VAN DER CORPUT LEMMA WITH BESSEL FUNCTIONS
DOI:
https://doi.org/10.26577/JMMCS.2022.v114.i2.03Keywords:
van der Corput lemma, Bessel function, asymptotic estimate, wave equation, oscillatory integralsAbstract
In this article, we study analogues of the van der Corput lemmas [19] involving Bessel functions. In harmonic analysis, one of the most important estimates is the van der Corput lemma, which is an estimate of the oscillatory integrals. This estimate was first obtained by the Dutch mathematician Johannes Gaultherus van der Corput. Van der Corput interested in the behavior for large positive λ of the oscillatory integral R b a e iλφ(x)ψ(x)dx, where φ is a real-valued smooth function (the phase) and ψ is complex valued smooth function (amplitude). In case a = −∞, b = +∞, it is assumed that ψ has a compact support in R. In our case we replace the exponential function with the Bessel functions, to study oscillatory integrals appearing in the analysis of wave equation with singular damping. More specifically, we study integral of the form I(λ) = R b a Jn(λφ(x))ψ(x)dx for the range n = 0, where ψ ∈ C and smooth, and λ is a positive real number that can vary.The generalisations of the van der Corput lemma is proved. As an application of the above results, the generalised Riemann-Lebesgue lemma is considered.
References
[2] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals.// Princeton
Mathematical Series. Vol. 43. Princeton Univ. Press, Princeton, 1993.
[3] E. M. Stein, S. Wainger.The estimation of an integral arising in multiplier transformations, Studia Math. 35 (1970) 101–104.
[4] D. H. Phong, E. M. Stein,,Operator versions of the van der Corput lemma and Fourier integral operators, Math. Res. Lett. 1 (1994),27–33.
[5] D. H. Phong, E. M. Stein,,Models of degenerate Fourier integral operators and Radon transforms, Ann. Math. 140:3 (1994), 703–722.
[6] A. Carbery, M. Christ, J. Wright,,Multidimensional van der Corput and sublevel set estimates, J. Amer. Math. Soc. (1999) 981–1015.
[7] M. Christ, X. Li, T. Tao, C. Thiele. . On multilinear oscillatory integrals, nonsingular and singula, Duke Math. J. , 130:2 (2005), 321–351.
[8] J. Bourgain, L. Guth. Bounds on oscillatory integral operators based on multilinear estimate, Geom. Funct. Anal. 2 1:6 (2011), 1239–1295.
[9] M. Ruzhansky,,Multidimensional decay in the van der Corput lemma, Studia Math. 208 (2012) 1–10
62 Van der Corput lemmas with Bessel functions . . .
[10] M. Greenblatt. Sharp estimates for one-dimensional oscillatory integral operators with phase. Amer. J. Math. 127:3 (2005), 659–695.
[11] K. M. Rogers, Sharp van der Corput estimates and minimal divided differences, Proc. Amer. Math. Soc. 133: 12 (2005) 3543–3550.
[12] I. R. Parissis. . A sharp bound for the Stein-Wainger oscillatory integral, Proc. Amer. Math. Soc. 136:3 (2008), 963–972.
[13] R. Chen, G. Yang, J., Numerical evaluation of highly oscillatory Bessel transforms, Comput. Appl. Math. , 342(2018), 16-24.
[14] S. Xiang, J. Comput.,On van der Corput-type lemmas for Bessel and Airy transforms and applications., Appl. Math. 351 (2019) 179-185.
[15] M. Ruzhansky and B.T.Torebek ArXiv, Van der Corput lemmas for Mittag-Leffler functions, 2020, 1-32, arXiv:2002.07492.
[16] M. Ruzhansky and B.T.Torebek ArXiv, Van der Corput lemmas for Mittag-Leffler functions, II, α − directions, 2020, 1 −19, arXiv : 2005.04546.
[17] S. Zaman, S., Siraj-ul-Islam, I. Hussain., J. Comput., Approximation of highly oscillatory integrals containing special functions., Appl. Math. 2020, 365, 112372
[18] M. Ruzhansky and B.T. Torebek, Fractional Calculus and Applied Analysis,23(6), (2020).
[19] N.N. Lebedev., Special functions and their applications, 2nd rev.ed., Fiz-matgiz, Moscow, 1963; Englis h transl., PrenticeHall , Englewood Cliffs, N.J., 1965.
[20] G.N. Watson. A treatise on the theory of Bessel functions, FOREIGN LITERATURE PUBLISHING, Moscow (1945), p.72.