the four insertion
conditions hold true, which is recursive and can be counted.

6.1 Reductions of Graph Edge Coloring Problem and Chromatic Number

In this short note we are to give the note towards graph edge coloring problem (ECP) and
its reduction to graph vertex coloring problem (VCP), which gives the significant result in
deciding the minimal number of colors for edge coloring problem.

The graphs are widely studied, chromatic numbers in VCP denote the minimal number
of colors required to color it so that no two adjacent vertices bear the same color. The latest
research aims also towards Euler’s lattices problem.

As we can construct the graph for the given graph G(V, E) : G(E, (a,b), (a,1)&(b,i) €
EYi), it follows that the chromatic number can encode the number of edge coloring in ECP,
so that this number is at least greater than the same number of the initial graph by induction.

6.2 Relation between Chromatic Number and Length of Hamiltonian Paths in Graph

We give the strict computational relation between chromatic number of graph and sum of
lengths of Hamiltonian paths using set exclusion theorem as well as the addition towards
inverse graph.

Graph theory was steadily studied, the graph coloring problem and its chromatic number
are known to be NP-complete, the partial relation between these numbers and the length of
the maximal path were studied.
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As per the set theory, graph can be considered as a set if we would at each step of iteration
remove some 2-vertex graph with a single edge or not, this will look like as follows:

GV, E)| = |G(Vi, E1)| + |G(Va, Bp)| — |G(Vi N Va, By N By

The above relation can be approximated within any path if we would get at each iteration
the pair of nodes (u,v), then our relation will look like:

GV, E)| = |GV —{v}, E={v})|+{1,2} - 1.

As in both division operator we divide the parts along the maximal length and an optional
edge in graph, obviously this function is to be minimal, thus we have to find a path of maximal
length in the inverse graph —=G(V, E).

Thus, we get to the following relation:

X(G(V,E)) =|V|- max{ZpeH(ﬁG) Ip[}

Where H(—=G(V, E)) is a set of longest paths through the whole set of vertexes in inverse
graph, the paths are to be disjoint.

The proof can be done by induction to the general graph G(V, E) as we approximate
towards minimal possible number. This proof gives an evidence of the connection between
Dirac’s formula for graph containing Hamiltonian and the chromatic number of the inverse
graph.

We have given the strict relation between longest paths which can be either Hamiltonian
of size |V| — 1 or any other maximal possible of all the paths in inverse graph, thus, giving
observation of the Hamiltonian cycle presence for Dirac’s formula on general graphs. This
fact gives us the observation of using the divide algorithm on inverse graph in order to find
the maximal longest path of the maximal size within Dirac’s equivalence relation. We will
use our equivalence to establish connection between chromatic numbers of the graph and its
inverse, thus we have:

X(~G(V,E)) =|V| - mal‘{ZpeH(G) Ip[}

From this point, we get:

X(G(V,E)) = x(=G(V. E)) = mafB{ZPGH(G) Ipl} — ma’x{ZpeH(ﬁG) Ip[}

In addition we give the definition of the complete graphs or cliques Kn: the paths are
actually Hamiltonians in these decomposition.

6.3 Optimal Labeling Algorithm for Vertex Coloring Problem in Graph

We present the labeling algorithm for Vertex Coloring Problem (VCP) which runs in product
linear time on number of vertexes and edges in graph at minimum with the chromatic number
as parameter.

VCP refers to graph theory, it’s known to be NP-complete and, thus, optimal or
approximate algorithm is to be applied .

We start from forming the system of inequalities between each of adjacent vertexes in
graph G(V, E). We start by labeling with choosing the minimal label index from adjacent
vertexes with stabilization principle on the obtained index which can be reverted in time
O(m) using each iteration on maximal chromatic number with total complexity of O(nm).

We claim that this algorithm is most optimal as to the consensus of simplex system formed
by inequalities and the target function to be minimal possible. The stabilization, thus, runs,
each time the node changes its correct labeling according to the selection rule.
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6.4 Proof and Solution of Meels-Colnet Conjecture and Problem

We give the full proof towards Meels-Colnet conjecture and CFG problem, which is in finding
the number of words of fixed size on grammars. The problem can be classified as P-complete
and also states that it’s strongly P-complete by Meels and Colnet [15].

We use our basic notation of extended regular expressions which can construct the
deterministic automata for the expression in the form (< CFG >)&a" - this gives the
polynomial solution as we know that subset construction is P-complete which proofs that
this problem belongs to the same class of computational complexity.

The solution is to construct non-deterministic finite automata (NFA) for the &-expression
and subsequently convert it to deterministic finite automata (DFA) — this is a full solution
for any case of the problem.

6.5 Proof of Equivalence of Complexity Classes and Other Relations

The notion of complexity classes was before presented by Stephen Cook, as we know functions
can be polynomial and non-polynomial, as well as arbitrary.

Let f(x) be the sought non-polynomial function, then we have:

P="NP.

We also know due to our functional hypothesis or Rabin-Scott conjecture that:

f(P)=NP.

Let’s assume that:

P # NP, then - P = f7}(NP) # NP&NP = f(P) # P = f(f"'(NP)) = f(P) =
NP # NP, which is a contradiction. For the second inequality we have: f~(f(P)) =
fTYNP) = P # P, which is also a contradiction, then we get NP # NP&P # P =
P=NP.

The statement is due to the mathematician Akram Louiz [16] and is as follows: P =
NP & |P| = |NP|, where P and NP are sought complexity classes.

As we know by Cook’s definition: P C NP = |P| < |NP|. Let’s assume that P equals NP,
i.e. P = NP, then we have the following: P = NP = |P| = |[NP| > 0 = |[NP| = 0&|P| =
0 = NP = {}, in other words the NP-class has no members and, thus, is actually an empty
set. However, as we know, according to Cook’s theorem there’s at least one problem, also
known as 3-SAT which belongs to the set of NP-complete problems — which is a contradiction
and, thus: P # NP.

From what follows Louiz’s equation: NP = N + P.

The solution of the system of equations: NP = N-P and NP = N + P, gives the function
f(z) = =% both for P and N, thus stating that our conjecture is correct, since the function
f(z) exists.

Thus we have given definition to the following algebra: < +, -, {N},{P, NP} > which can
be used both as a regular language or any arithmetical expression.

As we have prior result of regular grammars over set of computational problems, we are
to present the universal 'complexity automata’ which can be used in solving any problem.

The "P versus NP"practice, theory and 3-SAT proof was well understood, however, there
was an attention towards, as we suppose, the resolution of this statement. Kardeis was
near the term as ’quantuam computing’ and Zeta-Function, however, we use an automatic
approach to give all the required framework foundation towards the solution of both
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polynomial and NP-hard, or non-polynomial, problems, provided both equality or inequality
of P- and NP-classes of computational complexity.

We give the following definition of our automata based on obtained result, thus, ’complex
automata’ is defined as follows: < 4, -, { P, N} >, where + and - is a union and concatenation
operation over the set of terminal symbols "P"and "N where "P"stands for the certificate and
"N"is a problem itself. We have given all the necessary framework to operate on Complexity
Theory for the definition of the problem as a regular expression and further converted to
finite or ‘complex’ automata, thus, proving that any complex problem can be solved using
our approach.

We present the solution to two classical problems like MAX-SAT, or its 3-SAT partial case,
and TSP from computational complexity theory using subset construction. The problem was
stated before, MAX-SAT is also well-studied, as well as TSP. We give the exact algorithms
to these problems using subset construction.

For MAX-SAT problem we simply assign an alphabet symbol to each variable and its value
from the set of {0,1}, then we apply the &-operator for each of the clause in MAX-SAT,
thus, solving it in polynomial time. For TSP we are using counter tags in finite automata
and also apply &-operator as in our previous local search algorithm.

6.6 Artificial Neural Networks without Layering Concept

We present the basic abstract of the newly obtained results on class of non-layered artificial
neural networks. Artificial neural networks is a well-known concept and solution, however
due to the lack of performance they are less productive for practical approach and mainly
are focused on artificial intelligence.

We define the prediction function as: f(x) = ZLH - which is decreasing.
Meanwhile the training sigmoid function is defined as well: g(z) = 1 +(137w - which is strongly
increasing.

Both functions are defined on the set of the range [0, 1] or [1, 0] with respect to probability.
We present the algorithm of training and prediction during input interaction:

1. Find the set of feasible set in model using machine learning algorithm and function f(x)

which can be presented as a binary tree.

2. Compute the prediction.

3. Get the input for the given prediction.

4. Train the model with the newly predicted fact using sigmoid function g(x).

5. Request the new input.

6. If input is empty, then halt.

7. Return to step 1 for the input from step 6.

6.7 Application and Theory of Several Aspects in Optimization

The 3SUM problem was viewed from a singleton point of view for the past time. In this
work the experimental results along with proof are presented: the state explosion doesn’t
occur in specific cases after decomposition of regular expression into non-deterministic
finite automata (NFA), thus, the P-complete procedure to take turn for converting NFA
into deterministic finite automaton (DFA) with construction according to the De Morgan
Law. We give the notion of the equivalence of the complexity classes due to the recent
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research according to Rabin-Scott subset construction. We also give the linear algorithm for
lookahead and lookbehind assertions in regular expressions by implementing the intersection
operator which was well studied before in our prior research, the work also includes: the
experimental part of research in our investigation of the "P versus NP"theorem and the
optimization principle within the physical layout, the full proof of inequivalence of P and
NP complexity classes which can be addressed to the famous "P versus NP"theorem by
Stephen Cook, our approach summarizes all the results obtained before in our prior research
of this topic and its failure during the decades of its first appearance in the scientific press,
definition of the single operation for giving the output to the new state in Berry-Sethi
approach of building deterministic finite automata (DFA), address the output, produced
by the Turing tape automaton, or Turing Machine, which is further divided as deterministic
and non-deterministic, to the set of regular languages recognized by finite automata. It’s
known that the subset sum problem lies in the NP-class of complexity, however, due to the
integer factorization of any number it states another argument towards P = NP. The unified
system based upon Ford-Fulkerson maximum flow method for solving the civil engineering
problems like flooding and human evacuation during earthquakes or other disasters is also
presented. According to the present time the normal forms are consequent to the efficient
data manipulation, still there’s no universal method for solving this problem according to the
criteria of data to be small and the modeled solution provides the sufficient normalization of
the source data. The X + Y sum problem as observed wasn’t solved before, so we provide
a fast and simple solution to this problem using algebraic properties of the vector as well as
the general case. The recent research and study in the theory of Computational Complexity
gives new perspectives in studying the "P versus NP"question.

We build the binary tree for each of the elements in binary notation in the given input
array, after which we concord the search according to the valid combinations. The conversion
of NFA to DFA, or subset construction, and its possibility proof first appeared in has an
exponential complexity of O(2") and thus is EXP or NP-complete.

Many techniques were done before in order to avoid the effect of state explosion, however,
we present the De Morgan law for rewriting both union and intersection operators as well as
in extended regular expressions, which leads to P-complete result.

For the past decade the "P versus NP"problem was well studied with conformance that
P is a subset of NP. If this happens, then there’s a set of problems which are strictly in NP
and not in P assuming P not equal NP .

We simply close the circuit in our algorithm when converting non-deterministic finite
automata (NFA) to deterministic finite automata (DFA). The same is true even for NFA
constructions which give rise to the question of relation between regular language algebra
and features like lookahead and lookbehind assertions.

As it was stated before the "P versus NP"question has a long-standing history in the
theory of Computational Complexity and Mathematics as well, where the symbol of infinity
isn’t defined as operand due to the inconvenience of its relation to the operands in the
mathematical expression in the algebra of numbers .

Thus, by showing that P equals NP we still cannot devise the relation in this algebra,
however, if P not equals NP, we can proceed further with the modern aspects.

Before we have shown that there’s a functional relation between complexity classes, i.e.
there could exist the function f(x), so that f(P) = NP.
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We will proceed to the above publication further and give the strict proof of inequivalence
of complexity classes and as it follows from this proof the hierarchy of classes which give
consolidated proof of the relations between the variety of complexity classes in Computer
Science and Theory of Computation .

Before our research the Theory of Complexity was well underlined and it follows that
first we have to postulate and only then give the question of the relation between complexity
classes, basically polynomial "P"and non-polynomial "NP"classes.

The main problem in the Berry-Sethi approach is the conformance of the new state to the
states added before during each iteration of the algorithm. We use the single test application
of our method for the equivalence of the states to the regular language they represent.

Since each of the Turing machines has a limited set of states during which it can transit
to the next step, or iteration, of processing the input and, thus, going to the halting or
accepting, or rejecting, state, we are to define the set of words which are written are well-
defined as programs produced by this machine. The regular language is formed from the
Deterministic Turing Machine (DTM) or Non-deterministic Turing Machine (NDTM) can
arbitrarily produce the regular set of languages, known as programs of this machines according
to the finite state of states in the transition diagram as it can be seen in various sources .
On the account of "P versus NP"theorem we are to define the proved equality of P and NP-
classes of complexity as Finite Automata (FA) are isomorphic with to the regular language
they accept .

The "P versus NP"problem is the main problem stated before.

We simply factorize numbers within the prime number factorization algorithm and build
on-level tree structure for finding the structure of the method. As we know the prime
factorization is reminiscent of the tractable logic of computer numbers which tend to limit
the Ackermann numbers . The prime factorization itself isn’t studied nowadays and is well-
known to be P-complete within the subquadratic algorithm which is still inefficient against
big numbers which are met in cryptography . Still it’s omitted that the subset sum problem
can be devised from the whole set of problems within the multi-cubic trees along prime
factorization and prime number notation system. Still it’s posed that linear complexity of
introduced parameters harms the overall magnitude of complexity, which is well-known and
can be factored according to the optimal notation of consecutive prime numbers to which
the parameter tends to grow linearly with predefined maximal speed of Ackermann numbers.
We build the growing structure of the tree on each level having the prime number in prime
notation of the parameter whose limit is to be deduced from even factorial decomposition
which leads to blow and speed-up and, thus, makes the free parameter less playing the role.

The normalization problem is to be presented as the mathematical programming problem
within the constraints and the main function as the size of data to be minimized. Earlier we
have shown that the factorial number of possible data in each table depends on the number
of columns and number of rows. This fact makes it possible to seed the data and store them
in a fast and efficient way.

The ” X 4+Y” problem is in general still unsolved and plays a role in effective optimization

We simply sort the items by the normal vector distance to the line X + Y going through
the given point.
This simply gives the minimal possible running time on average as O(n * log(n)).
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As it was pointed out by the modern research the "P versus NP"question is to be studied
from a different point of view and the broad horizons of its decidability are to be omitted
due to the insufficient approach in the formalization of this theorem.

6.8 Proof

We prove the above fact by the assumption already given in the statement before: thus,
as we know any non-deterministic finite automata (NFA) can be converted to analogous
deterministic finite automata (DFA).

According to our latest research the subset construction is P-complete and, thus, there
exist no automata with the strict property given above, thus, it follows that P = N P.

We have devised the parallel computing law as follows: lzm N_>OO¥ = P.

Let’s assume that the above law is correct according to the number of threads N, which
operate on a Non-deterministic Turing Machine (NDTM). Also let’s assume that P = NP,
then it follows:

limNHoo]%[:1:>O:1:>P7£NP.

The output above demonstrates the simplest way of proving the inequivalence of
complexity classes according to the parallel computing law: NP = N - P

6.9 Experiment

We build the integral circuit on a board and give the experimental projection of the abstract
processes and processes which are put in a different environment, or physically. The VLSI
devices are used today in many aspects. Hamiltonian is met in the Traveling Salesman
Problem (TSP) where it defines the shortest possible path visiting each of the city once.
TSP by itself was an argument of "P versus NP"theory and practice . On the experimental
electrical board we build the layered circuit by using elements for satisfying the "visit-
once'"condition. Thus, the shortest path of a limited number of mediate elements can be
found.

We develop the maximum flow network on map using any applicable source and present
each cell with the incoming or outgoing edges as of the each of the bordering cells on the
map.

The maximum flow applied to the above-described model gives the result of simple
prediction scheme according to which the residue flow can be pushed forward as well
as backward, and the possible dangerous zones with blocking flow can be detected and
successfully mapped to the physical map where the ecological disaster happens.

At each model we give the maximum capacity as the maximum capacity of the fluid or
human factor.

7 Conclusion

We have given a fully polynomial algorithm for the md-DFA problem which is NP-complete -
this fact gives the experimental proof of the equivalence of complexity classes like polynomial
"P"and non-polynomial "NP"as the benchmarks above state as the argument as they are
almost linear to the size of the expressions and running time depends also linearly, also,
the problem described was proved to be NP-complete before. We have also shown the
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experimental proof of tractability of the problems like md-DFA and Non-emptiness-DFA
which are known to lie in NP-class of complexity. We have also concluded that within the new
proof, back-referencing problem can be computed fast within arbitrary number of capturing
groups. Thus, we claim experimental proof of "P versus NP"theorem: P = N P, which could
be used in solving other problems like Riemann hypothesis by Akram Louiz [13]. The reader
is invited to use Regex+ software package and provide examples. I also have some notes about
theories like fixed-parameter tractability and classification - all these theories and similar to
them are all about the direct solution or final resolution of P-NP theorem by Cook, while
our conjecture of functional hypothesis gives the final outcome with to the full statement of
the problem: are there solution to NP-complete problem or not.

There could be parallels between the P vs. NP problem and quantum mechanics,
particularly in relation to the concept of superposition. In quantum mechanics, a system can
exist in multiple states simultaneously until a measurement is made. Similarly, NP problems
could be seen as a kind of "superposition"of many possible solutions that exist at the same
time until verification or computation collapses them into a final solution.

Thus, we have also proved that subset construction, or powerset construction, is
polynomial, or P-complete, with respect to the prior obtained results.

The common misinterpretation of the "P versus NP"theorem lies between the fact that
it can be solved effectively, still, it doesn’t follow that from this consequence we can devise
the relationship between two classes.

The potential of the method above gives the main result of the past research for efficient
implementation of lookaround assertions. We have presented the experimentation theory for
which there could be conjectured that each of the shortest paths found on the simulated
integral circuit can form the Hamiltonian by itself in its decomposed state.

We have shown the inequivalence of complexity classes around our final proof which is
given as a final contribution to the field of Computational Complexity.

The above method is expensive, however, in static mode it can be more productive.

We have come to the end of the "P versus NP"continued story and the positive output
of the proof of equivalence of these complexity classes gives the horizons of the universality
of automata and their isomorphic properties as well.

The overall can be considered as the other argument towards "P versus NP"theorem
and the proof P = NP, as the subset sum is both in P and NP and NP-complete classes of
complexity.

We presented the safe method for detecting possible bottlenecks during flooding and
evacuation which can lead to a more humanistic approach in science and engineering.

As the much earlier works were towards the static structure of the database, for now we
have defined the universal approach towards data normalization.

The above case can be extended to the problem where the normal vector of a line is
given with arbitrary weights which open new horizons to the studying of the application and
theoretical acquisition of this problem.

The sorting problem for dual coords can be solved in minimal possible time O(n) by
converting it to co-NP problem as integer sorting.

Thus, we came through the inequality of the question "P versus NP"which clearly gives
the argument towards the preliminary axiomatization of the complexity classes which we
name as "decidable"and "undecidable".
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We have provided all the necessary conditions to operate on problem sets and more using
the new complexity algebra.

We have given linear algorithm for MAX-SAT and poly-logarithmic for TSP.

We have also presented the evolutionary and mainly performing model for artificial
intelligence and machine learning.
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ON A SPECTRAL PROBLEM FOR A FOURTH-ORDER DIFFERENTIAL
OPERATOR

This paper considers a generalized spectral problem for a fourth-order differential operator. The
primary goal of the research is to analyze the spectral properties of the operator arising in
boundary value problems for the Stokes and Navier-Stokes equations, as well as to utilize the
obtained eigenfunctions to construct a fundamental system in the space of solenoidal functions.
The work combines theoretical analysis with practical applications, making it relevant for numerical
modeling of hydrodynamic processes. The main methodology is based on the method of separation
of variables and the use of curl operators for different domain dimensions. In particular, the paper
proposes approaches to introducing curl operators for the three- and four-dimensional cases, which
generalize the problem formulation. The key results include proving the existence and distribution
of eigenvalues, as well as constructing an orthonormal basis in functional spaces. This study
contributes to the development of spectral analysis of high-order operators and can be useful
for developing efficient algorithms for solving hydrodynamic problems. The practical significance
of the results lies in their application to numerical modeling of fluid flows in various fields of science
and engineering.
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Tepiumri perrti AuddepeHInangbiK omepaTop YIIiH 6ip CIeKTPaIabl ecell TYpPaJibl

By xxymbicTa Teprinmi perTi qud depeHnnaabK, onepaTop YImiH K IbIJIAHFAH CIIEKTPJIK ecerr
KapacThIpbLIaIbl. 3epTTeyail Herisri makcaTsl — CTokce xone HaBbe-CToke TeHmeyepi yImmiH meka-
PAJIBIK, ecenTep/ii merry O0apbICHIHIA TYBIHIANTHIH OMEPATOPILIH, CIEKTPJIK KACHETTEPIH TaIay,
COHIAM-aK, AJbIHFAH MEHIMNKTI (DyHKIUAIAPIbI COJTEHOUIAIbI (DYHKIMAIAp KeHicTirinme ipresi
XKyieHl Kypy yimiH nadiganany. 2KyMbIC TEOPHUSIJIBIK TaJIAay/Ibl MTPAKTUKAJBIK, KOJJAHYMEH Yii-
JlecTipeTiHiKTeH, OyJl OHBbI THIPOIMHAMUKAJIBIK VIEpICTEP/IiH CAHJBIK MOIEIbIEYl YIIiH ©3eKTi
ereni. Herisri omic aiftHpIMaIbLIapIbl 00Ty OIiCiHe KOHE 9PTYPJIl OJIImeMIeri obIbicTap YImiH po-
TOP OIEePaTOPJIAPBIH KOJJIAHYFa Heri3esred. Ararm aiiTKan/Ia, Yl XKoHe TOPT OJIIeM/Il XKaraaiaap
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JKaJnbLiayra MyMKiaaik 6epesi. Herizri HoTmKerepre MEHITIKTI MOHIEP/IIH Oap €KEHIiri MeH Op-
HaJIaCybIH JIDJIEJIJIey, COHJIal-aK (DYHKITMOHAJIBIK, KEHICTIKTEep/Ie OPTOHOPMAJIaHFaH 0a3ucTi Kypy
KaTaapl. By 3epTTey 2KOorapbl peTTi OnepaTopIapablH, CHEKTPJIIK Ta I aybIHBIH JIAMYbIHA, YJIEC KO-
CBIIl, TUAPOINHAMUKAJIBIK, €CelITeP Il eIy IiH THIM/I aJrOPUTMIEPIH 93ipJeyre maimaabl 6OTybI
MyMKiH. 2KyMBICTBIH, TPAKTUKAJIBIK, MAHBI3bI — AJbIHFAH HOTUKEJIEP/IiH OPTYPJI FHIIBIMEU 2KOHE

WHYKEHEPJIK CAJIAJIAP/IArbl CYWBIKTHIK, AFBIHIAPBIH CAHIBIK MOJEJIbIEY/ e KOJIAHBLITY bIHIA.
Tyiiin ce3aep: CeKTPJIiK ecem, POTOp ONEPATOPHI, MEHITIKTI MOH, MEHITIKTI (pyHKITHSI.
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B nannoit pabore paccmarpuBaercst 0000IIEHHAsT CIIEKTPaJIbHAsT 3a/a49a JIJisi OHOTO JauddepeH-
[MAJILHOTO OIlepaTopa YeTBepToro mopsigaka. OCHOBHOI IEJIBI0 UCCJIeOBAHUSI SIBJISIETCS AHAJI3
CIIEKTPAJILHBIX CBOICTB OIEpATOpa, BO3HUKAIOIIETO IIPY PEIIEHNN KPAEBBIX 3a7a4 JJIs yPABHEHMIA
Crokca n Hasbe-CTokca, a TakKe HCIOJb30BAHUE TOJYUYEHHBIX COOCTBEHHBIX (DYHKIUH s
mocTpoennst (HyHIAMEHTAIbHON CHCTEMBI B MPOCTPAHCTBE COJEHOWJAIBHBIX (yHKImit. Pabora
co4yeraeT TeOpeTI/I“IeCKI/Iﬁ aHaJIU3 C IIPpaKTUYEeCKUM IIPpUMEHEeHHueM, 9TO JIejIlaeT eé aKTyaﬂbHOﬁ JIJIS
YUCJIEHHOTO MOJIEJIUPOBAHUS THJIPOAMHAMUYIECKUX porieccoB. OCHOBHAsI METOOJIOTHUsST OCHOBAHA
HA METOJEe pa3le/IeHrs] MEPEMEHHBIX W HCIOJIb30BAHUU POTOPHBIX OIEPATOPOB I PA3IUIHBIX
pasmepHocTeil obsactu. B gacTHOCTH, mpemiararoTcs CrocoObl BBEIEHUsST ONEPATOPOB POTOD I
TPEX- U YETBIPEXMEPHOTO CJIydaeB, 9TO MO3BOJIIET ODOOIMUTH MOCTAHOBKY 3amadn. OCHOBHBIMEU
pe3yJIbTaTaMu SBJISIIOTCS JIOKA3aTEJbCTBO CYIIECTBOBAHUSI M PACIOJIOXKEHNs] COOCTBEHHBIX 3HA-
JeHUil, a TaKyKe IIOCTPOEHHe OPTOHOPMHUPOBAHHOIO 0a3uca B (PYHKIMOHAJIBHBIX IIPOCTPAHCTBAX.
JlanHOE WCC/IeIOBaHNE BHOCUT BKJIAJ, B PA3BUTHE CIEKTPAJBHOIO aHAJM3a OMEPATOPOB BBICO-
KOI'0 TIOPSi/IKA U MOXKeT OBITh IOJIE3HO i pa3paboTku 3(DDEKTUBHBIX aJrOPUTMOB PEIICHUS
TPUPOJIMHAMUYIECKUX 3a1a4. [IpakTudeckast 3HAUNMOCTh PE3yJIbTATOB 3aKJIIOYAETCS B UX IIPHUMe-
HEHWH B YUCJIEHHOM MO/ICJIMPOBAHUH IOTOKOB YKUJKOCTH B PA3JIUIHBIX 0OJACTIX HAYKHA U TEXHUKH.

KoarodeBble ciioBa: cuekTpajbHas 33/1a4a, OLepaTop POTOP, COOCTBEHHBIE 3HAYEHUSI, COOCTBEH-
Hble QyHKIUN.

Introduction

In this paper, we consider a generalized spectral problem for a fourth-order differential
operator.

By introducing a scalar or vector stream function, the spectral problem for the two-, three-
, and four-dimensional Stokes operators can be reduced to a generalized spectral problem for
the biharmonic operator.

Let us provide the mathematical formulations of the latter statement.

First, let us formulate the spectral problem for the d-dimensional Stokes operator. Let
r = (z1,..,29) € Q C R% d > 2, be an open bounded simply connected domain with
boundary 0f2. The goal is to find nontrivial solutions {wy(z), pr(z), x € 2, k € N} and the
corresponding values of the parameter {7, k € N} for the following boundary value problem
( [1], Chapter II, §4; [2], Chapter I, §6, Corollary 6.1; [3], Chapter I, § 2, Subsection 2.6):

—Aw(z) 4+ Vp(z) = Nw(z), z€Q,
div{@(z)} = 0, x €, (1)
w(x) = 0, x € 09.

Let dim{€2} = 2, and consider the two-dimensional curl operator curl defined as follows:
{wy,wy} = curl{0,0,U(x)} = {0,,U, —0,,U}, (2)

where U(z) is a scalar function known as the stream function. From equation (1) using the
formulas in (2), we can proceed as follows: first, by substituting the vector function «f in (1)
with curl U; second, by applying the operator curl, to the resulting expressions; and third,
by summing the results obtained after the second step. As a result, we obtain:
(—APU(x) = N(-A)U(z), zeQ,
U(x) = 0, x € 09, (3)
ozU(x) = 0, x € 012,
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where 7 is the outward normal to the boundary 0f).

Since the differential equation in (3) contains the operator —A on the right-hand side,
we will refer to problem (3) as a generalized spectral problem for the biharmonic operator
(—A)?. Tt is evident that the key role in transforming problem (1) into the spectral problem
(3) is played by the curl operator given in (2).

Let dim{Q} = 3, and consider the three-dimensional curl operator defined as follows:

Curllj(atl,:vg,xg) = W(xy, e, x3), divd(zy,x9,23) =0, (T1,29,23) € €, (4)
where U = {Uy,Us,Us}, W = {wy, ws,ws} are three-dimensional vector functions,
w = curl[j = {05,;2[]3 — 0x3U2, ﬁdel — axlUg, 8I1U2 — GxQUl}. (5)

If we assume that all three components of the vector U are equal, i.e., Uy = Uy, = Us =
U(xy,z9,x3) in Q, then, similarly to the two-dimensional case, using equations (4)—(5), we
can derive from (1) the following:

—A(=A+S5U(z) = N(-A+9)U(x), x€Q,

Ux) = 0, z € 09, (6)
osU(x) = 0, x € 08,
where S =92, +03,,, + 02, . If we temporarily remove the operator S from the differential

equation in (6), we once again obtain a spectral problem of the form (3), but now in the
three-dimensional case.
Let dim{Q} = 4, and consider the four-dimensional curl operator defined as follows:

Curl[j(xlax27x3vx4) = 717(1'1,%’2,%3,1'4), divu_j(xlvx%x&xll) = 07 (.%1,.1'2,373,.%’4) € Q7 (7>
where [7 = {U17 U27 USv U47 U57 U6}7 W= {w17w27 w37w4}7

0., Uy + 0,,Us — 0,,Us
D0,Us + 00, Ug — 3, U
0y, Us + 05, Uy — 0., Us
0, Ur — Du,Us — DU

@ = curlU = , diveurl U = 0. (8)

Remark 1 The curl operator in equations (7)—(8) acts on a siz-dimensional vector function

U » which, in particular, corresponds to the following vector composed of the electric E and
magnetic H field intensity vectors: E = {E', E*, E3}, H = {H', H* H*} ( [4], Chapter V,
§1, Chapter VII, §1; [5], Chapter III, §8 and §9; [6], Chapter I, §5), namely,

U={E' E* E® H' H? H*}.

From equation (1), using formulas (7)—(8), we can derive the following:

(=A)?2U(z) = 3N (-A)U(x), z€,
U(x) = 0, z € 09, (9)
0:U(x) = 0, x € 0N.
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If we disregard the factor of 3 in front of the spectral parameter A2, the spectral problem
(9) fully coincides with problem (3), but now in the four-dimensional case, i.e., dim Q2 = 4.

Once again, it is evident that the key role in transforming problem (1) into the spectral
problem (9) is played by the curl operator, which is defined by formulas (7)—(8).

The aim of this work is to construct a fundamental system in the space of solenoidal
functions. If we were able to solve spectral problems for the biharmonic operator (3) in
domains of various dimensions dim{Q} = d, d > 2, we would succeed in constructing such a
fundamental system, which is important not only from a theoretical point of view but also
for the development of computationally efficient algorithms for the approximate solution of
boundary value problems for the Stokes and Navier—Stokes systems [7]. In this work, we will
limit ourselves to solving a certain generalized spectral problem for a fourth-order differential
operator.

It is worth noting that spectral problems for the Stokes operator (but with periodic
boundary conditions) in a cubic domain have also been considered in the works [§8], [9],
and [10].

In [8], the spectra of the curl and Stokes operators in a cube are studied for functions
satisfying periodic boundary conditions. The Cauchy problem for the 3D Navier-Stokes
equations with periodic conditions in the spatial variable was investigated in [10].

Since our approach actively utilizes the properties of the curl operator, which is closely
related to vortex theory, we refer to the foundational works on vortex theory [11], [12], [13],
[14], [15], [16], and others. Some ideas from these works have been used in establishing our
statements.

Let us introduce the main function spaces that will be used in this work. Let x =
(11, ...,2q) € Q C RY where d > 2, be an open bounded simply connected domain with
a sufficiently smooth boundary 0f2, and let m > 0 be an integer,

2
0.,

J

Tq?

d
W(Q) = {v] d'v € L*(Q), |a| <m}, where 9l =021..0%, |o| = aj, Oy, =
=1
V?/’Q”(Q) = {v|ve Wi(Q), v =0, j=0,1,2..,m — 1, 7 is the outward normal to 9} .
For the notation of function spaces, we will follow the monographs [17], [18], [19], and [20].

1 Formulation of the Spectral Problem

Let us consider the following spectral problem for a fourth-order differential operator.

Problem 1
d
> 0k u(r) = N(-A)u(z), x€Q, (10)
k=1
u(z) = Ozu(z) =0, x € 09, (11)

where 1 1s the outward normal to 0f).
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Let us introduce the following spaces:

Onpenenenne 1 Let us denote by V1(2) and V5(QY) the Hilbert spaces with the corresponding
mner products

(Vu, Vo) oy, Y, v €TVA(Q), (12)
def d °
((u,v)) = Z (62 uﬁik ) 2(0) Yu,v €EW5(N), (13)

i

1

and norms

d
lullviiy =\ IVl oy Tullvae = 4| D 182, ulaq)- (14)
k=1

It is obvious that the norms (14), induced by the inner products (12)—(13), define
equivalent norms in the spaces I/f/%(Q) and I/?/%(Q), respectively..

IIpennonoxenne 1 In the spectral problem (10)—(11), the fourth-order operator is elliptic
and possesses the properties of symmetry and positive definiteness in the space Va(€).
Therefore, the eigenvalues {\2, n € N} of this problem are real and located on the positive
semi-axis. Moreover, the smallest eigenvalue is bounded away from zero, i.e., Ay > > 0.

The following statement holds true.

IIpenmnosioxkenue 2 The spectral problem (10)—(11) possesses a set of "generalized
eigenfunctions” {u,(x), n € N}, which belong to the space V2(§) and form an orthonormal
basis in the space V1 ().

Let us formulate the main result of this work.
Theorem 1 (Main result) The spectral problem (10)—(11) has the following solution
Un(7) = X1n(21) Xon(22)... Xan(24), N2, n €N, (15)
where X1,(21) = P0(Y)jy=21> Xon(T2) = Prn(Y)jy=a2> s Xan(Ta) = Pn(¥)jy=a,-

. 2
®2n71(y) = Sln2 _)\2n2—_1y’ )\%n_l = (%Tn) y n E N

Do (y) = [Aanl — sin Ag,l] sin? >‘22”y sin? AQ” [Aony — sin Aony] , (16)

A2, = (2)? neN,
and {v,, n € N} are the positive roots of the equation tanv = v, n € N.

The arrangement of the eigenvalues on the positive semi-axis is shown in Figure 1.1 (here
l=2).
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tan A

Figure 1.1. The positive roots of the equations (for [ = 2):

tanv,, = v,, yn:%:)\n; sin\, =0, neN.

From Figure 1.1 we have:

3 )
0<)\1:7T<)\2:77T—51<)\3:27T<)\4:77T—52

7
<)\5:37T<>\6:77T—53<)\7:47T<...
Next, from Theorem 1, we obtain:

CaencrBue 1 The eigenvalues { Ao, n € N} are ordered as follows:

2w, (2n+1
0 < dpp = 20 o Znt LT
l 2
2uy, 2n +1
ho = 2y BEUT e

where {v,, n € N} are the positive roots of the equation tanv = v.

VnéeN,

2 Proof of Theorem 1

We will use the method of separation of variables. Substituting the expression u,(r) =
Xin(21)Xon(x2)... Xan(24) into the relations (10)—(11) for each n € N, we obtain:
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where k =1, ..,d, and {ag,, k = 1,...d} are arbitrarily chosen numbers for each n € N from
d

the set {ag, € R'\ {0}, > ai, = 0}; moreover, pu, € C, n € N, are (in the general case)
k=1

unknown complex numbers.
Firstly, note that due to the positivity of the numbers A\? (as shown earlier in Proposition
1), the parameter p, can only take real values. Let us separately consider the following cases:

(@) pn # 0, (b) pn = 0.
(a) pin, # 0. The general solutions of the equations from (17) have the form

X}m ($k> = A]m sinh H(Qk_l)nxk; + Bkn cosh Q(Qk_l)nl‘k + C’/m sin ngnl’k + D;m COS Qg,mxk, (18)

where {Agn, Bin, Cin, Dkny, K = 1,...,d} are constant values, and the constants {0g,, k =
1,...,d} must satisfy the equations:

20 (25—1)n02n [1 — cosh (gr_1)nl - cos 92;ml] = ( 2 — G%Qk_l)n) sinh 0o —1)nl - sin O l, (19)

where k = 1,...,d, and they ensure the fulfillment of the boundary conditions from (17).
In terms of the original constants A2 and o, = Qpnjin, k = 1,...,d, the equations (19)
take the following form:

—\2 M+ 4oy, A2 A+ 4oy,
+4i\/01, |1 — cosh l\/ nt 2"+ Ok - cos l\/ nt 2"+ Ok

A2 4 /M o, X2 4 /N T o,
— A2 sinh z\/ nt 2"+ %kn 1 | gin z\/"+ 2"+ T\ k1 d, (20)

where
G%Qk—l)negkn = Okn, egkn - 0(22k—1)n = )‘37,7 k= 17 e d.

(al). Let oy, > 0 for some fixed index k. If p, # 0, then such an index k always exists!
In this case, the relation (20) is equivalent to the equation:

Fid /Ty [1 — cosh &, €08 Ny ] = A2 SInh g SNy Epn 7 Mhons Eons Tien € RY,

which cannot be satisfied, where the following notations are introduced:

=22+ /AL + doy, A2 4+ /AL 4+ Aoy,
gkn = l 2 ? nkn = l 2 .

Thus, the remaining case is when p, =0, i.e. o3, =0, k=1, ..., d.
(b). Let p, = 0. In this case, the boundary value problems (17) take the following form:

XIVi(wy) + N2 X (2) =0, 2 € (0,1),
{ fn () in (%) ¢ € (0.0) kE=1,...d. (21)

Xin(0) = Xy (1) = X, (0) = Xio () = 0,
The general solutions of the equations from (21) are the following functions:

Xin(zk) = Ak + Brnr + Chp sin Ay zg, + Dy, cos Ay, (22)
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where the roots of the characteristic equations for (22) are respectively given by:
Hknl == 0, 9kn2 = O, ekng == Z)\n, an4 == —Z)\n, k - 1, ,d
Moreover, the constant ), is a solution of the equation:

AnmﬁM—MhmMMMJ:Q 23
2

The equation (23) is equivalent to the following relations:

Mo 11 2mn\ 2
sin 22n—1 =0, A = (Ln> ;

2 )
A, £ 0, , neN, (24)
tan /\2nl o )\2nl )\2 o 2&
WM T AT T )

where {v,,, n € N} are the positive roots of the equation tanv = v.
By ensuring the fulfillment of the boundary conditions from (21) for the solutions (22)
with the constants Ay, Brn, Cin, Drn, k=1, ..., d, we establish the statement of Theorem 1.

Conclusion

The paper solves the generalized spectral problem for a fourth-order differential operator in
a domain €2, which has dimension dim{{2} = d > 2. In the future, it is assumed that the
eigenfunctions of the generalized spectral problem will be used to construct a fundamental
system in the space of solenoidal functions. It is worth noting that in the works [23] and [24], a
solution to the spectral problem (3) for the biharmonic operator in the domain €2, represented
by a 3-D sphere, was found.
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LIMITING ERROR OF THE OPTIMAL COMPUTING UNIT FOR
FUNCTIONS FROM THE CLASS W,

In the problem of optimal recovery of an infinite object (functions on a continuum, integrals of
continuous functions, solutions of partial differential equations, derivative of functions,...) from
finite numerical information about it, the problem of finding the limiting error of the optimal
computing unit naturally arises, since the numerical information about the infinite object to be
restored , as a rule, will not be accurate. In this article, the limiting error of the optimal computing
unit is found in the problem of optimal recovery of periodic functions of many variables from the
anisotropic Sobolev class W,® in a power-logarithmic scale in the space metric L2. The actuality of
this work is determined by the following factors: firstly, the found limiting error €5 of the optimal
computing unit preserves the exact order of the smallest recovery error , when replacing exact
numerical information about a function f € W5 with inaccurate information and is unimprovable
in order; secondly, the problem of finding the limiting error of an optimal computing unit has not
previously been studied in the class under consideration; thirdly, the anisotropic Sobolev class in
the power-logarithmic scale is a finer scale of classification of periodic functions according to the
rate of decrease of their trigonometric Fourier coefficients than the anisotropic Sobolev class in the
power scale.

Key words: optimal recovery, optimal computing unit, linear functionals, exact order, anisotropic
Sobolev class, trigonometric Fourier coefficients, limiting error

A.B. Yrecos, I'I1. Yrecosa*
K. 2Kyb6anos arbiagarsl AKTebe oHip/iIiK yHuepcureri, Akrebe, Kazakcran
*e-mail: ugi a@mail.ru
W,'* knacel pyHKIUSIAPHI YIITIH ONTUMAJIbI €CeNTey arperaTbiHbIH, IMIEKTiK KaTeJiri

AKBIpCBI3 00beKTIHI (KOHTHHYYM/a aHBIKTAJFAH QYHKIUSHBL, y3lriccis dyHKuusmap nHTerpasia-
DBIH, JiepOec TyBIHIBLIBL TuddepeHInabIK, TeHIeyIep mermimepin, dyHKIs Ty bIH/BIIADbIH,. .. )
OJIaH aJIbIHFAH CAHBI aKbIPJIbI MOJIMETTED apKbLIbl OIMTUMAJIIBI KAJBIITACTHIPY ecebiHIe TaOuFu
TYp/le, KAJBIITACTHIPBIIYFA TUIC aKbIPCHI3 OOBEKTTEH AJBIHATHIH CAHJBIK MOJIMETTED 9IeTTe
o1 6OIMAaNTBIHABIKTAH, ONTUMAJIIBI €CENTEy arperaThbiHbIH IMEeKTIK KaTemirin Taby ecebi maiima
Gomampl. Bynm makamama L2 KeHicTiri MeTpHKachlHZa Ioperke — JOrapudMIiK IIKAJIAIAFbI
annzorponTel CobosieB WQT * KJlachblHa THECLTI KOl affHbLIMAJIBLILI MepUOATHl (DYHKIMIAPIbI
ONTUMAJIIbl KAJBIITACTBIPY €CceDIHJIerl ONTUMAJIIbI eCelTey arperaTblHbIH IMeKTIK KaTesiri
TabburaH. OChl YKYMBICTBIH, ©3€KTIII ONTHUMAJIIBl €CElTey arperaTblHbIH, Kejeci (akTop/ap
ApKbLIBl KAMTAMAChI3 €Tijiei: OIpiHIIieH, ONTUMAJIbI €CelTey AarperaTblHbIH TaObLIFaH €N
mekTiK Karemiri f € WQT " (bYHKITHACHIHAH AJTBIHFAH 9/ CAHILIK MOTIMETTI /I eMec MoJiMeTKe
aybICTBIPFAH/IA /13, KAJIBIITACTHIPY/IBIH, €H a3 KATEeJIriHIH 19/ PeTIH CaKTal bl KoHe peTi O0ofbIHIIIa
JKaKCapMaliJibl; €KiHIIiIeH, ONTUMAJIIbI €CElTey arperaThIHbIH MEKTIK KaTesirin tady ecebi ochbl
KYHTe JIefiiH KapacThIPBII OTHIPFaH KJIACTa 3ePTTE/IMEreH; VIHIIIeH, TePUOATHI (DYHKITUSIIAPIbI
OJIAPJBIH, TPUTOHOMETPHUIBIK, Pypbe KOIPPUIMEHTTEPIHIH, KeMy KBLIIAMIBIFLI  OOMBIHIIA
KJtaccu(pUKAIUIAIl CUIIATTAY 1A JIOTapU(pM-IoperKeIiK mKaJIagarbl aHu30TponThl CoboJIeB KIachl
JopeXKeJIiK MKaja1arsl aHu30TporThl Cob0JIEB KIaChIMEH CAJIbICTBIPFaHIa KEH, 9Pi J19JI CUIIATTAMA
OOJIBITT KeJIEi.

Tvyiiia ce3aep: onTUMAIBI KAJIBIITACTHIPY, ONTUMAJIIBI €CEIITEY arperarhl, ChI3BIKTHIK (DyHKIN-
oHAJLIAD, J12J1 peT, arm3oTponThl CobosieB Kiackl, TpuronomMeTpusiibik, @ypbe koadbduimenTrepi,
IIEKTIK KaTeJiK.
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IIpenenbHas MOrPEIIHOCTH ONTUMAJILHOIO BBIYUC/INTEILHOIO arperara st GyHKIui n3
kJsacca W,

B 3ajzade onTuMAasbHOIO BOCCTAHOBJICHHS GECKOHEYHOrO 00bekTa ((DYHKIUM HA KOHTUHYYME,
WHTErpaJjibl OT HENPEPBIBHBIX (DYHKIWIA, pernenus AuddepeHnuaabHbIX YPABHEHUN B YaCTHBIX
IPOU3BOJIHBIX, MPOU3BOAHON (DYHKIUM, ...) 10 KOHEYHONH YHCIOBOI MHMOPMAIMM O HEM €CcTe-
CTBEHHBIM O0ODPA30M BO3HUKAET 33J[ada HAXOXKIEHUS [IPEIEJHHON ITOTPENIHOCTH ONTHMAJIHHOIO
BBIMUCJIATEIFHOIO arperara, IIOCKOJbKY YHCIOBas MHQMOPMAIUA O IIOJJIEXKAINEM K BOCCTAHOB-
JICHUI0 OECKOHEYHOM OObEeKTe, KaK MpaBuio, He OymeT TodHOW. B JaHHON cTaTbe HalijeHA
IIpeJiesibHasd IOIPEIIHOCTh ONTHUMAJBHOIO BBIYUCIUTEJBHOTO arperara B 3ajade ONTHMAaJIbHOI'O
BOCCTAHOBJICHUS TEPUOAUIECKUX (DYHKIWI MHOIUX I[IEPEMEHHBIX U3 AHU30TPOITHOTO KJIACCA
Cobonesa W,'® B cremenno — morapudMmIeckoil mKage B MeTpuke mpoctpanctBa L2, Axry-
aJIBHOCTH HACTOAIIEell paboThl 00yCJIOBIEHA CJIEAYIONUMU (DAKTOPAMU: BO — IIEPBBIX, Hal/IeHHAs
npege/ibHad IIOrpenItHoCTb EN OIITUMAJIbHOI'O BBIYUCJ/IUTEJIBHOI'O arperara COXpaHdeT TOYHBIA
[TOPSIJTIOK HAWMEHBIIIE TIOMPEITHOCTH BOCCTAHOBJIEHHUsI IIPU 3aMeHe TOYHON YHMCJIOBOM HH(pOPMAIAN
o dbynkuu f € W, Ha HETOMHYIO U ABJIAETCs HEYJIydIIaeMoil [0 MOPSJIKY; BO — BTOPBIX, paHee
3ajla9a HAXOXK/IEHUs IIPEJIeJIbHON HOT'PEIIHOCTH ONTHUMAJIbHOI'O BBIYMUC/IUTEIBHOIO arperara He
u3ydasiach Ha PACCMATPUBAEMOM KJIAcCCe; B — TPEThHUX, AaHN30TPOHbIH Kiaacc CobosieBa B CTEIIEHHO
— JorapudMUTIECKON IMKaJIe sABJIsIeTCs 00jiee TOHKOW IMIKAJIONH KJIacCHUPUKAINNE MePUOTUTECKUAX
byHKIMIA 10 CKOPOCTU yOBIBAHUSI UX TPUTOHOMETpHYecKux KodpduinmenroB Oypbe, yem aHU30-
rponHbiil Kiacc CoboJieBa B CTEIEHHOI MIKaJIe.

Kimrouessbie ciioBa: OnrnMaibHOE BOCCTAHOBJIEHNE, OIITUMAJIBHBI BBIYUCJIUTEJBHBII arperat, Jiv-
HeiiHble (DYHKIMOHAJIBI, TOYHBIN [TOPSII0OK, aHU30TPOIHbI Kiracc CoboJieBa, TPUIOHOMETPUIECKIE
ko3 durmentor Pypbe, MpejieibHast MOIPENTHOCTh

1 Introduction

Using the notations of the articles [1] and [2]|, we present definitions of the computing unit,
the exact order of error of the optimal recovery, the optimal computing unit and its limiting
error. Let a natural number N, normalized spaces X and Y of numerical functions defined
on sets (2 and (2 respectively, a functional class F' C X, an operator T': F' +— Y, a function

SONESON(Z1,-~->ZN;?J)ZCN x Q= C,

which for each fixed (21, ..., zy) as a function of a variable y belongs to the space Y, are given.
Further, the symbol (") will be used to denote a N— dimensional vector (lj(\p, e lj(\],v)> with
functionals l](\}) F—=C,... ,l](VN) :F— C.

Definition 1. For a given pair (l(N), goN) , a numerical function

ex (000, (i)

of a variable y is called a computing unit.

Every below, we will use C(a,f,...) to denote positive quantities that depend only
on the parameters indicated in brackets. For positive sequences {a,},>1 and {b,},>1 the
notation a, < b, will mean the existence of some quantity C(«,3,...) > 0 such that

a,B,...
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a, < C(a,B,...)b, for all n € N. It should be taken into account that the values of
C(a, B,...) > 0 in different expressions may be different. And the simultaneous fulfillment
of the relations a,, << b, and b, << a, is written as a, >ﬂ< b,.

aB,... oBe. ...

Further, for given F|Y, Dy and T F —Y we determine the quantity

on(Dy,T,F)y = inf  dn((I"™), 0n), T, F)y, (1)

(l(N) 750N)€DN

where Dy is a subset of the set of all pairs (I'™), py),

on (1Y), ox). T, F)y = sup (1)) = on (), 187
fer Y

Definition 2. A positive sequence {t)n}n>1 such that

IN(Dn, T, F)y :ﬁ (S (2)

gooo

18 called the exact order of error of the optimal recovery of the operator T : F — Y by
computing units from Dy in the metric of the space Y.

Definition 3.4 computing unit (Z(N), gZN> = 0N <Z§\})(f), . ,igév)(f); ) such that

........

18 called optimal.

Thus optimal computing unit (l~(N ), o) realizes the exact order ¢y.

Here we note that in the relations and , instead of the parameters a, 3, ... the
parameters of the class F' and the space Y are taken.

Calculations for each function f from class F' the value l](\})( f),.-. ,lj(\],V)( f) of functionals
lg\}) F = C,... ,lj(\],V) : ' — C, with rare exceptions, cannot be exact. Therefore, for the

optimal computing unit (l~ (M) Zn), the problem arises of finding the error £y in calculating the
values ZE\P( £y, ZﬁvN)( f) of the functionals l~( . F — C,. l M. F — C, which preserves
the optimality of (I™Y), Zx) and is the limiting in order. In [1] the error £y was called the
limiting error of the optimal computing unit (I¥), ). Now we present definition of Zy,
formulated in [2].

Definition 4. A sequence ey > 0 is called the limiting error of an optimal computing

unit (Z(N),GN) ,if

AN (gNu(l( )7S0N) T7F>Y >_ﬁ_< 5N(DN7T7F)Y and (4>

im AN(nNgN7(l~(N)J§5N)7T7 F>Y _
N—oo (SN(DN,T,F)Y
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for any positive sequence {nx}n>1 increasing arbitrarily slowly to +o00, where

AN(EN,(Z( ,SON) T, F)

=sup sup {H(Tf)() —@N(zl,...,sz)H 2 —i%)(f)‘ <en,i= 1,...,N} =

feF Z1,.092N Y

= sup sup
FEF P11, g <1

TN = ax () +9W0en, I +98 2w ||

for any positive sequence ey .
The relation means that when calculating the values of the optimal computing unit

&NUS)(]‘), . ,ZNE\J,V)(f); ) each number i](:,—)<f)(7' =1,...,N = N(K)) can be replaced with

error £y by a number z, such that |z, — ly)(fﬂ <en(r=1,...,N = N(K)), preserving the
exact order of error of the optimal recovery.

According to equality , we can state that the error €y is of limiting error, because an
arbitrarily slow infinite increase in the value of €y (i.e., replacement of £y by nyey) violates
the exact order of error of optimal recovery.

Many mathematicians have been and continue to be concerned with the problems of
establishing the relation and constructing optimal computing units for various F,Y, Dy
and T : F — Y ( see, for example, [3-6] and the bibliography therein). The problem of
finding limiting errors is a relatively new problem in approximation theory, computational
mathematics and numerical analysis. Results on this problem can be found in the works |1],
[2], |7] and [§]. In this article, when

Tf=fF=Wy0,1)°,Y = L*[0,1]*, Dy = Ly,

where W3'* = Wyt "% [() 1]* is the anisotropic Sobolev class on a power —logarithmic
scale (the definition of the class is given below), Ly is the set of computing units (I, o)
with linear functionals l%) W =G, ... l(N) W5“ — C, the limiting error of the optimal
computing unit (IY), %) from [5] is found.

The importance of studying this work lies in the following: firstly, the anisotropic
Sobolev class Wy = Wyt "% 1]* in the power-logarithmic scale is a finer scale
of classifications of perlodlc functions in terms of the rate of decrease of their trigonometric
Fourier coefficients than the usual anisotropic Sobolev class W51 7" [0, 1]* in the power scale;
secondly, the recovery of functions from the class W5*[0, 1]* is carried out by computing units
from a fairly wide set containing all partial sums of Fourier series over all possible orthonormal

systems, all possible finite convolutions Z f(&) Kn(z — &) with special kernels Ky, and all

finite sums of approximation used in 0rthow1dths linear widths, and greedy algorithms;
thirdly, previously, the problem of finding the limiting error of the optimal computing unit
was not considered on a multidimensional functional class W,'; fourthly, in the problem of
finding the limiting error of the optimal computing unit on optimal recovery of functions from
the class W5, unlike the classes Sobolev SW3 with a dominant mixed derivative, Korobov
E{ and Sobolev W), and the exact order and limiting error does not depend on the number
variable functions f(z) = f(z1,...,zs) (see, for example, [9] and [10]).
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2 Main result

First, let’s agree on the notation used. Everywhere below, the symbols [a] and |E| will denote
the integer part of the number a and the amount elements of the finite set E. For each vector

r = (ry,...,rs) with positive components, we assume A = 1/(1/ry + ...+ 1/ry). Instead of
symbols
|- {2, < ; > and -
ST 1yeeesT53 Q] yeeeyOls S3T] 4euny TsyX1y...yOs L2V EYRTRY AT P10 % PP 6 7

we will use the symbols || - ||2, <, > and =< respectively. The symbol [J will mean the end
of the proofs.
Now we give a definition of the anisotropic Sobolev class W, on a power — logarithmic

scale. Let an integer number s > 2, vectors r = (ry,...,75) and a = (ai,...,q)
be given such that r; > 0 and a; € R for each i = 2,3,...,s. The class W;* =
Wytrreit9s1() 1]% consist of all functions f(x) = f(x1,...,z,) that are summable on [0, 1]°

and 1 — periodic on each variable and whose trigonometric Fourier — Lebesgue coefficients
[ f(x)e ?mima)dy m € Z* satisfy the condition

[0,1]¢
> fm)P @ I’ (4 1) + e I (m, + 1) < 1
mezZs
where m; = max{1;|m;|} for each j =1,...,s.
The main result of this article is the following
Theorem. Let an integer number s > 2, vectors r = (ry,...,rs),r1 > 0,...,rs > 0 and

a = (ag,...,as) € R® be given such that r; + «; > 0 for each i = 2,3,...,s, and let the
imequality

(6)

DN | —

! +ot ! .
min{ry, 1 +a1} 0 min{re, s + st

hold. Then the quantity
1

N/\“/Q(ln N)A(al/r1+---+as/rs)

EN =

18 limiting error of the optimal computing unit
N
(™, 2x5) = 7n (), (i) = > Fm)emme,

where N = N(K) = [[(2N; + 1),

i=1
N, = Ny(K) = [KMri(Iln K)Nea/ritetas/r)/ri(ln K)=/"] K > 2 for each i €
{1,...,s}, {mM, m? ... mM} is some ordering of the set Ax = {m € Z° : |my| <
Ni,...,Ims| < N}, in the problem of optimal recovery of functions from the class

Wyt .. %[0, 1]% 4n the metric of the space L*[0,1]°.
In the case a; = ag = ... = a, = 0 from this theorem we obtain the following statement.
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Corollary. Let an integer number s > 2, vector r = (ry,...,rs) be given such that r; > 0
1

. . . 1 1 - 1 .
for each 1 = 2,3,...,s, and let the inequality (— +...+ —) > 5 hold. Then the quantity

Ts

EN = NAH/Q 18 limiting error of the optimal computing unit
(™, 7y) =2n (W), (i) = Z f () e2mim )

where N = N(K) = J[(2N; + 1),N; = Ni(K) = [KM"] K > 2 for each i €
=1

{1,..., s}, {mV,m? ... m™Y is some ordering of the set Ax = {m € Z° : |my| <

Ni,...,Img| < N}, in the problem of optimal recovery of functions from the class

Wot"10,1]* in the metric of the space L?*[0,1]%.

3 Auxiliary statements

Lemma 1. Let sequences {x,}n>1 and {yn}n>1 be given such that lim x, = +oo and
- - n— 00

lim y,, = +o0. Then for the sequence z, = min{z,,y,} the equality lim z, = 400 holds.
n—oo n—oo

Proof. According to the equalities lim x,, = +o00 and lim vy, = +o00, for any positive number
n—oo n—oo

£ > 0 there is a number N, such that for all natural numbers n > N, the inequalities z,, > ¢
and y, > ¢ are satisfied. From these inequalities follows the inequality min{z,,, y,,} > e, which

is true for each n > N.. Therefore, lim z, = +o0. [J
n—oo

Lemma 2. For each v € R there exists a quantity Cy(y) > 2 such that for all integers
K > Ci(y) the relation

In(KIn" K) =< In K (7)
vy
holds.
Proof. In case 7 > 0 for all integers K > 2 the inequalities

K<KWWK<K" &
ShK<In(KIn"K)<(y+1)InK (8)

are satisfied.
Let v < 0. Since Jim VEK1In" K = 400, there exists a number K(© = K©)(v) such that
—00

for all integers K > K© the inequalities
1
§an§1n(Kln7K)§an 9)

2, it ~v>0;
KO 41, if y<0,
(9) for all integers K > Cy(v) we obtain @ O
Lemma 3. For any function f € L? the inequality

max {[1£() = on(0.. . 0:) | [(=H)0) = en (0.0 )| > 7]

hold. Therefore, taking C}(y) = by virtue of the inequalities and
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18 satisfied.
Proof. Let us introduce the following notations:

a=|[f(-) =en(0,...,0;)[l2 and b= [[(=f)(-) = en(0,...,0;-) -
Then, according to the inequalities max{a,b} > (a + b0)/2 and ||z||2 + [|y|l2 > ||z — ]2, We

have
max {1 £() = ox(0,..,0:) s (= 1)) = o (0,0 ) |
o IFO) = o0 0l + (=) = (0,05

2
SULOECNONUD E ) REENUSSUS e

4 Proof of the main result
We will begin the proof by checking the validity of the relations

AN(gNJ (Z_(N)7¢N)7 Tf - f7 Wg;a)L2 = 5N(LN7 Tf - f7 W;a)lzz‘ (1())

For arbitrarily given numbers 7](\;) such that |7](\;)| < 1(r =1,...,N) there is an inequality

[£6) = on @) + W, BB +82w0)|| <

T)\—= ﬂzm("—)
) )EneRm i) (11)

Hf W () IO+

2
According to the theorem from [5], the relations
On(Ln, Tf = f, W[5 e =< 0 (I, 00), Tf = f,W5™®) 1, =<

1
N)\(ln N))\(al/rl-i-...—i-as/rs)

- (12)

are valid. Using the Parseval equality, we find

N

T=1

1
N (In N)Nat/rittas/r)

<
2

Further, due to inequalities and , we obtain

|76 =2 (1005) + 202w, B0 +402: ), <

1
< N)\(ln N))\(al/rl—l—,..—l—as/rs) :

From where, by virtue of the arbitrariness of the numbers 7](\;)(7' = 1,...,N) and the
function f , we have
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1
NA(In N)Mea/rivFas/rs)

AN (ng (Z_(N)uﬁN% Tf = f’ W;Q)L2 <
Since )
On (L, Tf = W5 ™)z < on (I, 5), Tf = f,W5™) 10 <
< Ay (Ev, (™, 28), Tf = £ W5) 1,
then taking into account and we obtain .
Let the set of pairs (Z(N ) goN) with functionals

I (f) = fFmD), 157 () = fm™)

be denoted by ®x. Now let us verify that for all (I"), py) € @y and any arbitrarily slowly
increasing to 400 sequence {ny(x)}x>1 the equality

HAN(nNgNa (Z_(N)vaN)v Tf - f7 VVZT;C!)L2
N=oo 5N(LN7 Tf = f> WZT;Q)LQ

= +00. (14)

holds. Next, for each integer K > C(r, o, s) we define the set

Hi ={m e 2°: [M{] < |m| <2-[M7],... [MJ] < |ms| <2- [M]},

where M; = NMri(In N)Mei/rtetas/r)/ri(In N)=ei/rig V™ for all ¢ € {1,2,... s}, N =
N(K), B = min{ny,In N},
Since Khrf frx = 400 (see Lemma 1), there exists a number Ky > C(r, a, s) such that
—+o0

for all integers K > K| the inequality Sx > 1 holds.

Now for any component m;(i = 1,2,...,s) of the vector m € Hj we will prove the
inequality
1n°"'(2mi) < In™ N, o; € R. (15)

If a; > 0, then by virtue of inequalities (In N)~*#/™ < 1 and B[_(l/ " <1 and Lemma 2, we
have
lnai(Qmi) < In%i (QN)\/ri(ln N)A(al/rl—i-...—i—as/rs)/m (hl N)—a,-/riﬁl—(l/ri) <

< In% (2]\7)‘/”(111 N)A(a1/7"1+~-+as/7’s)/7’i) < In® N.

Comparing the beginning and the end of this chain of inequalities, we obtain _ Let
Therefore,

2mz > 2N)\/ri (ln N))\(al/r1+..-+0¢s/7‘s)/n (ln N)_ai/riﬂ;(l/m >
> N)\/ri(ln ]\7))\(oq/7"1—&-...—&-ozs/rs)/r,-—ozi/r,-—l/ri7

whence by virtue of Lemma 2 and the inequality «; < 0, we again obtain .
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From follows the inequality

my In® (2m;) < N (In N)Mea/mt-tas/ra) g 1, (16)
Consider the function hg(z) = BxEn Y. €2™0™%) Then, using the relation
meH
[Hicl =< N B (17)

and the inequalities and Sk > 1(K > Kj), we have

D g (m)? (M P + 1) + .+ W I’ (4 1)) =

mezZs

= > Jh(m)|* (M W (4 1) + . w2 I (m, + 1)) <

meHF,
< 3 fhelm)? (02 (2 + .+ T (2m)) <
meH
< B 3 NP (ln N)Pea/ritetes/r) g2 o
meHT,

1
<<— Yol oy <L
mEH* 6

Therefore, for some C(r, a, s) > 0 the function tx(x) = C(r,a, s) - hix(z) belongs to the
class W,'®. By virtue of Parseval’s equality and relation ((17) we have

1-1/(2))

K
HtKHQ > NA(ln N))\(Oél/’l”l'f‘-..'f’@és/’/‘s)‘ <18>

Further, having fixed the values of K > Ky for any 7 =1,..., N = N(K) we put

s 2 k) g0 - EE)mT)
N ENTIN N ENTIN

e

Since for each 7 =1, ..., N inequalities |7N | <1, | <1 and equalities

te(m™) + 77N:Y](\7/—)5N =0, (—tg)(m") + nNcU](\;)EN =0

)

are true, then by virtue of Lemma 3 for each pair (IV), o) € ®y we have

sup sup
N
FEWS™ |y (P1<1, O <1

76) = o () + 90 mew,

f(m(N)) + 7§VN)77N§N§ ) H2 >

~

> max { Htx(~) — N (fx(m(”) + AN INEN - (M) 4+ Ay ) H2
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~ ~

|(=t)0) = ox (=) m®) + 3w, - (i) ) + 3 e )|} =

= max { [t () = 0, 05)]| | (=t () = w0, 00| = el

2
Next, using inequality , we find
A (mvEw, (N, on), Tf = F,W5?) 12> 65 (L, Tf = £, W5*) . 8. (19)

Since

1 - 1 ! 1
min{ry, 7 + a1} min{rg, rs + s} 2
see condition (6)), then 2\ > 1. Therefore, in view of the equality lim [x = 400 and
( i
—+oo

the inequalitiy for each pair (I, o) € @y and any positive sequence {nyx) }x>1 that
increases arbitrarily slowly to 400, the inequality

lim AN(nNgNa (l(N)J 90N>7 Tf = f7 VVZT;OZ)L2
N—ro0 ON(Ln, Tf = f, W)Lz
holds. It is clear that (I™Y),3y) € ®5. Consequently, from (20)) follows .0
Remark. Since the equality (@ is proved for all pairs (I ), ©N) € CIDN, then any optimal
computing unit oy (f(m(l)), o fm ™), ) , N = N(K) does not have a greater (in order)

limating error than Ey.

= 400 (20)

5 Conclusion

The theorem proved above is a new result in approximation theory, numerical analysis, and
computational mathematics. This study can be continued by replacing condition (6) with
a weaker condition that ensures absolute convergence of the trigonometric Fourier series

ST f(m)e2mmo) functions f e Wi,

mezs
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ON ¢-DEFORMATED HORMANDER MULTIPLIER THEOREM

Abstract. The main purposes of this work, we introduce the ¢-deformed Fourier multiplier
Ay defined on the space Lg (R,) through the framework of the g?-Fourier transform, while also
extending the functional setting of Lg(Rq) with 1 < p < oco. Our approach provides a natural
extension of classical Fourier multiplier theory into the g-deformed setting, which is relevant
in the context of quantum groups and noncommutative analysis. Furthermore, we establish
several key g-analogues of classical harmonic analysis inequalities for the g¢?-Fourier transform,
including the Paley inequality, Hausdorff-Young inequality, Hausdorff-Young-Paley inequality,
and Hardy-Littlewood inequality. These results not only generalize their classical counterparts but
also open new avenues for analysis on g-deformed spaces. As a significant application, we prove
a g-deformed version of the Hormander multiplier theorem, which provides sufficient conditions
for the boundedness of multipliers in the g-deformed setting. This work sets the stage for further
developments in the field of ¢g-deformed harmonic analysis.

Key words: g-Jackson integral, g-caclulus, Fourier multiplier, inequality, multiplier, Hausdorff-
Young inequality.
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e-mail: nariman.tokmagambetov@gmail.com
g-nedopmanussianrad XépMaHAepAiH, MYJIbTUILINKATOPJIAP TEOPEMAaChl TyPaJibl

Annortarusa. By XKyMmbIcTbIH Herisri mMakcarTapbl: 6i3 Lg(Rq) KeHICTiriHIe aHBIKTAIFaH ¢2-
@ypre Typrengipyi menbepinge A, g-medopmanusananran Pypbe KeOEHTKINIH eHrizemis »xone
1 <p < oo ymin pynknumonanpr napamerpi LY (R,) xenicrikrepine keneiiremis. Bisnin kesxkapa-
cbIMbI3, opube, Dypbe KOOEHTKIIITEPIHIH KIIACCUKAJBIK, TEOPUICHIH ¢-1edOpMaIisjIaHFal Iapa-
MeTpre jiefiin KeHeiiTe i, OyJ KBAHTTHIK TOITAP MEH KOMMYTATUBTI €MeC TaJ1ay KOHTEKCTIHIE oTe
manpsael. Coman Keitin 6i3 ¢2-@ypbe TypJeHIipyi yIIiH rapMOHIKAJIBIK, TALIAY/IbIH KJIACCHKAIBIK
TeHCI3iKTepiHiH OipKaTap Herisri g-aHaorTapbiH OenrineiiMis, conwrH, iminge [lameit, Xaycmopd—
Aur, Xaycnopd—Aur—IIsitnn xkoune Xapau-JIntiBy TeHcizaikrepi. AJIBIHFAH HOTHXKEJIED OJIAPIbIH,
KJIACCHKAJIBIK, IIPOTOTUINITEPIH KOPBITHIIT KaHa KONMail, g-aedopMalusiianFal KeHiCTiKTepre TaJ-
JTayIbIH KaHA OarpITTAPBIH amaabl. MaHbI3abpl Komanba peTinae 6i3 kebelTKimTep Typaabl Xép-
MaHJEeP TeOPEMACHIHBIH, ¢-AedOpMAaIuaIanTal HYCKACHIH JRJIeaaeiimMi3, oy g-nedopMalusaianran
rmapameTp/ie KoOeHTKIMmTepIiH MeKTeJTeH I ir VI KeTKUTKTI mapTrapAsl oepesi. By xKymbic

g-nedpopManusiIaHFaH TapMOHUKAJIBIK TAJIIaY bl OJIaH 0Pl JAMBITYFa Heri3 KaJiaiijibl.
Tyitia ce3nep: ¢-/Ixekcon unTerpasbl, g-ecernrey, Pypbe KOOEHTKIII, TEHCI3/IK, MYyJIbTUILITKA-

top, Xaycaopd—Aur TeHcizairi.
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Annoramusi. OcHOBHBIE TIeJIM JIAHHON pabOThl COCTOAT B CJEAYIOMIEM: MbI BBOIUM (-
JieopMUPOBAHHBIH My/IbTHILIHKATOP Pypbe Ag, OLpeneséHHbIl Ha IPOCTPAHCTBE Lg(Rq) B pam-
Kax ¢?-mpeobpasopamms Pypbe, a TakxKe pacmupgeM (QYHKIHOHAILHYIO HOCTAHOBKY OO IIPO-
CTPaAHCTB LZ’(Rq) mpu 1 < p < oo. Ham momxom ecrecTBeHHBIM 0OPA30M IIPOMOJIKAET KJIAc-
CHYECKYI0 TeOpHIO (hyphe-MyJbTUIINKATOPOB B ¢-71e(DOPMUPOBAHHYIO MMOCTAHOBKY, YTO CyIIe-
CTBEHHO B KOHTEKCTE€ KBAHTOBBIX I'DYII U HEKOMMYTATHBHOIO aHaym3a. /lajee Mbl ycTaHaBJu-
BaeM s KJIOUEBEIX (-AHAJIOTOB KJIACCHYECKHX HEPABEHCTB TAPMOHMYECKOTO AHAJN3A IS (-
npeobpazoBanus Pypre, BKIoUas HepaBercrsa [Iaym, Xaycnopda—Aura, Xaycaopdba—Auara—IIamu
u Xapaun-Jlurtneyna. [loxyaennbie pe3yabraThl He TOJIBKO 0000IIAIOT WX KIIACCHIECKUE ITPOTOTHU-
IIbI, HO W OTKPBIBAIOT HOBBIE HAIIPABJIECHUS aHAJIN3a HA ¢-1edOPMUPOBAHHBIX POCTPAHCTBAX. B
KadecTBe CyIIEeCTBEHHOIO MPUJIOKEHUsI MBI JOKA3bIBaeM ¢-1eOPMUPOBAHHBII BADUAHT TEOPEMBI
XépMaHiepa 0 MyJIbTUILINKATOPAX, JAONIUN JJOCTATOYHbIE YCJIOBUSI OIPAHUYEHHOCTH MYJIbTUILIN-
KATOPOB B ¢-1e(OPMUPOBAHHON MTOCTAHOBKE. DTa PabOTa 3aKJIabIBAET OCHOBY s Ja/IbHEHIIIero
pa3BuTHA ¢-1eOPMUPOBAHHOINO TAPMOHUIECKOIO aHAIN3A.

KuaroueBbie cjioBa: ¢-marerpas JXKekcoHa, g-mcuuciaenne, MyabTurmmkarop Pypbe, HepaBeH-
CTBO, MYJIbLTUILINKATOP, HEPABEHCTBO Xaycaopda—ddnra.

1 Introduction

The history of quantum calculus (or g-deformation) started in the 18th century when L. Euler
[9] investigated the infinite product in the following form:

o0

1
N
(¢:90)% = in)l_—q%l’ lq| < 1.

It serves as a generating function for the partition function p(n), which enumerates the
number of distinct ways to express n as a sum of positive integers. In the early 20th
century, F.H. Jackson introduced the g-derivative and the definite g-integral [6}/7], forming
the basis of modern g-calculus. Over the past two decades, research on ¢-deformation has
expanded rapidly. For instance, V. Kac and P. Cheung [8] studied its fundamental properties,
while T. Ernst [10,/11] highlighted its importance in quantum computing models. Further
developments include the work of N. Bettaibi and R.H. Bettaieb |4], who introduced a ¢-
deformed Dunkl operator and analyzed its Fourier transform in |13,|14] (see also |16]). This
operator is defined using Rubins g-differential operator 9, [17,/1§]. For more details on the
history and recent progress in g-calculus, see the monographs [1,[10-12,|15].

The ¢-difference calculus dates back to the early 20th century, with pioneering
contributions by F. Jackson [6,/7] and R.D. Carmichael [5|. More recently, W. Al-Salam |3|
and R.P. Agarwal [2] introduced the concept of fractional ¢-difference calculus. In recent
years, fueled by the rapid growth of research in the ¢-partial dif equation, this theory has
also undergone significant development (see, [25-27,29-31]).

In this work, we establish some basic g-deformed integral inequalities for ¢-Fourier
transform such as the Paley, Hausdorff-Young, Hausdorft-Young-Paley, and Hardy-Littlewood
inequalities. The problem under consideration can be reformulated as proving the
boundedness of an associated Fourier multiplier via an appropriate transformation. In this
context, the Hormander multiplier theorem is a fundamental result in Fourier analysis that
provides conditions ensuring the boundedness of Fourier multiplier operators on L” spaces.
Specifically, it characterizes the regularity requirements for a multiplier function so that the
associated operator, defined by multiplication in the Fourier domain, acts boundedly on
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LP(R%. Let o be a function on R?, and define the Fourier multiplier operator A, by
Arf(2) = F o - fl(2),

where F denotes the classical Fourier transform.
The theorem states that A, is bounded on Lp(Rd) for 1 < p <2< q< o0 if o satisfies a

condition, often expressed as
11
sup)\< / dqs>p .
A>0

lo(s)[=A

This statement generalizes earlier results by Mikhlin and provides a powerful framework for
analyzing multipliers. It has important applications in partial differential equations, signal
processing, and control theory, among others. Comprehensive discussions of these results and
their further developments are available in the works of L. Hérmander 23], E.M. Stein [32],
as well as in more recent texts like L. Grafakos [24]. Our formulation of ¢-deformed Fourier
multiplier is more intuitive and aligns closely with the classical, commutative framework,
which allows many of the same properties to carry over. Similar to the classical case, the key
part of the proof depends on the Paley inequality and the Hausdorff-Young—Paley inequality
for the classical Fourier transform, both of which are obtained through the Hausdorff—Young
inequality. In the course of our work, we also derive g-analogue of several important
inequalities such as the Paley, Hausdorff-Young—Paley, Hardy-Littlewood. Moreovere, we
present a simple proof of the P — L? boundedness of Fourier multipliers that avoids using
the Paley and Hausdorff-Young—Paley inequalities, drawing on the method introduced in [33].

2 Preliminaries

2.1 Basic notations on R, space

Throughout this paper, we assume 0 < ¢ < 1. In this section, we will fix some notations and
recall some preliminary results. We put R, = {£¢" : n € Z} and R, = R, U {0}. For a € C,
the g-shifted factorials are defined by

n—1 0
(@qo=1 (0).=]]0-ad"), n=12. (69)=]]1—ad).
k=0 k=0
We denote also
1—¢° (¢ Dn
al, = , acC and [n|,)=-—"———", neN

The g-analogue differential operator D, f(x) is

f(z) = flgz)
r(l1—q)

The g-Jackson integrals are defined by (see, |6},7])

D,f(z) =
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a

/ F@)dgr = (1 - )’ S q"f (ag”) (1)

0

b oo
[ H@dr = (=0 Y q" 0F 00") - af (ag) 2)

and
+oo

/f Mer = (1=0) 30 40 @)+ 1 (")},

prov1ded the sums converge absolutely.

In the following we denote by

1/p

o Ij(R,) = finHLg(Rq)=</R |f<x>|pdqx> <o

e L*(Ry) = {fﬁ 1l zgorg) = Sup |f(2)] < OO}-

2.2 Fourier transform and Fourier multiplier on R,
The g*-exponentials (see |18] and [17])
e(z;¢%) = cos(—ix; ¢*) + isin(—ix; ¢*),

where the ¢?-trigonometric functions

k=0
and o0 k k(k+1),.2k
. , (—1)kghlkt1) 241
sin(x; q¢*) =
(%) ; 2k + 1],
Definition 2.1 Let f € D, (R,). Then the ¢*-Fourier transform of f is defined as follows

/\

F&q?)=f¢ = K f (—iz&; q°)dgw (3)

and its inverse

fo) = K / (i€ (1) F (€ )t

_ (492
where K = 2Fq2q(1/2).
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Moreover, we have the Plancherel (or Parseval) identity (see, [17])

[f 2y = I fllL2ry)- (4)
In [17], 0, denote the weighted Dirac-measure at y € R, defined on R, by
_ [ Q=g ifr=y,
5@’(”_{ 0. if £y,

and It satisfies the following properties:
1) for all z,y € R, , we have the orthogonality relation

dy(z) = K2/e(z’xf;q2)e(—iy§;q2)dq§. (5)

Rq

2) If f € Ly(R,), then we get that

f) = [ @3, (6)

Definition 2.2 We assume that the function g : R, — C is bounded. Then, we introduce the
q-deformated Fourier multiplier Ay on L2(R,) as follows

~

Ay(P)@) = K | 9(&) f(©e(in; ¢*)dyé. (7)

Ry

Definition 2.3 Let 1 < p,r < oo. Let B : LE(R,) — Li(R,) be a bounded linear operator.
The, we define its adjoint operator B* : L;l (Ry) — Lf]’/ (R,) as follows

(B(f). fo) = / BUNEROGE = [ HOBEEE = (. B (1) ®)

Rq

for all f € LE(R,) and fy € L7 (R,).

2.3 The ¢-distribution function

In subsection, we state the distribution function df();¢) on R,. Let Q be a subset of (0, c0)
and z > 0. Then, the definite ¢-integral with the function xq(z) introduced as follows

/ Yo@) f@)dgz = (11— ) 3 ¢ F(q") (9)

Ry "sz
and
/ X (@) (@)dgz = (1= ) 3 g" (g™, (10)

where xq(z) is the characteristic function of the set  (see, |20, formals 2.6-2.7] and [21]).
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Definition 2.4 (see, |28, Definition 2. p. 504]) The q-distribution function ds(X;q) of f :
R, — R is a real-valued function, which expressed as

dp(g) = pafe € Ry [f(@)] > A}, A >0,
Moreover, we observe that

drig(2X; ) < dp(A;q) + dg(X; q). (11)

Using the distribution function, we present and demonstrate the following key
characterization of the LF(R,) norm.

Proposition 2.5 (see, (285, Proposition 4. p. 506[)Let 0 < p < co and f € LL(R,). Then

11y = W [ X5 ) (12)

Ry

Lemma 2.6 (see, (25, Lemma 1. p. 506]) Let f € LE(R,) for 0 < p < oo. Then
a) We assume that Ey = {x € R, : |f(z)] > A}

dna) <5 [ e @@l < 5 [ 7@l

Rq

b) (The q-Chebyshev inequality).

desg/mmwmwﬁ

Rq

3 A ¢-deformated interpolation theorem

In this section we establish a ¢-deformated interpolation theorem.

3.1 The g-deformated Marcinkiewicz Interpolation theorem

Definition 3.1 (see, |28, Definition. p. 507]) Assume that 0 < p < oo. Then, we defined
the space weak LB> (R,) as follows

. C 1/
p,00 = N N < —q e p N .
flig=eo = {int{cy>0:a000 < b —sw (rafrosn} <oof. a3

The weak L2 (R,) spaces are larger than the usual L? (R,) spaces.
For any 0 < p < oo and any f in L (R,) we have

||f||Lf;’°°(]Rq) < ||f||L%;(Rq)a (14>

Hence, the embedding L2 (R,) < L? (R,) holds.
Indeed, by and the ¢-Chebyshev’s inequality (see, Lemma [2.6] (b) ), and we have
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Il = igg{kd}/p(k; 9)} Zitilg{(/xg(x)\f( Pdg) "} < Uy,

Ex

which implies that holds.
Now, we can prove the following interpolation theorem, which will let us deduce L? (R,)
boundedness from weak inequalities, since they measure the size of the distribution function.

Theorem 3.2 (¢-deformated  Marcinkiewicz  interpolation)  Let 0 < D <
s < oo and T is a sublinear operator defined on LP>(R,) + Ly*(R,) :=
{fo + i fo€ LB (Ry), fr € Ly (]Rq)}. Assume that

T~y < Collflleewy, Y€ Ly™(Ry), (15)

IT(H)ly=m@,) < Cillflley=m,), VI € L™ (R,), (16)
Then Vr € (p,s) and Vf € Ly (R) the following estimate holds

1Ty < Cllf g, (17)

1/r
where C':= 2[r ]UT (4 + ;> COCI=0 and 0 = =1

[r—plq [s—rlq 1/p—1/s
Proof. For a fixed A > 0 we suppose that the functions fy and f; by

_ fla), if [f(z)] < CA _ 0, if[f(x)] <O
f0<x)_{ 0, if |f(z)] > O\, fl(w)‘{ Fz), if |f(z)] > O\,

for some C' > 0 to be determined later.

Let 0 < p < r < s < oo. We assume that Fy = {z:|f(x)] < CA} and E; :=
{z :|f(z)] > CA}. Then it can then be easily verified that f; (the unbounded part of f)
is an L} function for p < r:

X gt = X7 @l
Ry Rq

Ry

= [1s@r [x @i < )
Rq RS

[r —plq

and that fy (the bounded part of f) is an L, (R,) function for r < s:

/ N Al dh = / Ao / i (@) (@) P dgzd, A
+ R

R
:L/U !/ATSW% g < S Wha =)

[s =7l
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the subadditivity property of T" and Hypotheses and together with now
give

16) CP 1 s
dry(2X;q) < drgo(Xsq) + drp (X q) < 0HfoH il!les,q (20)

In view of the last estimates — and , we conclude that

, @) —
IAfl, @l [ x g2

RS

D 2, | [ X hldA + 5 XA

| s .
orpp), [BC0 Gy
- Tq_[T—p]q 5=l N

We assume that CJC™? = C$C5™", we get that

p(r—p)  s(r—p) p(r—p)  s(r—p)

_p_ _s_
C=CyPCy™ = CyC™P=CFCy" C°" =Cy° " C°7" .
Therefore, we have shown , where

p(r—p)  s(r—p) 1 1
C"=2[r),Cy° " Cy { + }

r—p S—r

This completes the proof.

We say that A < B if there exists a positive constant ¢ > 0, which depends only on
certain parameters of the spaces involved, such that A < ¢B. Similarly, we write A < B
to indicate that both inequalities A < B and A 2 B are satisfied, possibly with different
constants in each inequality. In other words, A and B are equivalent up to multiplicative
constants depending only on the space parameters.

4 The ¢-deformated Hausdorff-Young-Paley Inequality

Now, we start to prove g¢-deformated Hausdorff-Young-Paley inequality and its inverse
inequality.

Theorem 4.1 Let 1 <p <2 and % + z% = 1. Then for any f € LE(R,) we have
17y ) < Il caceny 1)

Proof. Let A is a linear operator such that A(f)(¢) = f(€) for f € LP(R,), 1 < p < 2. Then,
by using the Holder inequality (see |19, Proposition 37.2|), we have

(AU M rgewy = [1fllgem, = sup [f(€)]
§ERy

< sup le(=i- & @) e @l sy < IS llzsey)s
q
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where Esu]éo le(—i- &)l L (R,) < 1. Moreover, by Plancherel’s identity , we have
ERq

1A 2@y = Il B 1@y, f € LAR,).

Therefore, we derive that A : Lj(R,) — L°(R,) and A : L2(R,) — L2(R,), with the operator
norms at most 1. In the case, § = 2/p/, then 0 < § < 1. Moreover, we have 113 = 11;9 + g and
1 % + g. Hence, It is follows from the Theorem that the inequality holds.

p/
We now derive the reverse form of inequality in the range 2 < p < oo.
Theorem 4.2 Suppose that 2 < p < oo and fG Lfl’/ (Ry). Then

||f||Lfl)(Rq) < ||f||LZ,(Rq)’ (22)
1, 1 _
where ’ + o= 1.

Proof. Let f € LP(R,). then, from duality of LE(R,) we find that

1l =sup {I(£. D) : ¢ € LF (Re), N9l ) =1}
and using the Plancherel identity @, we get
(19) = | Ty ay e SR,
Therefore,
Flez = soll(£.2)]: 0 € R, lelym, =1}

_ Sup{|/]R (5)20)des] - 0 € L (Re), Nl e, = 1}

< sup{ [ TR0 € LR el e, = 1)
< sup{ [ TR0 e LR, el g, = 1)
~ /v’ N /p
< s {( [ Feras)” ([ peras)
ApELg/(R) R, Rq
lell pr =1
LE (rg)
= s {1y, 18l
peL? (Rg)
\Iw\ILg/(Rq):l

Here we used the inequality |f(€)3(E)] < |F(€)||2(€)] for any & € R,, applying the Holder
inequality (see |19, Proposition 37.2]) with respect to Fourier transforms of f and ¢ € L{I’ (Ry)
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with [[¢|| 7 Ry = 1. by using inequality with respect to ¢, we write that

~ ~
||f||Lg(Rq) S Sulp {Hf”Lgl(Rq) ’ ||SO||L5,(Rq)} = ||f||LZ,(Rq)’
WEL%; (Rq)

llell s =1
Lé’ (Rq)

thereby completing the proof.
Next, we establish the g-deformated Hausdorff-Young-Paley inequality.

Theorem 4.3 Assume that 1 < p < 2 and let ¢ : R, — R be a strictly positive function
satisfyingthe following condition

M, :=supt / d,& < 0. (23)
>0
p(&)=t

Then, we have the following inequality

/ FOPP©dt | <M flpm, for e IRy, (24)
Rq

where ¢, > 0 1s a constant independent of f.

Proof. We assume that v be a measure on R, by v(§) := ¢*(€)d,& > 0. Detone a space
LP(R,, v) as follows

1

1z = 4 f / FOPE©Ode | <o
Rq

One can readily verify that, endowed with the above norm, this space is Banach. We then
introduce the operator A : LE(R,) — LP(R,, v) via the formula

—_—

_ 1O

It follows from m(g) ]/”\(5) +@(&), f o€ Li(R,), that Ais a sub-liner (or quasi-linear)
operator. Now, we will prove that A A : LP(R,) — LP(R,, v) is well-defined and bounded with
1 < p < 2. Equivalently, we claim that (24]) is valid under condition . We first verify that
A is of weak types (2,2) and (1, 1). The distribution function d4)(t), t > 0, with respect to
©*(s) > 0, is defined by

daipy(t) = wis > 0 |A(f)] > t} = / PE)dE.

[A(f)>1
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The next step is to show that

2
C f 2
dA(f)(t) < (m> with ¢ =1,

and

allflrie,)

dA(f)(t) S with cl = 2M@

(25)

(26)

To begin with, we prove inequality . Using the ¢-Chebyshev inequality (see Lemma

(b)) together with (3]), we obtain

= n
tain(®) < 1A gy = [ 1F6)Pdus = 1P gy 2 1510,
Rq

Therefore, the operator A is of weak type (2, 2) with its norm bounded above by ¢s = 1. Next,
we proceed to prove inequality . Using Hulder’s inequality (cf. |19, Proposition 37.2]) for

the exponents p = 1 and p’ = 0o, we obtain

f©l @ |, f@el-iat¢)dya

p&) p(£)
le(=i- & a) gl sy I lzacey)
q q aq R .
: o(6) G
Therefore, we have
/()] 1123 ey
R, : R, : .
e A A R
for any ¢ > 0. Consequently,
79 1123 R0
R, : R, : -
ACeR g T svlieRe o 21
for any ¢ > 0. Setting v := HfHLE(Rq), we obtain
f /1|2y e,
V{fERq:%>t}§y{§ERq:%>t}: / ©*(£)d €.

w(§)<v

Let us estimate the right hand side. Now we claim that

| w@ue< e,

w(§)<v

(27)

(28)
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Indeed, from this equality ¢*(£) = (1—¢q) >, ¢, and (9)-(L0) first we have

7'<p?(§)
[ #ens = -0 [ X dag-a-oy DY
p(§)<v p(&)<v qi§¢2(£) ( <v l/2<<,0 (q )

= (1= > ¢ >, ¢

q?<v  ¢i/2<p(gF)<v

< (14401 =¢"") > d-9 D ¢

q'/?<v q'/2<p(q®)
< (1401 —q"7) D> ¢ " / dyé
¢'/?<v q/2<p(€)
— (1+q1/2)/ t/dqg dyi/2t. (29)
0\ t<e®

Since
t / d.§ < supt / d.§ = M,
>0
t<p(§) t<p(§)

and M, < oo by assumption and , it follows that

v
/ (‘02<§>dq§ < (I+ q1/2)M‘P/dq1/zt < (1+¢*w- M,,.
(§)<v 0

This establishes the claim . By combining and , we derive , which confirms
that A is of weak type (1,1) with operator norm at most ¢; = 2M,,. Applying Theorem
with parameters p; = 1, ps = 2, and % = an + 2, we consequently obtain inequality .
This completes the proof.

From the g-deformated Paley-type inequality stated in Theorem [£.3, we derive the
following g-deformated Hardy—Littlewood inequality.

Theorem 4.4 Assume that 1 < p < 2 and ¢ : R, — Ry be a strictly positive function
satisfying the following condition

1
——d,s < oo for some [ >0. 30
/ p(s) " 30)
R(I
Then, we have q-deformated Hardy—Littlewood inequality as follows

JIFPe 2 6)dss | < Collfligwy for £ € LiRy)

where C, > 0 is a constant independent of x.
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Proof. It follows from the assumption [30] that

C, = 1-q)> do (") =0-q9 >  d Q4

keZ P (gh)<t
> (1—qg)t Z ¢ = / dys=t / dgs, t>0.
Wﬁ(qk)ﬁ% QOB(S)S% < (pﬁl(s)

Therefore, taking the supremum over all positive ¢, we obtain the bound
supt/ dgs < Cy < 00,
t>0 {s€Ry:t< B( )}

This shows that the integral expression is uniformly controlled by the constant C,. Then, by
applying Theorem [£.3] to the function defined by

we derive the desired inequality.

Theorem 4.5 Suppose that 2 < p < oo with % + % =1 and ¢ : R, — Ry be a strictly
positive function satisfying the following condition

1
/(pﬁ—(s)dqs < oo for some [ >0.

R4

Iif

~ Bp(2—p)
/ F(s)Pe™ 7 (s)dys < o,
]Rd

then

BP( p

1£1Es 5, < Cha / FOPe™ ™ (5)dys,  f € LAR,),

where Cp, 4 > 0 is a constant independent of x.

Proof. For L,(R,) we have
11 zpcesy = sup {14, 9) 3| 9 € I (Re), Nl oriay = 1}

It follows from that

() iamy) = / F&a6) s, frg € I2(R,). (31)
Rd
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Using the Holder inequality for any function g € Lg/ (Ry) with [|g][ &,y — 1, we deduce that
q q

||f||L§(Rq) = sup  {|(/f, 9>L3(Rq)| VS Lf;)/(Rq)}
ol g =
- {\/f(s) ds| geLP(R)}
ol pr =
LP (Rq) .
< s { [ IF)as)dgs g € 1 (R)}
ol =1

(VAN
9]
c
i
—
%\
A>
&
S
&=
a
<
V2)
Q
m
h
ESihe]
—~
=
N
——

IN
)]
=
e}
I
—_
—
-Q%\
S
=
=7
.B\
Av
V)
-
A>
Vo)
AS)
=
w5
B
—
V)
P
Q)
—
-
<)
m
h
3
—
Z=)
N—
——

' =g
Bp(2—p) ~ 1/p ;o R y 1/p
< s {([FROFrs) " ([ Pmeras) "}
197 ey =1 g, i

Now applying Theorem [£.4] with respect to p’, we get

Bp(2 p) 1/p , . , 1/p’
£l < ([« fora,s) " ([ oo as) "}

||9||

LP(R) R, Rd
ﬂp( =) 1/p
< / ST @) s ol
/ 91, =

Since ||g||Lg/ Ry = 1, taking C), , = ¢, 4, Wwe complete the proof.

Remark 4.6 Suppose p = 2, then the inequalities stated in Theorems and [{.9 both
simplify to the identity given by @

The following result can be inferred from |22, Corollary 5.5.2, p. 120].

Proposition 4.7 Let d,v1(§) = wi(§)d,€, din(l) = wa(€)dE, € € R,. Suppose that 1 <
p,70,71 < o0. If a continuous linear operator A admits bounded extensions A : LF(R,) —
) —

L (Ry,v1) and A - LE(R,) — Lyt (Ry, vy), then there exists a bounded extension A : LE(R,

r L _1-6 , 0 =0l
Ly(Ry,v) where 0 <6 <1, = ===+ = and dgv(§) = w(§)de&, w = w; - Wy

Now, we obtain the g-deformated Hausdorff-Young-Paley inequality.

Theorem 4.8 Suppose that1 <p <r < p < oo for %+z% = 1. Let p s given as in Theorem

4.3 Then
~ 11 ; i1
([1FOr e 7di)" < cprardti ™ llgepy
Rd

where cqp .y > 0 15 a constant independent of f.
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Proof. Let A(x) := f be a linear operator acting on the space LP(R,). By using the
inequality stated in for 1 < p < 2, we then deduce that

([1FOPe@det)” £ M 17 lign
Rq

In other words, A : LE(R,) — LF(Ry,v1) is a bounded map, where the weight is given by
?1(?):=12-p(?)>0 w1 (&) := p*7P(£) > 0 with £ € R,. moreover, for 1 < p < 2 with 11—)—1—]% =1,
by applying the inequality , we obtain that

—~ , 1/p —~
([1FOP )" = 1Flly0, < Il1s0e,
Rq

which implyis that A : LE(R,) — L (R, 12), where v5(§) = 1d ¢ for all £ € R,. It follows
from Proposition 4.7 that A : LE(R,) — Lj (R, v) with d,v = w(§)d,&, is bounded for any 7
such that p <n < p', where the space L}(R,,v) is defined as

1
n

Mmmw:(ﬁ&%R:/V@W%M£ <00,
]Rq

where w : R; — R is a positive function and will be defined later. Let us find the explicit
form of w. For fix 6 € (0, 1) such that % = 11.%9 + 1%’ we derive § = -2—L. and from Proposition

gj )

n(1—n) n(1—n)

W) = @) (W) =(PTE)TT 1 = () = ol

3=

_1
7

for all ¢ € Ry and =L - (1 — 1) = Hence, for d,v = gpn(% » )(é)dqé we obtain

1
.

1

n

2-r
™

1_1
IA@) Ly @ew) S (Me™ ) Tl = My 7 l2llpe,), =€ LE(R,).

This completes the proof.

5 the g-deformated Hormander multiplier theorem
First, we obtain the ¢*>-Fourier transform of the Fourier multiplier (7).

Lemma 5.1 Let g : R, = C be a bounded function. Then, we have

—

A(f)=g-F, felr(R,). (32)

for f € LE(R,).
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Proof. Let f € LP(R,). Then, by , —(@ and @ we have

-~

AN B0 ke / [ / 9(&) F(©)elint: ) dy€] e —iny; )y

_ / 9(©)F () [K? / e(i; ¢)e(—ixy: ) dgz] dot
/ 9(6) F(€)0,(€)d,t
B g i),

for all y € LE(R,).
Let us denote by g the complex conjugate of the function g, in Definition [2.3]

Lemma 5.2 Suppose that 1 < p,q < oo. Let Ay : LF(R) — LY(RY) be the Fourier multiplier
defined by (7) with the symbol g. Then its adjoint Ay = Ag and Ag : Lg/ (RY) — Lf;, (Ad).

Proof. For h, f € LE(R,). Then, It follows frmm ®. @1, and that

(Agf> h)

IE

.
Q@
Py
=
=
=

o8
(=)

V)

2 [ Famds D (.40,

Since L](R,) is dense in LE(R,) , we have A = A,.
Finally, we state the g-deformated Hormander multiplier theorem.

Theorem 5.3 Suppose that 1 < p <2 <n < oo and g : R, = R be a bounded function.
Then, the Fourier multiplier defined in @ can be extended to act as a bounded linear operator
from the space LE(R,) to the space L](R,). Moreover, the following estimate holds

1_1
Aullage sz Ssupd ([ dis)
A>0

lg(s)[=A

Proof. By duality it is sufficient to study two cases: 1 <p<n' <2and 1<n <p<2
where 1 = % + #
First, we consider the case 1 <p <1’ <2, where 1 = % + # By we have

Af=g-F, feIrR,). (33)
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Then, it follows from it follows from Proposition and that

—_—
[ P [P Y (34)

for all f € L](RR,).
Thus, we denote 7' ;= r and 1 := 1 1 = L — L then for h(¢) :=[g(9)]*, & € Ry, then,
p
by using the inequality in Theorem @ In other words, we derive

([ (1 o) )™ < a1,

Rq

| 2 () (35)

for any f € LE(R,). Let us study M‘ » separately. Indeed, by definition

1 1 1
M\;IS = <sup)\ / dqf)s = <sup)\ / dq§>s = (sup A / dq£>s.
A>0 A>0 A>0
lg(&)|F=A \g(f)\Z/\% lg(&)|=A
Since < := Ilj — %, it follows that
: 5 s(1-1) i
M‘;‘S = <sup)\8 / dq5> =supA\r 7 ( / qé)
A>0 A>0
lg(©)|=A lg(€)I=A
= sup)\< / q§> ;75 (36)
A>0
lg(©)I=A

Hence, combining , , and ( we obtain
_ 3
It = ([ (5119 <s>|) 0"

Rq
1 11
S Myleligey Bouwr( [ ) el

l9(§)[>A
for 1 <p <7 <2andx e LA(R]).
Next, we consider the case n’ < p < 2 so that p’ < (1)) = n, where 1 = % + # and
1= % + 1%' Thus, the LP-duality (see Lemma yields that A7 = A, and

/

||A9HL{;(Rq)—>L2(Rq ||A ||L77 (Ry) —)Lp (Ry)’

=i g " Hence, by repeating the argument in the previous case we have

9
4

! < /
4@y S swr| [ d] ol
9(&)12A
11
p n
| [ ] ey,

g(&)|>A
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In other words, we have

1_1
p n
14l )2/ 2y = 502 / A&
>0
9(&)1=A
Combining both cases, we obtain
11
P on
||Ag||L€(Rq)HLZ(Rq) S sup A dqf
A>0
9()=A

for all 1 < p <2 <17 < oo. This concludes the proof.
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This paper addresses the inverse problem of identifying a space-dependent source term in a
singular parabolic equation involving an inverse-square potential, knowing final time measurement
data. The problem is reformulated within an optimal control framework, minimizing a Tikhonov-
regularized functional to ensure stability. Theoretical contributions include existence and
uniqueness of weak solutions for the direct problem, along with a stability estimate for the inverse
problem under a first-order optimality condition. A Landweber-type iterative algorithm is designed
for numerical reconstruction, validated through synthetic examples with both exact and noisy data.
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Cunrynsgpablk audPy3usijibiK, TeHJaeyJiep KJachl YIIiH KO3/i OHTAJIbl backKapy
9JIiciMeH KAJIITbIHA KEeJITipy

By sxyMbIcTa Kepi KBaapaTThl MOTEHIUAJIBI Oap CUHTYISPJILIK TapabO0IaIbiK, TeHIEYAer] KeHiCTIK-
TiK TOyesIi KO3/l aHBIKTayAbIH Kepi ecebi KapacThIPBLIAIbI, OJ aKBIPJIbl YAKBIT ME3eTiHIer o1~
ey JepeKkTepin maitaananaasl. Ecen TuiMai 6ackapyaarbl OPHBIKTBLIBIKTE KAMTAMACHI3 €Ty YIIiH
TuxoHOBTBIH peryJisipu3alusiiaHFal (PYHKIIMOHAJIBIH MUHUMUABAIUSIAYFA HETI3/1eJIIT TYKbIPhIM-
nasraH. TeopusiIbIK HOTH2KEJIEP] PETiHIe Typa ecell YIIIiH 9JICi3 MenmiMHIH 0ap KOHE YKAJFbI3IbIFbI
JTOJIeJIIEHYiH, COHBIMEH KaTap, OIpIHIII peTTiK ONTHMAJIIBIK, IIAPThl OPBIHIAJIFAH Karmaiiga Kepi
€CEeNTIH OPHBIKTBLILIFBIHBIH, OarajayblH afiTyra 6osaabl. CaHIbIK HOTHXKEIEPl PETIHJE 91 2KoHE
IITyJIBI JePEKTEPMEH CUHTETUKAJIBIK MBbICAJIap/Ia TeKcepiiren Jlamasebep TUITIHIETI NTEPAITASITBIK,
aJITOPUTM 93ipJICHII.

Tyiiaai cesgep: Kepi ecen; cunrynspiibl napaboJiajbiK, TEHIEY; TYPAKTHLIIBIK, TYPAKTaAHIBIPY;
Jlamasebep omici.
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BoccranoB/ieHne NCTOYHHUKA B KJlacCe CUHTYJISIPHBIX ypaBHeHuit auddy3un c
MCHOJIb30BAHUEM METOJA ONTUMAJIBHOI'O yIIPaBJIEHUA

B namnoit pabore paccmarpuBaercs oOpaTHas 3ajada  MICHTUMUKAIUE TPOCTPAHCTBEHHO-
3aBHCUMOI'0 MCTOYHUKA B CHHIYJISPHOM IIapabOIMYecKOM YPABHEHUHU C 0OPATHO-KBAIPATHIHBIM
ITOTEHITNAJIOM Ha OCHOBE JIAHHBIX U3MEPEHUII B KOHEYHBIII MOMEHT BpeMeHHU. 3ajada mepedopmy-
JINPYETCS B PAMKAX OINTHMAJILHOIO YIPABJIEHUS IIyTEM MUHUMU3AIUN PEryIspPU30BAHHOIO QyHK-
nronasia TuxoHOBa, YTO OOeCIIeYNBaET yCTOWYNBOCTD PEIeHNs. 1eopeTHYecKre Pe3yIbTaThl BKJIIO-
YAIOT JIOKA3aTeJIbCTBO CYIIECTBOBAHUS U €IMHCTBEHHOCTU CJIa00T0 PelteHus sl IPsMOil 3a/1atH,
a TaK’Ke OIEHKY YCTOHYIMBOCTHU JiJIsi OOPATHON 3a/1asi, OCHOBAHHYIO HA YCJIOBHH ONTHMAJLHOCTH
IEePBOr0 TOpsifKa. Jljisi InucaeHHON! PEKOHCTPYKIUU pa3padoTaH MUTEPAIMOHHBIN aJrOPUTM THUIIA
Jlannsebepa, 3HPEeKTUBHOCTH KOTOPOTO MOATBEPKIACHA HA CHHTETHIECKUX IMPUMEPAX C TOIHBIMU
U 3aI1yMJIEHHBIMY JTAHHBIMU.

Tyitieai ce3nep: Kepi ecen; cunrynapisl napadosasblk, TeHJIEY; TYPaKTBIIBIK,; TYPAKTaHIbIPY;
JlauBebep omici.

1 introduction

Inverse problems are concerned with the identification of unknown inputs or sources from
partial or indirect observations of the system’s response, in contrast to forward problems,
where the output is computed from given inputs. It is well known that inverse problems are
often ill-posed in the sense of Hadamard; that is, the solution may not exist, may not be
unique, or may not depend continuously on the data. Consequently, small perturbations in
the measurements—such as those due to noise—can lead to significant errors in the solution

In the present work, we investigate the inverse problem of identifying a spatially dependent
source term in a singular parabolic equation from measurements of the solution at a fixed
final time. More precisely, we consider the following initial-boundary value problem

00(x,1) — Onn(,8) — Lo 0(x,t) = F(2), (2,1) € Qp :=Q x (0,T),
0(0,¢)=0(1,t) =0, te(0,7T), (1)

where Q := (0,1), 0 < T' < oo is an arbitrary final fixed time, 6 is a given smooth function
describe the initial state, f(x) represents the unknown source term which is assumed to be
kept independent of time variable ¢.

We are particularly concerned with the inverse problem of recovering the spatially
dependent source term f(z) appearing in the governing parabolic equation. To this end,
we assume that the solution wu(x,t) is observed at the final time ¢ = T over the spatial
domain €2, that is

u(z,T) =w(x), z €, (2)

where w € L?(2) denotes the final-time observation. When the source term f(x) is known,
the associated initial-boundary value problem defines the so-called direct (or forward)



138 Source identification problem for a ...

problem. In the present study, however, f(x) is unknown and must be identified from the
final observation . Accordingly, we formulate the inverse problem as the determination of
f(z) from a prescribed admissible class such that the corresponding solution to satisfies
the final-time constraint .

Singular inverse-square potentials have attracted considerable attention in recent years
due to their relevance in modeling various physical phenomena across multiple disciplines,
including quantum cosmology [5], combustion theory [6], electron capture processes [8|,
and quantum mechanics [7]. Moreover, such potentials naturally arise in the linearization
of certain reaction—diffusion systems governed by the heat equation involving supercritical
source terms |1].

In the context of inverse problems for parabolic equations, a substantial body of literature
has addressed issues related to stability and well-posedness for various classes of equations
using a range of analytical and numerical techniques [12,/17-21].

Concerning inverse problems for singular parabolic equations, we mention, among other
works, the study in [15], where the inverse source problem for the model was investigated
in a multidimensional setting. In |11], the author addressed the inverse problem of identifying
a source term in degenerate singular parabolic equations, with degeneracy and singularity
occurring in the interior of the spatial domain. More recently, in |14], the inverse source
problem for a heat equation involving multipolar inverse-square potentials was considered.

From a numerical perspective, it is worth noting that only a limited number of works have
been devoted to the identification of source terms or coefficients in parabolic equations with
inverse-square potentials, despite the fact that such models arise naturally in both theoretical
studies and applied contexts.

In contrast to the aforementioned studies, which commonly rely on techniques based
on Carleman estimates |17, our approach is framed within the context of optimal control
theory—a widely used methodology for addressing inverse source problems in a broad class
of evolution equations [1,|10,|1322]. Specifically, we recast the inverse problem as an optimal
control problem, where the unknown source term is treated as a control variable. The objective
is then to minimize a suitably defined cost functional, which yields a quasi-solution to the
original inverse problem.

By deriving and analyzing the first-order necessary optimality conditions, we establish
both the local stability and uniqueness of the quasi-solution. More precisely, our main stability
result can be stated as follows: let (U, f) and (U, f) be two solutions to the inverse problem
f corresponding to final-time observations w and @, respectively. Then, there exists a
constant C' > 0, independent of the final time 7', such that

If = flli2) < Cllw — @ll72(0)-

The second main contribution of this work concerns the numerical reconstruction of the
unknown source term in the problem , based on the final-time observation . To this
end, we develop a numerical scheme built upon the well-known Landweber iterative method.
This approach has proven to be both reliable and efficient, as demonstrated through a series
of numerical experiments.

The remainder of the paper is organized as follows. In Section 2, we establish the well-
posedness of the direct problem . Section 3 is devoted to the analysis of the inverse
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problem within an optimal control framework; in particular, we prove the existence of a
minimizer for the cost functional and derive the associated first-order necessary optimality
condition. In Section 4, using the optimality condition, we establish a stability result for the
inverse problem. Section 5 is concerned with the numerical reconstruction of the unknown
source term. To this end, we implement a Landweber-type iterative method to compute an
approximate solution to the inverse problem based on the final-time data.

2 Analysis of the direct problem

2.1 Functional framework

As is well known in the analysis of parabolic equations involving singular inverse-square
potentials, the constant p plays a crucial role in determining the well-posedness of the
associated problem. Specifically, there exists a critical threshold p* > 0 beyond which the
problem becomes ill-posed. This upper bound is given by the optimal constant in the Hardy
inequality, which ensures that for any function z € H} (), the weighted function e L*(Q),
and the following inequality holds:

v [ 20 o < [t ds 3)

2

In the one-dimensional setting 2 = (0, 1), it is known that the critical constant is p* =
For fixed pu € (0, u*], we define the following functional space:

1
1

H! () == {z e LX(Q) N HL () : 2(0) = 2(1) =0, /Q (zg(x) - “Zl(f)) dw < +oo} .

This space is a Hilbert space when equipped with the inner product

(21,22)p = /Q (zl,x(a:)zg,x(x) - MM) dz,

T

and the corresponding norm

ot = ([ (20022 ) "

By standard arguments, one can show that there exist positive constants Ci,Cy > 0,
depending on u, such that

(1—4u)/z§d:€+C1/22dx§ Hzﬂig(l—i-llu)/zida:Jng/zzd:c.
0 Q 0 Q

This implies that for the subcritical case pu < p*, the spaces H}),(€2) and Hg(Q) are
topologically equivalent with respect to their norms. However, in the critical case p = p*, the
space H} (€2) strictly contains Hg(Q), that is,

Hy(Q) & H, ().
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In this work, we restrict our attention to the subcritical case 0 < p < p*. Now, le us define
the space H () as the completion of H'(Q) with respect to the norm

9 9 1/2
2o = (22 + I1212)
Accordingly, we may write
H,o(Q) = {z€ H)(Q) : 2(0) = 2(1) =0} .

Under the assumption p < %1, it is known that H ﬁ(Q) embeds continuously into the Sobolev
space W, 9(Q) for all 1 < ¢ < 2, and also into the fractional Sobolev spaces Hg () for all
0 < s < 1. Moreover, due to the compact embedding W, () — Hg () for suitable ¢ = ¢(s)
sufficiently close to 2, and the compactness of H(Q) < L?*(£2), we conclude that

H,(Q) —— L*(Q),

where the embedding is compact. For more details on the properties of H ;(Q), we refer the
reader to [2] and |15].

2.2 Well-posedness of the Direct Problem

In order to analyze the inverse problem associated with the differential equation under
consideration, a thorough understanding of the corresponding direct problem is essential.
Therefore, we begin by establishing the well-posedness of the direct problem, with a detailed
analysis of the existence, uniqueness, and regularity of its solutions.

To define a weak solution, we multiply equation by a test function ¢ € H ;70(Q),
integrate over (2, and use integration by parts. This leads to the following variational
formulation.

Definition 1. Let 6y € L*() and f € L*(Q7). A function 0 is said to be a weak solution
to problem if

0 € L*(0,T;H,,(Q), 6 €L*0,T;H,"(Q)),

and for all test functions ¢ € L*(0,T; H;yO(Q)), the following variational identity holds:

0:¢ dx dt + 0,0, dxdt — p 0—? dz dt = fodx dt, (4)
Il sete ], I, e ][

with the initial condition 0(0) = 0y satisfied in L?(£2).

Remark 1. The use of the weighted Sobolev space Hﬁ,o(Q) s crucial due to the singularity
of the potential term px=20, which renders the classical space H}(Q2) inadequate when p > 0.
For p < p*, the Hardy inequality ensures that the bilinear form associated with the operator
is coercive on Hy ((9).
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Before formulating the inverse problem, it is necessary to establish that the associated
direct problem is well posed.
This ensures that for any admissible source term, the governing singular parabolic equation
admits a unique weak solution that depends continuously on the data.
Such a result guarantees that the forward operator is mathematically well defined, which is
a fundamental prerequisite for the subsequent optimal control framework.

Theorem 1. Let 6y € L*(Q) and f € L*(Qr). Then, problem admits a unique weak
solution 0 in the sense of Definition [l satisfying

0 € C([0,T]; L*(Q)) N L*(0,T; H, ,()), 6, € L*(0,T; H,'(2)).

Moreover, the following a priori energy estimate holds:

T T
sup [6(6)[3200y + / 168)|2 dt + / 16,0011yt < € (160]3) + 11t - )

te[0,7

where the constant C' > 0 depends only on u,<), and T'.

3 Optimal control

The inverse problem under consideration is ill-posed in the sense of Hadamard, meaning that
uniqueness and stability of solutions cannot be guaranteed without introducing additional
constraints.

A widely used strategy in such cases is to recast the inverse problem as an optimal control
problem, where the unknown source term is treated as a control variable.

This approach allows us to incorporate a regularization mechanism that stabilizes the
inversion procedure.

More precisely, the inverse problem is reformulated as the minimization of a Tikhonov-
type cost functional, consisting of two terms: a data misfit term that enforces consistency
with the final-time observation, and a penalty term that ensures stability by controlling the
norm of the source.

The admissible set of controls is restricted to bounded functions in L?(£2), which reflects a
priori physical knowledge about the source.

This optimal control formulation serves as the foundation for the subsequent analysis. In
particular, it allows us to establish the existence of minimizers (Th2), to derive necessary
optimality conditions (Th3), and to prove stability estimates for the reconstructed source
(Th4). Hence, Section 3 plays a crucial role in bridging the direct analysis of the forward
problem with the theoretical and numerical treatment of the inverse problem.

4 Formulation of the Inverse Problem

The inverse problem addressed in this work can be stated as follows: given an initial condition
0o(z) € L*(Q) and a final-time observation w(z) € L*(2), determine the spatially dependent



142 Source identification problem for a . ..

source term f(z) such that the corresponding solution € to the initial-boundary value
problem satisfies the over-specified final condition

O(z,T) =w(x), forallxe. (6)

To tackle this ill-posed problem, we adopt an optimal control framework. The inverse
problem is reformulated as the following constrained optimization problem: find f* € A such
that

min J(f) = J(f*), subject to 0[f] solving , (7)

feA

where the cost functional J : L?(©2) — R is defined by

1 gl
T(F) = 5101 T) ~ ey + 21 ey 0
and v > 0 is a regularization parameter. The admissible set A C L?*(f2) is given by
A:={feL*Q) :c < flz) <y ae inQ}, (9)

for some constants 0 < ¢g < ¢;. The regularization term in ensures the stability of the
minimization problem and reflects a priori bounds on the unknown source.

Next, we establish the existence of an optimal solution to the minimization problem @
by means of the following result.

Theorem 2. Let 6y € L*(Q), w € L*(Q), and assume that the direct problem admits a
unique weak solution 0[f] for every f € A, as guaranteed by Theorem . Then, the optimal
control problem @ admits at least one solution; that is, there exists f* € A such that

J(f) = min 7 (f).

feA

Proof 1. Since J(f) > 0 for all f € A, the cost functional J admits an infimum over the
admissible set A, denoted by

;= Inf )
T I
Let (fn)nen C A be a minimizing sequence such that
1
d<j(fn)§d+ﬁ, for all n € N*. (10)

Since A C L*(Q) is closed, convex, and bounded, there exists a subsequence (still denoted f,)
and a limit f* € A such that

fo — " weakly in L*(Q). (11)

Let 0,, := 0[f,] denote the unique weak solution to problem with source term f,. By
Theorem [1], the sequence (6,,) is uniformly bounded in the spaces

L*0,T; H,4(), L>(0,T;L*S)), and L*(0,T;H, ().
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Hence, up to a subsequence, there exists 0* € L*(0,T; H} ,()) such that

0, — 0*  weakly in L*(0,T; H;O(Q)),
0, = 0*  weakly-* in L*(0,T; L*(Q)), (12)
O — 00°  weakly in L*(0,T; H, ().

Furthermore, by the Aubin-Lions lemma and the compact embedding H), ((Q) —— L*(),
we also obtain the strong convergence

0, — 0 strongly in L*(Qr). (13)

Now, subtracting the weak formulations satisfied by 0* = 0[f*] and 0,, = 0|f,], and testing
the resulting equation by ¢ = 6* — 0,,, we obtain the energy inequality:

311070 = 8u(Ole) < HO) [ (@) = £u)(0"(0,0) = Ou(as 1) d (14)

Integrating both sides over (0,T), we get
16°(2) — 0Dy < [ [ DO @) = fule) 0. 0) — (1)) o .
Qr

Using the weak convergence f, — f* in L*(Q) and strong convergence 0,, — 0* in L*(Qr),
we deduce that the right-hand side vanishes as n — oo, hence:

10°(T) — 0n(T)||2() = 0 asn — oco. (15)
To conclude, we analyze the convergence of the misfit term. Define:
I i= |I19"(T) = @l = 10n(T) — i3z
< NO(T) = 0n(D)ll L2y - 167(T) + On(T) — 20| L2 -
Due to , we conclude:

T [6a(T) — w0y = 16°(T) — a0y (16)

Finally, applying weak lower semi-continuity of the L*-norm to , and using , we
obtain:

1
lim inf 7 (f,) = lim inf (iuen(T) — Wl + %anHQ)

1
> S10°(T) = wl? + 1117 = T ().

Combining this with the minimality of the sequence , we conclude that f* is indeed a
minimizer of the functional J, i.e., J(f*) = d. This completes the proof.
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Theorem 3 provides the first-order necessary condition characterizing the optimal control.
This condition links the unknown source term with the adjoint state and plays a central role
both in the theoretical analysis of stability and in the numerical implementation of the
Landweber-type method.

Theorem 3. Let f* € A be an optimal solution to the control problem , and let 6* := 0[f*]
denote the corresponding solution to the state equation . Then, the following variational
mequality holds:

/ 0% (2, T) — w(z)) £z, T) dr + 7/ F2) (h(@) — f(2))dz >0, VYhed  (7)
Q Q

where £ € L*(0,T; H} ,(2)) N C([0,T]; L*(Q)) is the unique weak solution to the following
adjoint problem:

u

0 (x,t) — Epu(,t) — g E(x,t) = h(x) — f*(x), in Qr:=Qx(0,T),
£(0,t) =&(1,t) =0, fort e (0,T), (18)
&(z,0) =0, for x € Q:=(0,1).

Proof 2. Let h € A and § € [0,1], and define a convez perturbation of the optimal control
f* by

fs=f"4+dh—f").
Since A is convez, it follows that fs € A for all 6 € [0,1]. Let 05 := 0[fs] denote the unique

weak solution to problem associated with the control fs.
We define the perturbed cost functional

=305 = 3 [ s T) = w)Pda+ ] [ 1) (19)

Since f* is an optimal control, the function § — J(fs) attains its minimum at § = 0.
Therefore, the derivative of Js with respect to & satisfies

> 0. (20)

6=0

d
%j(fé)

We now compute this derwative. By differentiating under the integral sign and using the
chain rule, we obtain:

005

G = [ st 7) - wl) G

x,T) d:x+7/f5 () — f*(x)) d. (21)

FEvaluating at 6 =0, we define £ := 8'95 ‘5 o- Then inequality becomes:

/g}[e*(ﬂ?,T) —w(@)] &z, T) dx + ’V/Qf*(x)(h(x) — f*(x))dz =0, (22)

which 1s precisely the desired variational inequality .
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It remains to characterize £. Differentiating the state equation with respect to o, we find
that & satisfies the following linearized problem:

O(,1) = Eaula ) = L6 (2, t) = h(a) = f*(2), in Qr,
=0,

£(0,t) = &(1,¢) t€(0,7),
£(x,0) =0, x €,

which coincides with problem . This concludes the proof.

5 Stability Results

In this section, we investigate the stability of the inverse problem with respect to
perturbations in the final-time observation data. Stability plays a central role in inverse
problems, especially due to their inherent ill-posedness in the sense of Hadamard. In our
context, the goal is to assess how the optimal solution f* depends continuously on the
measured data w € L*(Q).

We consider two final-time observations w,& € L?(2), and analyze the corresponding
solutions f*, f* € A obtained by minimizing the cost functional (7). Under appropriate
assumptions, we prove that small perturbations in the data lead to small changes in the
recovered source, thereby establishing a Lipschitz-type stability estimate for the inverse
problem.

Inverse problems are typically unstable with respect to perturbations in the data.

Theorem 4 demonstrates that, under the proposed optimal control formulation, the
recovered source satisfies a Lipschitz-type stability estimate.

This result ensures robustness of the reconstruction and provides a rigorous theoretical
justification for the numerical performance observed in Section 6.

Theorem 4. Let f,f € A be two optimal controls corresponding to the final observations
w,w € L*(Q), respectively, and let 6 := 0[f], 6 := 0[f] be the associated solutions to the state
equation . Then, the following Lipschitz-type stability estimate holds:

~ 1 B
1f = FllZ20) < %Hw—wHiz(m- (23)

Proof 3. Let f, f € A be two optimal controls corresponding to the final-time data w,w €
L2(2), and let 0 := 0[f], 0 := 0[f] be the associated solutions to the state problem (I
We apply the first-order optimality condition with f* = f and h = f, yielding:

/Q 0(z, T) — w(@)] (2, T) do + ’V/Qf(x)(f(x) — f(x))dz =0, (24)

where & solves the adjoint problem:

O — € — L6 =T 1, nQr,
€(0,1) = £(1,8) =0, te(0,7), (25)
§(x,0) =0, z € .
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Simalarly, applying with f* = f and h = f, we obtain:
[ o 1) - 6@)] & 1) o+ [ F@)(7(0) - Flado >, 20
Q Q

where £ solves:

atg_gm_éng_];, in Qr,
£(0,t) = £(1,t) =0, te (0,7), (27)

5('1770):07 r € Q.

Adding inequalities and yields:

S = Fla < / o)~ eyae+ [

) [9(T) - w] £(T) da. (28)

Now, define the error functions E :=0 — 0, and X = &— é Then, E solves:

atE_Emm_%E:f_fa Z.nC?T7

E0,t) = E(1,t) =0, t e (0,7), (29)
E(z,0) =0, x € Q,

and X solves the homogeneous problem:

00X — X, — X =0, inQr,
xXr

X(0,t) = X(1,t) =0, te(0,T), (30)
X(x,0) =0, z € Q.
Hence, by uniqueness of weak solutions, we conclude X =0, i.e., £ = é, and similarly F = —¢

from comparing and .
Substituting into and using E = —&, we obtain:

= FIP < [ BT T) o+ [ (wla) = ala))ete. T do

Q

=€ Dl + [ 0= @)Y
Applying the Cauchy—-Schwarz and Young inequalities, we get:
Y= FI? < =IEDN + llw = @l - 1ET)]]
1 . 1
< =€ + llw = @I + 51D
1 2 1 ~ 112
= &I + 5l 2]

< Slw—al*.

N
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Dividing both sides by v > 0, we conclude:
~ 1 B
If = fllZ2g) < _VHW — @l|72(0);

which completes the proof.

Corollary 1. Assume that assumptions of Theorem @ hold. Furthermore, suppose that w
matches @ over € then f = f

6 Numerical identification

In this section, we present a numerical strategy for identifying the unknown source term f(x)
in the singular parabolic problem , based on the final-time observation w(z). Due to the
ill-posedness of the inverse problem, direct inversion is highly unstable, and regularization
techniques are essential to obtain stable and meaningful numerical approximations.

To this end, we implement an iterative regularization scheme based on the classical
Landweber method, which is widely used in inverse problems due to its simplicity and
robustness. The approach consists of iteratively updating the source term by moving along
the negative gradient direction of the cost functional @, evaluated via the solution of the
associated forward and adjoint problems.

6.1 Landweber iteration method

Let us define the input-output operator 7 associated with the parabolic problem , which
maps a source term to the final-time state of the corresponding solution. For simplicity of
computation, we assume the initial condition is homogeneous, i.e., 6y = 0. Then, the operator
T is given by:
T: L*(Q) — H, (),
fe=Tr=0f](T),

where 0[f] denotes the weak solution to problem ([I]) with source term f € L?(2), and 6y = 0
as initial data. In this framework, 7 f represents the output measurement at the final time
t="T.

In view of the above considerations, our inverse problem can be equivalently reformulated
as the operator equation

Find f7 € A such that 7T = w,

where T: L*(Q) — H, 4(2) is the input-output operator defined in the previous subsection,
and w € L*(Q) denotes the measured final-time data. Formally, the exact solution fT satisfies
the associated normal equation

TTf =Tw,

where 7* denotes the adjoint of the operator 7. This normal equation can be interpreted as
a fixed-point problem of the form

fr=f1=8T (T —w),
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where $ > 0 is a relaxation parameter. Based on this formulation, we construct an iterative
Landweber-type method to approximate fT. Starting from an initial guess fy € L%*(Q), the
iteration proceeds as:

fmsr = fin = BT (T (fm) — w)

:fm_ﬂT* (QM('7T>_W>7 (31>

where 6, := 0[f.,] is the solution of the forward problem associated with the current
iterate f,,.

It is well known (see, e.g., [9]) that the Landweber iteration converges strongly
to the minimum-norm solution ff, provided that 0 < B8 < 1/||T|* and the initial guess
fo € D(T). In practice, the iteration is terminated according to a suitable discrepancy
principle or tolerance-based stopping rule.

For the numerical implementation of the Landweber algorithm, it is essential to compute
the adjoint of the input—output operator.

Lemma 1 provides an explicit characterization of this adjoint in terms of the solution of
an auxiliary boundary value problem.
This result enables the efficient numerical realization of the iterative reconstruction scheme.

Lemma 1. Let ¢ € L*(), and let n € L*(0,T; H, ((Q)) be the unique weak solution of the
following initial-boundary value problem:

om(z,t) — Opam(x, t) + %n(w,t) =¢(x), inQr:=Qx(0,T),
n(x,0) =0, x €, (32)
n(0,t) =n(1,t) =0, te (0,T).

Then, the adjoint operator T*: L?(2) — L*(Q), corresponding to the input-output operator
Tf=0[fI(-.T), is given by

T =n(,T),

Proof 4. Let f € L*(Q), and denote by § = 0[f] € L*(0,T; H}, 4(2)) the unique weak solution
of the forward problem:

0,0(x,t) — Deub(,t) + 1o0(x,t) = F(2), in Qr,

2
0(z,0) =0, x €€, (33)
0(0,1) = 0(1,) = 0, te (0,7).
Then the input-output operator T : L*(Q) — L*(Q) is defined by

Tf=06(.T).
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Let i € L*(2), and let n € L*(0,T;H)(Q)) be the solution of the following adjoint
problem.:

A1) = Duan(e,0) + Tgn(e. ) = (x), in Qr.
77($7 O) = 07 HANS Q, (34)
n(0,t) =n(1,?) =0, te (0,T).

We want to compute T*p using the definition of the adjoint. By definition, T* is the
operator such that

<7-f7 w>L2(Q) = <f7 T*w>L2(Q)7 Vf S LZ(Q)

Now, compute the left-hand side:

(Tf, )2 Z/Q(x,T)w(a:) dz.

Q

We aim to express this quantity in terms of f and n, and thereby identify T*y. To this
end, we define the auziliary function v(x,t) := n(x, T —t). It is easy to verify (by direct
substitution) that v satisfies the backward parabolic problem:

— Ow(x,t) — Oppv(,t) + %U(IB, t) =v(x), in Qr,
v(z,T) =0, x €, (35)
v(0,t) = v(1,t) =0, te (0,7).

We now multiply the equation for 6 by v, integrate over Qr, and use integration by parts
in time and space. We obtain:

/ f(z)v(z,t)dedt = // (@@ 0 4 0,0 - Opv + %91}) dxdt
Qr T x

= // (_atv 0+ 0,000+ %60) dxdt,
- T

where we have used the fact that 6(x,0) = v(x,T) = 0.
Since v satisfies , the right-hand side becomes:

/ Y(x)0(x,t) dxdt.
Qr
Thus, we have established the identity:
/ f(z)v(z,t)dedt = / (x)0(x,t) dadt.
Qr Qr

Now, reversing the change of variables v(z,t) = n(x, T —t), we have:

/OTv(x,t) it — /OTn(x, 5) ds.
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Stmilarly,

/Qf v(r,t) dvdt = /f / (z,5)ds dr,
/Q¢ 0(z,t) dvdt = /w / (z,t)dt dx.

Assuming that this identity holds for all T > 0, we formally differentiate both sides with
respect to T', obtaining:

/Q@/J(x)e(g;,T) dz = /Qf(x)n(x T)dz

Therefore, we have:

(Tfa@/))m(g) = (0(,T),¢) 2 Q) = = (fin(,T))rz L2(Q)s
and since this holds for all f € L*(Q), we conclude:
T =n(,T).

To summarize, we now outline the main steps of the iterative procedure used to
numerically reconstruct the unknown source term f in problem , based on the Landweber
method.

Algorithm 1 Iterative Landweber Method for Source Identification

Require: Relaxation parameter 3 > 0, tolerance ¢ > 0, final-time data w € L*(Q)
Ensure: Approximate solution f and corresponding state ' to the inverse problem
1: Initialization: Choose an initial guess fy € A, and set £k =0
2: Solve Forward Problem: Compute 6, := 6[f] by solving
3: Solve Adjoint Problem: Compute 7y by solving with source ¢ = 0y(-,T) — w
4: Update Control: Set

Ji=fo— 5770(‘7T)

for £ =1,2,... until convergence do

Solve 6, := 0[fx] from

if |0x(-,T) — wl|z2() < € then

Set fT:= fi, 07 := 0, and stop

else
10: Solve n;, from with ¢ = O0x(-,T) —w
11: Update fii1:= fi — B+, T)
12:  end if
13: end for
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6.2 Numerical results and discussions

In this subsection, we present numerical experiments that illustrate the performance of the
proposed Landweber algorithm for reconstructing the space-dependent source term. The
experiments are designed to validate both the accuracy and stability of the method under
noise-free and noisy final-time data.

We begin with Example 1, where the exact solution of the forward problem is available in
closed form. This allows for a direct comparison between the reconstructed and exact source
profiles. In Example 2, the forward solution is generated numerically, thereby testing the
algorithm in a more realistic setting. In both cases, the reconstructions confirm the theoretical
predictions: the Landweber method converges towards the true source when noise-free data
are used, while in the presence of noisy data, the algorithm still yields stable and accurate
approximations, as shown in Figures 6.1-6.3.

The relative error Ey(k) is also monitored as a function of the iteration index k. The error
curves demonstrate a rapid initial decrease followed by saturation, which is consistent with
the discrepancy principle and the finite accuracy of the numerical discretization. Overall,
these results validate the effectiveness and robustness of the proposed method.

6.3 Numerical Implementation and Discretization

This subsection is devoted to numerical examples that illustrate the performance of the
proposed Landweber algorithm for reconstructing the space-dependent source term f(x)
in the inverse problem . The solutions to both the direct and adjoint problems are
approximated using finite-difference methods.

We fix the final time 7" = 1, so that the spatio-temporal domain is Q7 = (0,1) x (0,1).
Let M, N € N* denote the number of spatial and temporal subdivisions, respectively. Define
the mesh sizes

Ar = — At =—.
SV N

The spatial and temporal grid points are given by:
x; =1iAx, fort=0,1,..., M, t; =jAt, forj=0,1,...,N.

The functions €(z,t) (solution of the forward problem) and 7n(x,t) (solution of the adjoint
problem) are evaluated at these grid points. The numerical schemes employed for the
discretization are based on finite-difference approximations of second-order spatial derivatives
and backward or Crank—Nicolson schemes in time, ensuring stability in the presence of the
singular potential p/x?. Boundary conditions are imposed explicitly at = 0 and = = 1.

In the numerical tests, we measure the accuracy of the reconstructed source using the
relative error at iteration k, defined by

M

! (f(xs) — fk(xi))2 :

M+1

i

By(k) = || f* - f”%Q(Q) =

where f is the exact source function and f* is the reconstructed approximation at the k-th
iteration, evaluated on the discrete grid {x;}X,.
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To test robustness against measurement errors, we also consider noisy data. The perturbed
observation w.(x) is generated from the exact final state w(x) = 6(x,T) by injecting a
multiplicative random noise:

we(r) =w(z) + - w(z) -rand(z), x €, (36)

where € € (0,1) denotes the noise level and rand(z) € (0, 1) is a uniformly distributed random
function over the spatial domain. This simulates realistic data perturbations encountered in
practice.

Example 1. In this first test case, we consider the inverse problem f with singularity

parameter | = %, and a source term given by

f(z,t) = =5sin(nt) ((2* — 72 + p)sin(nz)),  (2,t) € Qr.
It is easy to verify that the corresponding exact solution of the forward problem 18
O(x,t) = 2*sin(rx)(1—e"), 2€Q, tel0,T].

Consequently, the final-time observation used in the inverse problem is computed as w(x) =
u(z,T). This example allows for direct comparison between the reconstructed and exact source
terms.

Example 2. In this second test, we consider a synthetic example in which the exact source
term is prescribed as

f(z) =sin(rz), =€ Q.

We set the singularity parameter to p = %. The final-time data w(x) = u(z,T) is generated
by solving the direct problem using this exact source. This test serves to wvalidate the
reconstruction algorithm when the forward solution is numerically simulated, without using
an explicit expression for u(z,t).

Discussion on Example 1

For the inversion process, we employ moderate discretization parameters, setting At = 1073
and Az = 5 x 1072, The Landweber iteration is initialized with the admissible guess fy(x) =
22, Figure (a) shows a comparison between the exact source f7 and the reconstructed
profile fi in Example 1 after £ = 8000 iterations. The agreement is notably close, confirming
the convergence of the algorithm in the noise-free setting.

To assess the robustness of the method under measurement perturbations, we conduct
additional experiments using noisy final-time data w, generated according to the perturbation
model . The reconstruction is evaluated after k = 400 iterations. As shown in Figure
(a), the reconstructions remain satisfactory under moderate noise levels, and the computed
state Oy (-, T") matches the perturbed observations w with high accuracy. However, for higher
noise levels, the reconstruction quality deteriorates significantly. The evolution of Fy(k) is
shown in Figure (a). We observe a monotonic decay of the error up to around & = 400,
after which the reduction halts due to accumulated discretization errors in the numerical
solution of the direct and adjoint problems.
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Figure 6.1: Numerical reconstruction.
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Figure 6.2: The numerical results with noise
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Figure 6.3: Behaviour of reconstruction error Fs(k) as a function of k.

Discussion on Example 2

For the second example, we consider a synthetic source term f7(z) = sin(7z) with singularity
parameter pu = %. The final-time observation w(x) is generated by numerically solving the
direct problem . The Landweber iteration is initialized with the same admissible guess
fo(zr) = 0, and discretization parameters are set to At = 1073 and Az = 5 x 1072, as in
the previous example. Figure (b) displays the comparison between the exact source f7
and the reconstructed solution f; after £ = 400 iterations. The reconstruction achieves high
accuracy with significantly fewer iterations than in Example 1, which is attributed to the
simpler spectral content of the source.

To evaluate stability with respect to data perturbations, we introduce noisy observations
based on the same noise model . The reconstruction after £ = 400 iterations is reported
in Figure (b). The results indicate that the reconstructed state j(-,7") approximates
the noisy data w well for low to moderate noise levels. However, as the noise amplitude
increases, the reconstruction degrades, consistent with the sensitivity of the inverse problem
to measurement errors.

The convergence history of the relative error Ey (k) is depicted in Figure[6.3](b). Similar to
the first example, we observe a rapid decay of the error up to k£ =~ 300, followed by stagnation.
The early saturation is again due to the discretization effects and the finite resolution of the
spatial grid, which limit further improvements in accuracy despite continued iteration.

Conclusion

In this work, we have addressed an inverse problem concerned with the identification of a
space-dependent source term in a diffusion equation governed by a singular inverse-square
potential. The proposed approach is based on an optimal control framework.

We began by establishing the existence and uniqueness of weak solutions to the direct
problem. The inverse problem was then reformulated as a constrained optimization problem,
for which we proved the existence of a minimizer and derived a first-order necessary optimality
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condition. This condition was further employed to demonstrate a Lipschitz-type stability
result with respect to perturbations in the final-time data.

On the numerical side, we developed an iterative Landweber-type algorithm to reconstruct
the unknown source term from noisy final measurements. A series of numerical experiments
were carried out, confirming the effectiveness, stability, and robustness of the proposed
reconstruction method, even in the presence of data perturbations.

As directions for future work, we plan to extend the current methodology to more
complex models, including systems of coupled singular parabolic equations and fractional-
order singular diffusion problems.
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MATHEMATICAL MODELING OF RADIATION DEFECT FORMATION
PROCESSES ON LIGHT TARGETS

The article analyzes the problem of studying the mechanisms of radiation defect generation in
materials under ion irradiation. During the research, algorithms were developed to calculate the
cascade-probability function (CPF) and the concentration of cascade regions as a function of the
depth of the irradiated material, which allowed for an increase in the accuracy of modeling defect
formation processes. The calculations of the CPF and the concentration of cascade regions revealed
patterns in the behavior of radiation defects depending on the physical parameters of irradiation.
The comparison of the obtained calculated data with experimental results confirmed the validity
of the developed algorithms and models. A distinctive feature of the proposed method is the
application of an analytical cascade-probability approach, which allows tracking the dynamics of
defect formation at any depth of the target, unlike traditional numerical methods that require
significant computational resources.

These results can be explained by the fact that the process of particle interaction with matter and
the formation of radiation defects is probabilistic, allowing for the determination of the probabilities
of ion interactions with materials (CPF) at any depth of the irradiated material, which enables
more accurate modeling of defect formation processes and their dependence on physical parameters
such as energy and depth. The developed models and algorithms can be applied in materials science,
micro- and nanoelectronics, and in predicting the radiation resistance of structural materials.
Key words: ion, algorithm, ion implantation, cascade-probabilistic function, concentration of
radiation defects.
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MaremaTuvdeckoe MoOJeJUPOBaHNE MPOIECCOB PaaAuallMOHHOTO
nedekToobpa3oBaHuda Ha JIETKUX MUIIIEHSIX

B nannoit crarbe aHaaU3MpyeTcs MpobseMa M3ydeHUsT MEXaHU3MOB I'eHEPHUPOBAHUS PaJTUAIINOH-
HBIX JIe(DEKTOB B MaTepuajax [Ipu MOHHOM ObJiydyeHuu. B mporecce ucciemoBanust ObLIM CO3/IaHBI
AJITOPUTMBI Jjisl pacdera KackaaHo-seposaraoctHol dyukimu (KBD) u KOHNEHTpaun KaCKaHbIX
obJracTeil B 3aBUCUMOCTH OT TUIyOMHBI 00JIyIa€MOr0 MaTePUAJIA, ITO A0 BOZMOYXKHOCTD ITOBBICUTD
TOYHOCTH MOJIEJIMPOBAHMS MTPOIECCOB medekToobpaszoBanus. Boimosaennbe paciersl KB 1 Kom-
[EHTPAIINN KACKaIHBIX 00JIaCTell TO3BOJIMIIN BBISIBUTH 32KOHOMEPHOCTH TIOBEJICHUsT PAHAITHOHHBIX
1e(EeKTOB B 3aBUCUMOCTU OT (PU3MUECKUX ITapaMeTpoB obsrydenusi. CorocTaBjieHne M0y YeHHBIX
pacYeTHBIX JaHHBIX C Y9KCIIEPUMEHTAIbHBIMU PE3YJIbTATAMHU ITOJTBEPIUIIO JIOCTOBEPHOCTD pa3pabo-
TaHHBIX AJITOPUTMOB U Mojeseit. OTInIuTebHON Y4epToil MPEJIOKEHHOIO METO/IA, ABJISETCH IPU-
MEHEHUEe aHAJTUTUIECKOrO KACKAHO-BEPOATHOCTHOTO MOJX0/1a, KOTOPBI ITO3BOJISET OTCIEKUBATD
JUHAMUKY J1edeKToo0pa3oBanusa Ha JI000il TyIyOnHe MUIIEHH, B OTJIMIHE OT TPAIAIMOHHBIX THC-
JICHHBIX METO/I0B, Tpe6yIOHH/IX 3HaYUTE/IbHBIX BBIYUCJ/IUTEJIbHBIX PECYPCOB.

© 2025 Al-Farabi Kazakh National University


https://orcid.org/0000-0001-6750-253X
https://orcid.org/0000-0003-1963-0005

T. Shmygaleva, A. Srazhdinova 159

OTHU pe3yJbTaThl OObICHAIOTCS TEM, UTO IIPOIECC B3aNMOIEHCTBIS YACTHIL C BEIIIECTBOM U 00pa30-
BaHUS PAJIMANMOHHBIX 1e(DEKTOB SIBJISIETCs] BEPOSTHOCTHBIM ¥ TTO3BOJISIET TIOJIYYUTh BEPOSATHOCTH
B3auMo/leiicrBust noHOB ¢ Marepuasamu (KB®), na sro6oii rirybune obiydaeMoro Marepuasa, 4ro
I03BOJIAET OOJIee TOTHO MOJIEJIMPOBATD IIPOIIECCH J1eheKTOOOPA30BAHUS U UX 3aBUCUMOCTH OT (u-
3UYECKUX IMapaMeTpPOB, TAKUX KaK dHeprusi, iryonna. PazpaboraHHble MOIE/N U aJITOPUTMbL MOT'Y T
OBITH IPUMEHEHBI B MATEPUAJOBEICHUN, MUKDPO- U HAHOIJIEKTPOHWKE, [P IMPOIHO3UPOBAHUU Pa-
JMAINOHHON CTORKOCTH KOHCTPYKITMOHHBIX MATEPHUAJIOB.

KuaroueBbie cJjoBa: uwOH, aJIT'OPUTM, WOHHAS UMILJIAHTAIMSA, KaCKa IHO-

BEPOATHOCTHAs (PYHKITHSA, KOHIIEHTPAIMSA PaIUAIMOHHBIX J1e(DEKTOB.

T.A. IIMmbirasieBa'* , A.A. CpaxkauHoBa®
19n-Papabu arsmmarer Kasax Yarreik Yausepcureri, Amvarsr, Kazakcran
?Kasak-Bpuran Texunkansik Yuusepcureri, Anvarsr, Kazaxcram
*e-mail: shmyg1953@Qmail.ru

2KeHis HBICTAaJIapaa paauanusablK JEeKTIiKTePIiH KaJbIIITacCy MPOoIecTepiH
MaTeMaTUKAJIBIK, MO/IEJIbEY

MakaJia WOH coyJIesieHyl Ke3iHae MaTepraaapaarbl PaJuallisIblK, aKayJIapabl TeHePaIusaay
MEXaHU3MJIEPIH 3epTTey MOCEeJIECIH TasIaiijbpl. 3epTrey OapbIChIHIA COYJIEJEHI'€H MaTepPUaJIIbIH,
TepeH/liriHe GalIaHBICTBI KacKaAThl bIKTUMAJIBIK GyHknuscbiH (KbI®) xoHe KackaaThbIK afi-
MaKTap/IblH KOHIIEHTPAIUSIChIH eCcelrTey YIMNH aJrOpUTMIEp O3ipJeHi, Oy akay Ty3ioy mpore-
CTepiH MOJETbACY/IIH JIJIAITIH apTThipyra MyMKiHmiK Oepmi. KbI® kome KacKaaTBIK aiiMakTap-
JTBIH, KOHIIEHTPAIINSACHI OOMBIHITIA YKYPTi3iAreH ecenreyaep paanallusiibiK, aKayIapabliH (pU3nKaIbIK
coyJIeJIeHy IapamMerpJepine OaliylaHBICTBI MiHE3-KYJIKBIH aHBIKTayFa MYMKIHJIK Oepi. AJibIHFaH
€CeNTIK JepPeKTep/li SKCIEPUMEHTTIK HOTHKEJIEPMEH CAJIBICTBIPY O3ipJIEHTeH AJTOPUTMJIEp MeH
MOJIETbJIEP/IIH, JIYPBICTBIFBIH PACTabl. ¥ ChIHBIIFAH QJICTIH €PeKIIesiri - akay Ty3iay JuHaMUKa-
CBIH MAKCATTBIH Ke3 KeJINeH TePEHJIIriHIe OaKblIayFa MyMKIHIIK O€peTiH aHATUTUKAJIBIK, KACKAIThI
BIKTUMAJIIIBIK, TOCITIIH KOJJIaHy, JICTYPJIl CAHBIK, OIICTEP/IiH e19yip ecenTey pecypcTapblH Tajlall
eTEeTIH/IINMEH CaJIBICTBIPFaH/IA.

Byt soTmkenep 6eIeKTep i 3aTIEH 63apa 9PEKETTECY KOHE PATUAIUSIIBIK aKayTapIbIH TY31ay
IIPOIIECT BIKTUMAJIIBIKTBI OOJIBII TAOBLIATHIHILIFBIMEH TYCIHIIpiaeai, Oy HOHIapAbIH MaTepuaJ-
napmen (KbI®) e3apa opekerTecy bIKTUMAJIBIKTAPLIH COYJIEIEHI€H MATEPUAJIbIH, Ke3 KEJITeH Te-
PeHJIrine aHbIKTayFa MYMKIHIIK Oepesi, Oyl akay TY3lly IpOIECTepiH KoHEe OJIAD/IBIH SHEPIHS,
TePEeHIiK CUAKTHI (PUBUKAJBIK IMapaMeTpjepre TOYeIIUTTIH 19/ MOJEIbIeyre MYMKIHIIK Oepei.
JaMBITBIIFAH MOJIEIbIEP MEH aJTOPUTMIED MaTepPHAJITaHy, MUKPO- KOHE HAHOIJIEKTPOHUKAJIA,
KOHCTPYKIHUSIIBIK, MATEPUAJIAPIBIH, PAIAAIUIBIK, TOIIMIIIINH 60/2Kay 18 KOJIIAHBLIYBl MYMKIiH.
Tyiiin ce3aep: WOH, aJrOPUTM, MOHIBIK, UMILIAHTAIINAS, KACKAThI-BIKTUMAJJIBIK (DYHKIUS, pa-
JIUATTUSITBIK, aKAYJIap/IbIH KOHIIEHTPAIIASACHI.

1 Introduction

Research in the field of ion implantation and radiation-induced defect formation has been
conducted and continues to be an important topic for the scientific community to this day.

This area is particularly relevant for the advancement of science in Kazakhstan, as many
organizations are engaged in experimental studies on the effects of various types of radiation,
including electron (1-10 MeV), proton and alpha (1-50 MeV), and ion (100-1000 keV)
irradiation. There is a need for further explanation and analysis of experiments related to ion
irradiation.

The relevance of the topic is confirmed by a number of factors. First, with the increasing
consumption of materials and the growing demands for their properties, it is essential to
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develop new methods for their production and processing. It is expected that in the coming
years, the demand for structural materials will significantly increase, highlighting the need to
optimize ion irradiation processes to enhance radiation resistance and other key properties of
materials. Second, the results of research in this area can have a substantial impact on their
practical applications. The development of algorithms for calculating defect distribution will
allow for more accurate predictions of material behavior under various operating conditions.
This, in turn, could lead to the creation of more efficient and reliable structural materials,
contributing to the advancement of technologies and increasing their competitiveness in the
market. For example, the Institute of Nuclear Physics in Almaty has a proton accelerator and
an alpha-particle accelerator (light ions), a cyclotron, and a nuclear reactor. The Eurasian
University in Astana has an ion accelerator, and work is being conducted at the National
Nuclear Center in the city of Kurchatov. Similar research is being carried out in countries
near and far abroad.

Previously, mathematical models were developed to describe the processes of radiation
defect formation within the framework of an analytical CP-method using the simple CPF
(probability of transition in n steps) that did not account for energy losses due to ionization
and excitation. Mathematical models have been developed taking into account energy losses
for alpha particles, protons, electrons and ions. Unlike electrons, protons, and alpha particles,
for ions it is necessary to find the actual result area for calculating transition probabilities
and the concentration of cascade regions.

The object of the study is a solid body. The subject of the research is the CPFs depending
on the number of interactions and the depth of particle penetration, the concentration of
cascade regions during ion irradiation. The aim of the research is to mathematically model
the processes of radiation defect formation in materials irradiated with ions, taking into
account energy losses. Accordingly, the following tasks have been formulated:

- to develop algorithms for calculating the CPFs and the concentration of cascade regions
as a function of the depth of the material irradiated with ions, and to create a software
package (SP) for performing the calculations of these characteristics;

- to carry out calculations of the CPFs and the concentration of cascade regions;

- to verify the developed algorithm through a comparison of the simulation results with
experimental data..

2 Literature review and problem statement

The paper [1| presents the results of research aimed at assessing the suitability of glassy
carbon as a material for packaging nuclear waste. It is shown, that ion bombardment with
xenon leads to the amorphization of the glassy carbon structure, which is confirmed by
Raman spectroscopy analysis. However, unresolved questions remain regarding the influence
of defects and radiation damage on the microstructure and surface of glassy carbon. This may
be due to objective difficulties related to the lack of data on the behavior of glassy carbon
under radiation exposure. A way to overcome these difficulties could be the use of computer
modeling methods to predict material behavior. This approach was used in article [2], but
the results indicated that a broader range of factors affecting the microstructure needs to
be considered. All of this suggests that it is advisable to conduct research for a deeper
understanding of the impact of radiation defect formation.
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In article 3|, the problem of understanding how the energy transferred to electronic and
atomic subsystems can affect defect dynamics in materials is addressed. The interaction
of displacement and ionization cascades induced by irradiation in silicon carbide (SiC) is
investigated. It is shown that under ion irradiation, a delay in damage accumulation is
observed, which linearly depends on both the increase in ionization and the energy transferred
to the material. However, unresolved questions remain regarding the evolution of defects and
their influence on material properties. This may be due to the limitations of existing models,
making the investigation of this issue relevant. A way to overcome these difficulties could
be the use of more complex models, such as Monte Carlo methods, which are classified as
statistical trial methods and are numerical approaches to solving mathematical problems
by predicting random variables. This method began to be widely applied in the 1970s for
statistical modeling of particle trajectories and calculating the energy distribution transferred
from ions to the atoms of the material. This approach was used in article |4|, allowing
for the calculation of particle penetration depth and the determination of radiation defect
concentrations, such as vacancy clusters and interstitial atoms, which became the basis for
quantitative analysis of radiation damage to materials. However, the results indicated that
the dynamics of defect interactions need to be considered, as the algorithm only allows for
the calculation of the distribution and concentration of primary defects, without accounting
for their subsequent evolution.

In article [5], the method of pulsed ion bombardment was used to investigate the
interaction of noble gas ions with potassium tantalate (KTaO3) and its influence on damage
formation and amorphization. It was shown that the mechanism of amorphization is primarily
due to defects caused by ion irradiation. However, the results indicated that additional factors
influencing defect dynamics need to be considered.

Article [6] presents the results of a study dedicated to the formation of nanostructured
TiAIN coatings on AISI 304 stainless steel substrates using reactive magnetron sputtering.
It is shown that irradiation of the coatings with argon ions at an energy of 200 keV leads to
changes in their mechanical properties, including hardness and Young’s modulus. However,
the calculations only considered the distribution of implanted ions, not the defects generated
by them.

Article [7] employs a more detailed analytical method, such as scanning electron
microscopy. However, the results indicated that the influence of various irradiation conditions
on mechanical properties needs to be taken into account.

Thus, existing research highlights the need for further investigation into the effects of
ion implantation and irradiation on material properties, opening new horizons for scientific
research.

One of the key issues of ion implantation is the formation of radiation defects. First and
foremost, it is essential to know the distributions of defects generated in atomic collision
cascades. Despite the well-known numerical methods and models, analytical methods have
undeniable advantages over them, even if they can only approximate certain phenomena. In
this regard, a cascade-probabilistic method has been developed using a CPF, which allows
for the creation of mathematical models in analytical form and, consequently, provides the
opportunity to track the entire defect formation process at any depth of the irradiated
material dynamically.

Previously, a simple CPF was used [8|, which did not account for the actual changes in
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the range and angle of ejection of particles after each collision. This is not always justified,
especially if the interaction range depends on energy. Such an approach can at best be used
only for estimating results. Therefore, work has been conducted in this direction, resulting in
mathematical models of the CPF that consider energy losses, the dependence of range and
cross-section on energy for electrons, protons, alpha particles, and ions [9,/10].

This research aims to address the specified problems, which will allow for the management
of defect generation and evolution, ultimately leading to the production of materials with
desired properties.

3 Materials and methods

The interaction cross-section for ions is calculated using the Rutherford formula [11]. The
observation depths are based on data from tables [12]|. The obtained interaction cross-section
values are approximated by the following expression:

=5 (e ) W

where Ay, a, k, Ey — approximation parameters.

It is not possible to use the provided formula (1) from [13]| for the calculations of the
CPF, as it leads to overflow issues when )¢ is small or when n takes on large values (which
can reach several million). By modifying this formula, we obtain:

(Bg—kh')

In--Y —— 2
h—H 1 Ey — kW nol = — e
! E — — ak 2
VYo (B', h, Ep) exp( ( " )+>\0akln<Eo—kh>)*H " L (2)

i=1

where n — number of interactions; h', h — depths of ion generation and registration, [ = /\Olak

In order to optimize the algorithms for calculating the CPF as a function of n and h,
as well as the concentration of cascade regions, Stirling’s formulas (5) and (6) from [14]
are applied. To automate the determination of the CPF result area based on n, h, and the
concentration of cascade regions, Binary |15] and Ternary [16] search algorithms are used.
When ions interact with matter, defects are formed in the form of cascade regions, which
consist of vacancy clusters and interstitial atom aggregates.

To calculate the concentration of cascade regions, the following formula from [9] is used:

E2maz
Cu(Eo h) = / W (Eo, Ex, h) dEs, (3)

Ec

_ 4(myc*mac?)

E2maa; -

(mic® +mgc)2 "

E7 — the energy of the particle after energy losses at h, Ey — the initial energy of the ion,
Cx(Eqg, h) is defined considering that the energy of the particle at depth h is Ei(h), Eymnar —
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the maximum possible energy gained by an atom, E,. — the threshold energy, E, — the energy
of the primary knocked-out atom, mjcy — the rest energy of the ion, mocy — the rest energy
of the atom.

The spectrum of primary knocked-out atoms (PKA) is calculated using the (4.26) from [9].
Modifying equation (i3 , we obtain:

Ed (E2maa: - Ec) jnlz /h ( h — h/> ’ dh’
C E 3 h — exr - n h/ 9 4
k( 0 ) >\2Ec (EQmax — Ed) e h—kAs p )\2 ¢ ( )Al(h/) ( )

where 1, (R’) is used as (2), E4 — the average displacement energy, ng, n; —the initial and final
values of the number of collisions from the area of the CPF, k£ — is an integer greater than
one.
! 1 24
A(R') = T * 10°* (em),
om0 (5 —my — 1)

Ao = * 10%* (cm).

021y

The cross-section o is calculated using the Rutherford formula; A\;, Ay — are the mean
free paths for ion-atomic and atomic-atomic collisions, respectively, og = 1/ .

4 Results and discussions

When approximating curves, difficulties arise in specifying the initial data \g, a, Fy, and k
in the approximation formula. The approximation expression best describes the cross-section
values, as the theoretical correlation coefficient is sufficiently close to 1. The approximating
curves of the dependence of ¢ on h are shown in Fig. 4.1. Table 1 presents the approximation
parameters and the theoretical correlation coefficients for boron in silicon at various initial
energy values. The targets are metal - aluminum and semiconductor - silicon.
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Figure 4.1: Approximation of the modified cross-section of the CPF for boron in silicon: Ey =
1000, 800, 500, 200, 100 (1-5) keV'. Solid lines — approximation values, stars — calculated data
for the dependence of the cross-section on h

Table 1: Approximation parameters for boron in silicon
Ey oo * 10° a k E} n
1000 1,96808 0,2161 584,57 4,3801 0,9961
800 1,96898 1,199 91,07 0,57988 0,9954
500 1,61508 2,01 55,807 0,2519 0,9887
200 4,16808 0,254 921,908 2,0801 0,978
100 3101242 0,32 23424 3,041 0,9811

The CPF represents the probability that a particle generated at a certain depth A’ will reach
a specific depth h(registration depth) after n collisions.
Let’s conduct a study of the CPF and examine its main properties:

1. Domain of the function: Ey/ak(k —1) < h < Ey/k.

2. limp—phn(h', b, Ey) = 0, limp—po(R, h, Ey) = 1.

3. limg—sotn (W, by, Ey) = %(h_Th,)”exp(—h_Th/), that is the probability of transitioning over
n steps, taking energy losses into account, reduces to the simplest CP-function without

considering energy losses.

4. The sum of the CPF over all interactions is equal to 1, i.e., Koo = > " (W', h, Ey) =
1.

5. Limn—on (W, b, Ey) = (B2=20) Teawp(B52) = o (W, h, Ey)

6. lim,—soon (W, h, Ey) = 0, that is the probability of a particle experiencing an infinite
number of collisions while traversing a depth from A’ to h is undoubtedly equal to zero.

7. [y LRI g where A(h) = 1/(a(h)no).
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The results of the CPF as a function of n are presented in Figs. 4.2 and 4.3.

Figure 4.2: Dependence CPF on n for boron in silicon at Ey = 800 keV; h = 5,0x1073;5,5x
1073;6,0 x 1073;6,3 x 1073 (cm.) (1-4)
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Figure 4.3: Dependence CPF on n for selenium in aluminum at Ey = 200 keV; h = 1,5 X
10741, 7 x 107%42,0 x 107%42,2 x 107* (cm.) (1-4)

The results of the CPF as a function of h are presented in Figs. 4.4 and 4.5.
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Figure 4.4: Dependence CPF on h for boron in silicon at Ey = 1000 keV; n =
116611; 306622; 651245; 1421513 (cm.) (1-4)
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Figure 4.5: Dependence CPF on h for selenium in aluminum at Ey, = 800 keV; n =
549; 866; 1288; 1564 (1-4)

The results of the calculations of the concentration of cascade regions for boron in silicon
are presented in Fig. 4.6 and Table 2 and for selenium in aluminum in Fig. 4.7 and Table 3.
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Figure 4.6: Dependence of concentration of cascade regions on h during the irradiation of

silicon with boron ions for: Ey = 800 keV, E. = 200 keV (1), 100 keV (2), 50 keV (3)

Table 2: The boundaries of the region for determining the concentration of cascade
regions for boron in silicon at F, = 50 keV', Ey = 1000 keV

h 1073, cm Cl, cm Ey, keV no n
0,1000 0,011332 1000 1 9
0,5000 0,1567 900 1 14
1,1286 0,52027 800 1 20
1,7200 0,946 700 1 27
2,3330 1,3808 600 1 34
2,9770 1,91 500 1 44
3,6600 2,61075 400 1 57
4,0270 3,0578 350 1 65
4,4070 3,5944 300 1 75
4,5860 3,6484 280 1 77
4,7270 4,1036 260 1 85
4,8930 4,3868 240 1 90
5,0640 4,536 220 1 96
5,2390 5,012 200 2 103
5,4204 5.3427 180 1 110
95,6080 5,63 160 6 119
5,8030 5,9128 140 9 129
6,0070 95,9962 120 13 141
6,2215 5,7033 100 18 156
6,4470 4,1819 80 25 175
6,5640 2,40099 70 30 187
6,6860 0 60 36 200
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Figure 4.7: Dependence of concentration of cascade regions on h during the irradiation of
aluminum with selenium ions for: £, = 100 keV', Ey = 1000 keV (1), 800 kel (2)

Table 3: The boundaries of the region for determining the concentration of cascade
regions for selenium in aluminum at F, = 50 keV' Ey = 1000 keV

h*10~*, cm Cl, cm Ey, keV no nq
1,15 451,7 1000 21 173
2,21 477,7 900 74 288
4,33 544.,8 800 214 521
6,71 417,84 700 320 678
8,49 412,58 600 429 831
10,23 406,59 500 671 1154
27,6 408,17 400 1713 2441
28,1 397,25 350 1749 2483
29,3 383,21 300 1835 2584
30,6 376,91 280 1925 2695
32,1 369,6 260 2036 2822
33,1 360,18 240 2109 2907
34,2 348.,9 220 2189 3001
35,3 335,06 200 2270 3095
36,2 317,6 180 2336 3172
37,6 295,92 160 2440 3292
38,1 266,74 140 2477 3335
39,4 228,11 120 2573 3447
40,9 173,37 100 2686 3577
41,8 89,97 80 2754 3655
42,4 30,11 70 2799 3707

For comparison with experimental data, Fig. 8 shows the distributions of implanted boron
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ions with depth in irradiated silicon as a function of depth at an energy of 50 keV.
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Figure 4.8: Distribution of implanted boron atoms with depth in Si: 1 — Experiment (50
keV); 2 — SRIM (50 keV)

The distribution of implanted boron atoms in Si exhibits clear maxima, and their
concentration is unevenly distributed with depth. Comparing the calculated distributions of
implanted boron ions (50 keV') in silicon with experimental data shows a good agreement. The
slight discrepancies between the calculations and experimental data for boron are attributed
to the incomplete consideration of the influence of the ambient temperature.

Unlike previously developed mathematical models of radiation defect formation that used
simple CPF [8], this work proposes improved models that:

— take into account energy losses due to ionization and excitation of the medium’s atoms,
as well as the dependence of interaction range and cross-section on energy, achieving a closer
agreement of the obtained results with physical experimental data (within 15%);

—they provide the ability to observe the entire process of ion interaction with the substance
as a function of h.

Unlike electrons |17]|, protons [18], and alpha particles [19], modeling the interaction
process of ions with matter is more complex [10], [13], [20-23]. In the proposed approach:

— it is possible to perform calculations for various incoming particles and targets from the
periodic table;

— patterns of cascade regions distribution are identified based on threshold energy,
penetration depth, and initial ion energy;

— the actual region of the result is found when calculating the transition probabilities and
the concentration of cascade regions.

5 Conclusion

Algorithms and SP have been developed to calculate transition probabilities as a function of
the number of collisions, the penetration depth of particles, and the concentration of cascade
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regions for ions. This enables the identification of patterns in the behavior of radiation defects
based on the physical parameters of irradiation. All CPF calculations were performed using
, and concentrations were calculated using in C#, with MS SQL Server 2022 used as
the database management system.

The developed SP enables the calculation of interaction cross-sections, ionization losses,
observation depths, and the determination of approximation coefficients. The created
algorithms have enabled the automation of the area of result finding and the identification
of patterns in the behavior of this area.

An analysis of the CPF has been conducted, and the properties that these functions should
possess have been outlined. A comparison of the calculation results of the distributions of
implanted particles for boron (50 keV) in silicon has been made with experimental data.

The study of the distribution of implanted ions and energy losses is crucial for
understanding the processes occurring during ion implantation. The application of the
obtained results can significantly enhance the understanding of radiation processes related
to defect formation in materials irradiated by charged particles.
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