Note on cardinality of Rogers semilattice in the Ershov hierarchy

Authors

  • Мустафа Манат Al-Farabi Kazakh National University
        61 32

Abstract

The paper is aimed to show that we can easily construct a family consisting of any given number of elements whose Rogers semilattice consists of one element.

References

M.M. Arslanov Ershov hierarchy. Kazan, 2007. In Russian.

S.A. Badaev and T. Talasbaeva Computable numberings in the hierarchy of Ershov.In Proceedings of 9th Asian Logic Conference, Novosibirsk, August 2005, S.Goncharov (Novosibirsk), H.Ono (Tokyo), and R.Downey (Wellington)(eds.). World Scientiˆc Publishers.2006, pp.17–30

L. Ershov A hierarchy of sets, I. Algebra and Logic, 7:47–73, 1968.

L. Ershov A hierarchy of sets, II. Algebra and Logic, 7:15–47, 1968.

L. Ershov A hierarchy of sets, III. Algebra and Logic, 9:34–51, 1970.

L. Ershov Theory of Numberings. Nauka, Moscow, 1977. In Russian.

S. Goncharov and A. Sorbi Generalized computable numerations and non-trivial Rogers semilattices. Algebra and Logic, 36(6):359–369, 1997.

S. Ospichev Computable family of

Downloads

How to Cite

Манат, М. (2011). Note on cardinality of Rogers semilattice in the Ershov hierarchy. Journal of Mathematics, Mechanics and Computer Science, 71(4), 8–12. Retrieved from https://bm.kaznu.kz/index.php/kaznu/article/view/214