Integrating multiperiodic functions along the periodic characteristics of the diagonal differentiation operator
DOI:
https://doi.org/10.26577/JMMCS2023v120i4a6Keywords:
differentiation operator, periodic characteristic, vector field, infinite cylindrical surface, multiperiodicity, autonomous systemsAbstract
In this paper, trajectory of time changing along a helical line is represented by parametric equations in Cartesian coordinates of Euclidean space. On the basis of a cycloidal sweep of a cylindrical surface onto a plane, analytical form of a helix is determined. On its basis, integral surface is determined, which is called the periodic characteristic of the diagonal differentiation operator and its connection with its linear characteristic is established. a) elements of new approach related to the periodic characteristic of diagonal differentiation operator are proposed, b) method for reducing integral along the periodic characteristic to an integral with linear characteristic, c) conditions establishing structure of the integral as sum of linear and multiperiodic functions. Some consequences of these results and recommendations of an algorithmic nature for further expansion of research in this direction are given.
References
Харасахал В.X. Почти периодические решения обыкновенных дифференциальных уравнений. – Алма-Ата: Наука, 1970.
Умбетжанов Д.У. Почти многопериодические решения дифференциальных уравнений в частных производных. – Алма-Ата: Наука, 1979.
Умбетжанов Д.У. Почти периодические решения эволюционных уравнений. – Алма-Ата: Наука, 1990.
Умбетжанов Д.У., Сартабанов Ж.А. О необходимом и достаточном условии многопериодичности решения одной системы уравнений в частных производных с одинаковой главной частью // В книге: Математика и механика. – 1972. – Т. 7, Ч. 2. – С. 22-27.
Сартабанов Ж.А. Периодты функциялар және кейбiр қарапайым дифференциалдық теңдеулердiң периодты шешiмдерi. – Алматы: РБК, 2001.
Сартабанов Ж.А. Об одном способе изучения периодических решений уравнений в частных производных специального вида // Известия АН КазССР. серия физ.-мат. – 1989. – №1. – С. 42-48.
Мухамбетова А.А., Сартабанов Ж.А. Устойчивость решений систем дифференциальных уравнений. – Актобе: ПринтА, 2007.
Кульжумиева А.А., Сартабанов Ж.А. Периодические решения системы дифференциальных уравнений с многомерным временем. – Уральск: РИЦ ЗКГУ, 2013.
Малкин И.Г. Методы Ляпунова и Пуанкаре в теории нелинейных колебаний. – М: Едиториал УРСС, 2004.
Андронов А.А., Вит А.А., Хайкин С.Э. Теория колебаний. – М: Наука, 1981.
Понтрягин Л.С. Обыкновенные дифференциальные уравнения. – М: Наука, 1965.
Арнольд В.И. Дополнительные главы теории обыкновенных дифференциальных уравнений. – М: Наука, 1978.
Sartabanov Zh.A., Omarova B.Zh., Kerimbekov A. Research of multiperiodic solutions of perturbed linear autonomous systems with differentiation operator on the vector field // News of the National Academy of Sciences of the Republic of Kazakhstan-series Physico-mathematical. – 2020. – 329, No. 1. – Pp. 5-13.
Omarova B.Zh., Sartabanov Zh.A. On multiperiodic solutions of perturbed nonlinear autonomous systems with the differentiation operator on a vector field // Eurasian Math. J. – 2021. – 12:1. – Pp. 68-81.
Zhumagaziyev A.Kh., Sartabanov Zh.A., Sultanaev Ya.T. On a new method for investigation of multiperiodic solutions of quasilinear strictly hyperbolic system // Azerbaijan Journal of Mathematics. – 2022. – 12:1. – Pp. 32-48.
Sartabanov Z.A., Zhumagaziyev A.K., Abdikalikova G.A. Multiperiodic solution of linear hyperbolic in the narrow sense system with constant coefficients // Bulletin of the Karaganda University-Mathematics. – 2020. – 98, No. 2. – Pp. 125-140.
Sartabanov Z.A., Zhumagaziyev A.K., Abdikalikova G.A. On one method of research of multiperiodic solution of block- matrix type system with various differentiation operators // News of the National Academy of Sciences of the Republic of Kazakhstan-Series Physico-Mathematical. – 2020. – 330, No. 2. – Pp. 149-158.
Sartabanov Z.A., Aitenova G.M., Abdikalikova G.A. Multiperiodic solutions of quasilinear systems of integro-differential equations with Dc-operator and ε-period of hereditarity // Eurasian Math. J. – 2022. – 13:1. – Pp. 86–100.
Sartabanov Z.A., Aitenova G.M., Abdikalikova G.A. Multiperiodic solution of the initial-boundary value problem for an integro-differential equation of the parabolic type // Russian Mathematics. – 2022. – 66:8. – Pp. 46–55.
Aitenova G.M., Sartabanov Zh.A., Abdikalikova G.A. Multiperiodic bounded oscillations in quasilinear finite-hereditary integro-differential systems convection-diffusion type // Lobachevskii Journal of Mathematics. – 2022. – 43:8. – Pp. 2046- 2056.