Computer simulations and investigation of the localization of dust particles under the magnetic field

Authors

  • Р. У. Машеева al-Farabi Kazakh National University, Almaty, Republic of Kazakhstan
  • К. Н. Джумагулова al-Farabi Kazakh National University, Almaty, Republic of Kazakhstan
  • З. Донко Institute for solid state physics and optics, Wigner Research Centre for Physics, Budapest, Hungary
  • Т. С. Рамазанов al-Farabi Kazakh National University, Almaty, Republic of Kazakhstan
  • Г. Л. Габдуллина al-Farabi Kazakh National University, Almaty, Republic of Kazakhstan
        69 36

Keywords:

dusty plasma, computer simulations, Verlet algorithm, cage correlation function, microscopic properties, molecular dynamics

Abstract

Paper presents the results of the computer simulations for investigation of the influence of uniform external magnetic field on the quasi-localization of the particles of the strongly coupled three-dimensional dusty system. Detailed computer simulation and investigation of the physical properties of such system, in which the particles interact with each other via Yukawa interaction potential that takes into account the collective screening effects of the field dust charges surrounded by a buffer gas. Molecular dynamics method was used as a computer simulations method, this method allows to follow the evolution of a system of interacting particles in time by integrating the equations of motion. The Verlet algorithm was used to solve the equation of motion of the particles. The quasi-localization of the particles quantitatively characterized by the cage correlation functions. Also, the derivative of the cage correlation functions were analyzed and the decorrelation time of the particles was derived. It was found that the decorrelation time of the particles increases with increasing of the magnetic field B⃗. The investigations have been performed in a wide range with increasing of the magnetic field B. of the system parameters (screening parameter κ, coupling parameter Γ and strength of magnetic field β).

References

[1] Kalman J., Blagoev K., and Rommel M. Strongly Coupled Coulomb Systems. - New York: Plenum Press, 1998; Fortov V. E., Khrapak A. G., Iakubov I. T. Physics of Strongly Coupled Plasmas. - England: Oxford University Press, 2005.
[2] Khrapak S. A., Thomas M. H., Chaudhuri M., Morfill G. E., Zobnin A. V., Usachev A. D., Petrov O. F., Fortov V. E. Particle Flows in a DC Discharge in Laboratory and Microgravity Conditions // Physical Review E. - 2013. - Vol. 87. - pp. 063109.
[3] Fortov V. E., Morfill G. E. Strongly Coupled Dusty Plasmas on ISS: Experimental Results and Theoretical Explanation // Plasma Physics and Controlled Fusion. - 2012. - Vol. 54. - N 12. - pp. 124040-124045.
[4] Petrov O. F., Fortov V. E. Collective Phenomena in Strongly Coupled Dissipative Systems of Charged Dust: From Ground to Microgravity Experiments // Contributions to Plasma Physics. - 2013. - Vol. 53. - N 10. - pp. 767-777.
[5] Maiorov S. A., Ramazanov T. S., Dzhumagulova K. N., Dosbolayev M. K., and Jumabekov A. N. Investigation of Plasma-Dust Structures in He-Ar Gas Mixture //Physics of Plasmas. - 2008. - Vol. 15. - pp. 0937011-0937017.
[6] Morfill G. E., Thomas H. M., Konopka U., and Zuzic M. The Plasma Condensation: Liquid and Crystalline Plasmas //Physics of Plasmas. - 1999. - Vol. 6. - pp. 1769-1780.
[7] Dzhumagulova K. N., Ramazanov T. S., and Masheyeva R. U. Velocity Autocorrelation Functions and Diffusion Coefficient of Dusty Component in Complex Plasmas //Contributions to Plasma Physics. - 2012. - Vol. 52. - N 3. - pp. 182–185;
[8] Dzhumagulova K.N., Ramazanov T. S., Masheyeva R. U. Study of the Dust-Free Region Near an Electric Probe and the Dust Particles Oscillations in Dusty Plasma //Contributions to Plasma Physics, - 2013. - Vol.53(4-5) - pp. 419-425;
[9] Dzhumagulova K.N., Ramazanov T. S., Masheyeva R. U. Diffusion Coefficient of Three-Dimensional Yukawa Liquids //Contributions to Plasma Physics.- 2013. - Vol. 20. - P. 113702.
[10] Morfill G. E., Thomas H. M., Konopka U., and Zuzic M. The Plasma Condensation: Liquid and Crystalline Plasmas //Physical Review E. - 2005. - Vol. 72. - pp. 026409.
[11] Kalman G. J., Hartmann P., Donkó Z. and Rosenberg M. Two-Dimensional Yukawa liquids: Correlation and Dynamics // Physical Review Letter - 2004. - Vol. 92. - P. 065001;
[12] Kov A. Zs., Hartmann P., and Donk Z. Dynamic Shear Viscosity in a 2D Yukawa System //Physical Review Letter. - 2012. - Vol. 52. - pp. 199-202.
[13] Ott T., Bonitz M., Donk Z., and Hartmann P. Superdiffusion in Quasi-Two-Dimensional Yukawa Liquids // Physical Review E. - 2012. - Vol. 52. - N 3. - pp. 182–185.
[14] Rabani E., Gezelter J. D., and Berne B. J. Calculating the Hopping Rate for Self-Diffusion on Rough Potential Energy Surfaces: Cage Correlations // The Journal of chemical physics. - 1997. - Vol. 107. - N 17. - pp. 6867-6876.
[15] Rabani E., Gezelter J. D., and Berne B. J. Condensed Matter: Structure, etc-Direct Observation of Stretched-Exponential Relaxation in Low-Temperature Lennard-Jones Systems Using the Cage Correlation Function // Physical Review Letter. - 1999. - Vol. 81. - N 18. - pp. 3649–3652.
[16] Donk Z., Kalman G. J., and Golden K. I. Caging of Particles in One-Component Plasmas // Physical Review Letter. - 2002. - Vol. 88. - P. 225001.
[17] Donk Z., Hartmann P., and Kalman G. J. Molecular Dynamics Simulations of Strongly Coupled Plasmas: Localization and Microscopic Dynamics // Physics of Plasmas. - 2003. - Vol. 10. - P. 1563.
[18] Spreiter Q. and Walter M. Classical Molecular Dynamics Simulation with the Velocity Verlet Algorithm at Strong External Magnetic Fields // Journal of Computational Physics. - 1999. - Vol. 152. - pp. 102-119.
[19] Ohta H. and Hamaguchi S. Molecular Dynamics Evaluation of Self-diffusion in Yukawa Systems // Physics of Plasmas. - 2000. - Vol. 7. - P.4506.

Downloads

How to Cite

Машеева, Р. У., Джумагулова, К. Н., Донко, З., Рамазанов, Т. С., & Габдуллина, Г. Л. (2017). Computer simulations and investigation of the localization of dust particles under the magnetic field. Journal of Mathematics, Mechanics and Computer Science, 89(2), 65–74. Retrieved from https://bm.kaznu.kz/index.php/kaznu/article/view/354