SIMULATION OF NUCLEATE BOILING BUBBLE BY THE PHASE-FIELD AND LATTICE BOLTZMANN METHOD.

Authors

  • B. A. Satenova Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • D. B. Zhakebayev Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • O. L. Karuna Al-Farabi Kazakh National University, Kazakhstan, Almaty

DOI:

https://doi.org/10.26577/JMMCS.2021.v111.i3.09
        1341 147

Keywords:

Nucleate boiling, phase- field method, pool boiling, interface capturing, Lattice Boltzmann method, Cahn-Hilliard equation

Abstract

This article reviews the mathematical and computer modeling of the process of thermal phase transition in two-phase fluid flows. The nucleate boiling process is investigated in the presence of a constant heat source on a solid wall. Bubble formation and phase transition are taken into account. The flow characteristics and temperature distribution during nucleate boiling are obtained. The results of the numerical study were obtained using a 2D numerical algorithm implemented on the basis of the D2Q9 model of the Lattice Boltzmann method (LBM-Lattice Boltzmann method) and the phase field method. The calculations show that first the nucleation of a bubble is formed, then the bubble grows, breaks away from the boundary with the heat source, then, rising upward, undergoes deformation under the action of buoyancy forces. The effect of gravity and surface wettability on the bubble diameter during ascent is also numerically investigated. The results obtained are in good agreement with the experimental and numerical results of other authors.

References

1] Gueyffier D., Li J., Nadim A., Scardovelli R., Zaleski S. Volume-of-fluid interface tracking with smoothed surface stress methods for three-dime nsional flows // J. Comput. Phys. – 1999. – 152. – Pp. 423-456.
[2] Glimm J., Grove J. W., Li X. L. , Shyue K. M., Zhang Q., Zeng Y. Three-dimensional front tracking // SIAM J. Sci.
Comput. —- 1998. – 19. – Pp. 703-727.
[3] Peskin C. S. The immersed boundary method // Acta Num. – 2002. – 11. – Pp. 1-39.
[4] Anderson D. M., McFadden G. B., Wheeler A. A. Diffuse-interface methods in fluid mechanics // Ann. Rev. Fluid Mech. – 1998. – 30. – Pp. 139-165.
[5] Guo Z., Shu C. Lattice Boltzmann method and its applications in engineering // World Scientific. – 2013. – 30. – Pp. 139-165.
[6] Chen S., Doolen G. D. Lattice Boltzmann Method for Fluid Flows // Ann. Rev. Fluid Mech. – 1998. – 30. – Pp. 329-364.
[7] Shan X., Chen H. Lattice Boltzmann model for simulating flows with multiple phases and components // . Phys Rev E. – 1993. – 47. – Pp. 1815-1839.
[8] He X., Chen S., Zhang R. A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability // J Comput Phys. – 1999. – 152. – Pp. 642-663.
[9] Rothman D. H., Keller J.M. Immiscible cellular-automaton fluids // J Stat Phys. – 1988. – 52. – Pp. 1119-1127.
[10] Swift M.R., Osborn W.R., Yeomans J.M. Lattice Boltzmann simulation of nonideal fluids. // Phys Rev Lett. – 1995. –75. – Pp. 830-843.
[11] Welch S. W. J. and Wilson J. A. Volume of Fluid Based Method for Fluid Flows with Phase Change // Journal of
Computational Physics. – 2000. – 160. – Pp. 662-682.
[12] Kim J. Phase-Field Models for Multi-Component Fluid Flows // Commun. Comput. Phys. – 2012. – 12, No. 3. – Pp. 613-661 .
[13] Li Q., Luo K.H., Kang Q.J., He Y.L., Che Q., Liu Q. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer // Progress in Energy and Combustion Science. – 2016. – 52. – Pp. 62-105.
[14] Safari H., Rahimian M. H., Krafczyk M. Extended lattice Boltzmann method for numerical simulation of thermal phase change in two-phase fluid flow // Phys. Rev. E. – 2013. – 88. – Pp. 013304.
[15] Sun T., Li W. Three-dimensional numerical simulation of nucleate boiling bubble by lattice Boltzmann method // Computers and Fluids. – 2013. – 88. – Pp. 400-409.
[16] Wen X., Wang L.-P., Guo Z., Zhakebayev D.B. Laminar to turbulent flow transition inside the boundary layer adjacent to isothermal wall of natural convection flow in a cubical cavity // International Journal of Heat and Mass Transfer. –2021, –167, –Pp. 120822.
[17] Kruger T., Kusumaatmaja H., Kuzmin A., Shardt O., Silva G., Viggen E.M. The Lattice Boltzmann- Method
(Switzerland:Springer International Publishing, 2017), 293.
[18] Guo Z., Zheng C., Shi B. Discrete lattice effects on the forcing term in the lattice Boltzmann method // Phys. Rev. E. – 2002. – 65. - Pp. 1–6.
[19] Seta T. Implicit temperature-correction-based immersed-boundary thermal lattice Boltzmann method for the simulation of natural convection // Phys. Rev. E. – 2013. – 87. – Pp. 77-115.
[20] Жумагулов Б.Т., Сатенова Б.А., Жакебаев Д. Б. Исследование влияния числа Прандтля на динамику теплового потока методом решеточного уравнения Больцмана. // Вестник НИА РК. – 2019. – №3. – С. 60-68.

Downloads

How to Cite

Satenova, B. A., Zhakebayev, D. B., & Karuna, O. L. (2021). SIMULATION OF NUCLEATE BOILING BUBBLE BY THE PHASE-FIELD AND LATTICE BOLTZMANN METHOD. Journal of Mathematics, Mechanics and Computer Science, 111(3), 107–121. https://doi.org/10.26577/JMMCS.2021.v111.i3.09