Software system for managing the network infrastructure of reference GNSS stations using cloud technologies

  • M.M. Moldabekov AALR "Institute of space technique and technology" http://orcid.org/0000-0001-9760-3139
  • D.I. Yeryomin AALR "Institute of space technique and technology"
  • D.G. Zhaxygulova AALR "Institute of space technique and technology", Al-Farabi Kazakh National University
  • S. Trepashko AALR "Institute of space technique and technology"
  • R.A. Kaliyeva AALR "Institute of space technique and technology" http://orcid.org/0000-0002-0535-5287

Abstract

Nowadays, global navigation satellite systems are widely used to determine the location of various objects with an accuracy of meters. However, there are a number of industries that require high navigation accuracy, for example, for a satellite geodetic network, which is a coordinate-time basis. In order to improve the accuracy of navigation definitions, a differential mode of definitions is used. To implement the differential mode, the network infrastructure of GNSS reference stations and software, capable of both collecting, storing and displaying data, and calculating differential corrections, are required. In Kazakhstan, there is a system of reference GNSS stations that implements its functions on the equipment and software of Leica Geosystems AG, which, along with Trimble Navigation, occupy the main market share of satellite navigation equipment and related software. However, in order to ensure external independence in the field of high-precision navigation, the urgent task is to create a domestic system for managing the network infrastructure of GNSS reference stations, in particular, software development. In this regard, the present work is devoted to the development of specialized software for a system for managing the network infrastructure of reference GNSS stations using cloud technologies.

References

[1] Chen X., Kipka A., Kohler J., Landau H., Vollath U. GNSS Modernization and its Consequences for Reference Station Network Solutions: Proceedings of the European Navigation Conference ENC-GNSS 2007 (Geneva, 2007).
[2] О способах сбора геопространственных данных с помощью различных программно-аппаратных средств на базе GNSS технологий [Electron. resource]. - 2014. URL: http://ngc.com.ua/info/spider.html (available at: 10.02.2020)
[3] Dedes G. Precision Positioning Technologies and Trends at Topcon: Proceedings of the International Global Navigation Satellite Systems Society IGNSS Symposium (Sydney, 2007).
[4] Cheves M. Environment Analysis from JAVAD GNSS // The American Surveyor . - 2010. - V.7 (8). - pp.10-12.
[5] National Research Council The Global Positioning System for Geosciences: Summary and Proceedings of a Workshop on Improving the GPS Reference Station Infrastructure for Earth, Oceanic, and Atmospheric Science Application. -
Washington DC: National Academy Press, 1997. – 284 p. doi: 10.17226/9254
[6] Quesada-Olmo N., Jimenez-Martinez M. J., Farjas-Abadia M. Real-time high-rise building monitoring sys- tem using global navigation satellite system technology // Measurement. - 2018. - V.123. - pp.115-124. doi:10.1016/j.measurement.2018.03.054
[7] Saadati S., Abbasi M., Abbasy S., Amiri-Simkooei A. Geodetic Calibration Network for total stations and GNSS re- ceivers in sub-kilometer distances with sub-millimeter precision // Measurement. - 2019. - V.141. - pp.258-266. doi: 10.1016/j.measurement.2019.04.044.
[8] Da Silva I., Ibanez W., Poleszuk G. Experience of Using Total Station and GNSS Technologies for Tall Building Con- struction Monitoring: Proceedings of the 1st GeoMEast International Congress and Exhibition on Sustainable Civil Infrastructures (Sharm El Sheikh, 15–19 July 2017). – pp. 471–486. doi: 10.1007/978-3-319-61914-9_36
[9] Akhmedov D., Moldabekov M., Yeryomin D., Zhaxygulova D. High accuracy positioning of backbone network infrastruc- ture and mobile objects // INCAS BULLETIN. – 2019. – V. 4 (11). – рp. 3-10. doi: 10.13111/2066-8201.2019.11.4.1
[10] Murrian M.J., Gonzalez C.W., Humphreys T.E., Pesyna K.M. Jr., Shepard D.P., Kerns A. Low-cost precise point posi- tioning for automated vehicle // GPS World. - 2016. - V.27 (9). - С.32-39.
[11] Meneroux Y., Manandhar D., Ranjit S., Saint Pierre G., Shibasaki R. Positional accuracy control in dense urban environ- ment with low-cost receiver and multi-constellation GNSS: Proceedings of the 9th Multi-GNSS Asia (MGA) Conference (Jakarta, 9-11 October 2017).
[12] Bian H., Zhang S., Zhang Q., Zheng N. Monitoring large-area mining subsidence by GNSS based on IGS stations // Transactions of Nonferrous Metals Society of China. - 2014. - V. 24 (2). – pp. 514–519. doi: 10.1016/s1003-6326(14)63090- 9
[13] Melachroinos S. A., Biancale R., Llubes M., Perosanz F., Lyard F., Vergnolle M., Durand S. Ocean tide loading (OTL) displacements from global and local grids: comparisons to GPS estimates over the shelf of Brittany, France // Journal of Geodesy. - 2007. – V. 82 (6). – pp. 357–371. doi: 10.1007/s00190-007-0185-6
[14] Lescarmontier L., Legresy B., Coleman R., Perosanz F., Mayet C., Testut L. Vibrations of Mertz Glacier ice tongue, East Antarctica // Journal of Glaciology. – 2012. – V. 58 (210). – pp. 665–676. doi: 10.3189/2012JoG11J089
[15] Молдабеков М.М., Еремин Д.И., Жаксыгулова Д.Г., Трепашко С. Архитектура системы управления сетевой инфраструктурой референцных GNSS станций с использованием облачных технологий // Вестник НИА РК. – 2019. – № 2 (72). – С. 42–47.
[16] Горшкова Е.В., Шаповалова Д.В., Корецкая Г.А. Зарубежный опыт создания референцных станций // Сборник материалов IX Всероссийской научно-практической конференции молодых ученых ¾Россия молодая¿. 18-21 апреля 2017 г. - Кемерово: КузГТУ, 2017. - С.0101003: 1-5.
[17] Continuously Operating Reference Station (CORS) // National Geodetic Survey URL: https://alt.ngs.noaa.gov/CORS (available at: 20.06.2019)
[18] Принципы навигации // Информационно-аналитический центр координатно-временного и навигационного обеспечения URL: https://www.glonass-iac.ru/guide/navfaq.php (дата обращения: 19.06.2019).
[19] Что такое PaaS? Платформа как услуга [Электрон. ресурс]. – 2013. URL: https://azure.microsoft.com/ru- ru/overview/what-is-paas/ (дата обращения 20.09.2019)
[20] Microsoft Azure [Электрон. ресурс]. – 2012. URL: https://azure.microsoft.com/ru-ru/ (дата обращения 20.03.2019)
[21] Руководство по языку C# [Электрон. ресурс]. – 2012. URL: https://docs.microsoft.com/ru-ru/dotnet/csharp/ (дата обращения 28.03.2019)
[22] Руководство по программированию на C# [Электрон. ресурс]. – 2015. URL: https://docs.microsoft.com/ru- ru/dotnet/csharp/programming-guide/index (дата обращения 28.03.2019)
[23] The Ultimate Guide to Windows Server on Azure. [Electron. resource]. – 2012. URL: http://info.microsoft.com/rs/157- GQE-382/images/Ultimate_Guide_to_Windows_Server_on_Azure_EN_US.pdf (дата обращения 26.03.2019)
[24] Документация по Microsoft SQL [Электрон. ресурс]. – 2017. URL: https://docs.microsoft.com/ru-ru/sql/?view=sql- server-2017 (дата обращения 28.09.2019)
[25] Что собой представляет SQL Server на виртуальных машинах Azure (Windows) [Электрон. ресурс]. – 2016. URL: https://docs.microsoft.com/ru-ru/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-server-iaas- overview (дата обращения 28.09.2019)
Published
2020-06-26
How to Cite
MOLDABEKOV, M.M. et al. Software system for managing the network infrastructure of reference GNSS stations using cloud technologies. Journal of Mathematics, Mechanics and Computer Science, [S.l.], v. 106, n. 2, p. 69-90, june 2020. ISSN 2617-4871. Available at: <https://bm.kaznu.kz/index.php/kaznu/article/view/764>. Date accessed: 23 sep. 2020. doi: https://doi.org/10.26577/JMMCS.2020.v106.i2.07.
Keywords software, network of reference stations, navigation system, management system, GNSS stations