The Dirichlet problem for multidimensional hyperbola-parabolic equations with degeneracy of type and order

  • M. N. Maikotov Kazakh national pedagogical university after Abay, Almaty, Kazakhstan


The fundamental problems of mathematical physics-the study of the behavior of an oscillatingstring-is incorrect when the boundary conditions are given on the entire boundary of the region.As A. Bitsadze, A.Nakhushev noted, the Dirichlet problem is ill-posed (in the sense of uniquesolvability) not only for the wave equation, but also for general hyperbolic equations. S.A Aldashevpreviously studied the Dirichlet problem for degenerate multidimensional hyperbolic equations,where a unique solvability of this problem is proved, which depends essentially on the height ofthe cylindrical region under consideration. This paper shows the solvability of the Dirichlet problemin a cylindrical domain for multidimensional hyperbola-parabolic equations with degeneration oftype and order.Key words: multidimensional


[1] Aldashev S.A. Kraevye zadachi dlya mnogomernyh giperbolicheskih i smeshannyh uravnenij[Boundary value problems for multidimensional hyperbolic and mixed equations](Almaty: Gylym,1994),170.
[2] Aldashev S.A. Zadacha Dirihle dlya vyrozhdayushchihsya mnogomernyh giperbolo-parabolicheskih uravnenij[ "The Dirichlet problem for degenerate multidimensional hyperbolic-parabolic equations,"] Scientific Bulletins of BelGU.mathematics, 45(2016):16-25.
[3] Aldashev S.A. Zadachi Darbu-Prottera dlya vyrozhdayushchihsya mnogomernyh giperbolicheskih uravnenij//Izvestiya vuzov, matematika["Darboux-Protter problems for degenerate multidimensional hyperbolic equations,"]. Proceedings of high schools,mathematics. no 9(532)(2006):3-9.
[4] Aldashev S.A. Vyrozhdayushchiesya mnogomernye giperbolicheskie uravneniya["Degenerating multidimensional hyperbolic equations"], Oral: ZKATU.(2007):139.
[5] Bateman G., Erdei A. Vysshie transcendentnye funkcii[Higher transcendental functions], vol.2(Moscow: Science,1974),297.
[6] Vragov V.N. Kraevye zadachi dlya neklassicheskih uravnenij matematicheskoj fiziki[Boundary value problems for nonclassical equations of mathematical physics],(NGU:1983),84.
[7] Kamke E. Spravochnik po obyknovennym differencial’nym uravneniyam[A Handbook of Ordinary Differential Equations] (Мoscow: Science,1965),703.
[8] Kolmogorov A.N, Fomin S.V. Elementy teorii funkcij i funkcional’nogo analiza[Elements of the theory of functions and functional analysis](Moscow:Science,1976),543.
[9] Maikotov M.N.(2017). Zadacha Dirihle dlya mnogomernyh giperbolicheskih uravnenij s vyrozhdeniem tipa i poryadka["The Dirichlet problem for multidimensional hyperbolic equations with degeneration of type and order],"Almaty: Bulletin of KazNPU named after Abai,no 59(2017):105-109.
[10] Mikhlin S.G. Mnogomernye singulyarnye integraly i integral’nye uravneniya[Multidimensional singular integrals and integral equations] (Moscow: Fizmatgiz,1962),254.
[11] Nakhushev A.M. Zadachi so smeshcheniem dlya uravneniya v chastnyh proizvodnyh[Problems with displacement for a partial differential equation](Moscow: Science,2006),287.
[12] Tikhonov A.N, Samarskii A.A. Equations of mathematical physics[Equations of mathematical physics](Мoscow: Science, 1966),724.
[13] Akhtyamov A.M. Vyrozhdennye kraevye usloviya dlya differencial’nogo uravneniya tret’ego poryadka["Degenerate boundary conditions for a third-order differential equation,"] Moscow: Science(2018):427.
How to Cite
MAIKOTOV, M. N.. The Dirichlet problem for multidimensional hyperbola-parabolic equations with degeneracy of type and order. Journal of Mathematics, Mechanics and Computer Science, [S.l.], v. 98, n. 2, p. 23-32, aug. 2018. ISSN 1563-0277. Available at: <>. Date accessed: 20 feb. 2019. doi:
Keywords multidimensional hyperbolic-parabolic equations, degeneration of type and porch, cylindrical domain, Dirichlet problem, solvability, Bessel function