Numerical Simulation of Turbulent Pollution Transport in Thermally Stratified Atmosphere

Ualikhan Abdibekov, Kairzhan Karzhaubayev


This paper presents numerical simulations of pollutant transport in urban area including effects of developed turbulence, buoyancy and stratification. To  incorporate the effect of stratification in the incompressible flow solver Boussinesq approximation to the density variation was used. To properly model vertical turbulent heat and concentration fluxes Algrebraic Flux Model was used. The results presented in this paper have demonstrated that the inversion layer creates strong capping region, disallowing polluted air to mix with fresh air in the upper layer of the  atmosphere.

Ключевые слова

Atmospheric Boundary Layer; turbulence; pollution transport

Полный текст:

PDF (English)


Chen F. et al.: The integrated WRF/urban modelling system: development, evaluation, and applications to

urban environmental problems. International Journal of Climatology. 31/2, 273–288 (2011)

Arystanbekova N.H.: Modeling pollution of Almaty air basin, 2nd ed.. Dyke press, Almaty (2011)

Flores, Federico, Rene Garreaud, and Ricardo C. Munoz.: CFD simulations of turbulent buoyant atmospheric

flows over complex geometry: Solver development in OpenFOAM. Computers & Fluids 82, 1–13 (2013)

Kenjeres, S., and K. Hanjalic.: Combined effects of terrain orography and thermal stratification on pollutant

dispersion in a town valley: a T-RANS simulation. Journal of Turbulence 3.026, 1–25 (2002)

Rossi, R., D. A. Philips, and Gianluca Iaccarino.: Numerical simulation of scalar dispersion in separated flows

using algebraic flux models. ICHMT DIGITAL LIBRARY ONLINE, (2009)

Ferziger, Joel H., and Milovan Peric.: Computational methods for fluid dynamics. Vol. 3. Springer, Berlin


Rhie, C. M., and W. L. Chow.: Numerical study of the turbulent flow past an airfoil with trailing edge

separation. AIAA journal 21.11, 1525–1532 (1983)

Schneider, G. E., and M. Zedan.: A modified strongly implicit procedure for the numerical solution of field

problems. Numerical Heat Transfer 4.1, 1–19 (1981)