Mathematical problems in the difference scheme for equations of the atmosphere boundary layer.

Authors

  • A N Temirbekov Al-Farabi Kazakh National University
        69 41

Keywords:

Differential equations, difference scheme, Coriolis force, equations of the atmosphere boundary layer, the Cauchy-Schwarz inequality

Abstract

The mathematical model for the atmospheric boundary layer equations and the transport equation and transformation of pollutants harmful substances in the air. Proved the solvability of the mathematical model and studied qualitative Properties of solutions. The finite-difference scheme for two-and three-dimensional equations of ABL. To solve the differential equations, a priori estimates. Investigated mathematical questions of difference schemes for the equations of the boundary layer of the atmosphere. We prove the lemma for the grid function. With the help of this lemma have the basic energy inequality. By the lemma and using the Cauchy-Schwarz inequality to estimate the basic size. The convergence theorem in the rules of functional spaces. Obtain the basic a priori estimates for the solution of the difference problem. Studied approximation properties and prove the convergence of a solution of the problem to the solution of the differential problem. To prove the theorem and approximation properties of the difference problem is considered in a stationary analog. Conducted methodical numerical calculations.

References

[1] Beloserkovskiy O.M. Chislennoe modelirovanie v mekhanike sploshnykh sred - M.:Nauka, -1984.- S 520.

[2] Yanenko N.N. Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki -Novosibirsk, -1967.- S 197.

[3] Anderson D.A., Tannehil J.C. and Pletcher R.H. // Computational Fluid Mechanics and Heat Transfer - Neshh Jork: McGrashh-Hill, 1984. - P 814.

[4] Temam R. Uravneniya Nav’e-Stoksa. Teoriya i chislennyi analiz -M.: Mir, - 1981. - S 408.

[5] Smagulov Sh. S., N. T. Danaev, N. M. Temirbekov Modelirovanie kraevykh usloviy dlya davleniya i polnogo napora v zadachakh gidrodinamiki s pomosh’yu metoda fiktivnykh oblastey // DAN Rossii.- Moskva.- 2000. - T. 374.- № 5.- S. 333-335

[6] Smagulov Sh., Zhumagulov B.T., Danaev N.T., Temirbekov N.T. Numerical methods of solution of Navier-Stokes equation in intricate regions // III international seminar of flame structure. - Alma-Ata. - 18-20 September, 1990.- P. 8-18.

[7] Abdibekov U.S., Zhumagulov B. T., Hikmetov A. K. Modelirovanie rasprostraneniya primesi v svobodnoi atmosfere // Zhurnal "Vychislitel’nye tehnologiy Novosibirsk, 2003. T. 8, - S. 25-35.

[8] Bakirbaev B. Chislennaya model’ pogranichnogo sloya sredy, prednaznachennaya dlya lo- kal’nogo rassejaniya primesey // Mekhanika i modelirovanie protsessov tekhnologiy.-1994 .- №2 .- S. 132-139.

[9] Kuttykozhaeva Sh.N. Ob odnom priblizhennom metode resheniya uravneniya Nav’e-Stoksa // Vestnik KazGU, ser. mekh. mat. i inf., 1998.- № 14.- S.163-172.

Downloads

How to Cite

Temirbekov, A. N. (2012). Mathematical problems in the difference scheme for equations of the atmosphere boundary layer. Journal of Mathematics, Mechanics and Computer Science, 75(4), 66–74. Retrieved from https://bm.kaznu.kz/index.php/kaznu/article/view/160

Issue

Section

Computational Mathematics and mathematical modeling