symptotic convergence of solution of boundary problems for the singular perturbated integro-differential equations

Authors

  • K A Kassymov Al-Farabi Kazakh National University
  • M K Dauylbayev Al-Farabi Kazakh National University
  • N Atakhan Al-Farabi Kazakh National University
        65 93

Keywords:

Сингулярное возмущение, интегро-дифференциальные уравнения, начальный скачок, асимптотическая сходимость

Abstract

In this work boundary value problem for the singular perturbed linear integral differential equations of nth order. Estimates of the solution and its derivatives of this problem are received. Established that the solution of the boundary value problem at the point t = 0 has the phenomenon of initial jump (n-2) th order. Changed unperturbed boundary value problem is constructed. Solution of the given singular perturbed boundary value problem tends to the solution of the changed unperturbed boundary value problem. Changed unperturbed boundary value problem is different from the usual unperturbed problem. There are initial jump of the solution and integral member. Estimates of the difference between the solutions of the given singular perturbed and unperturbed changed problems are received. Values of initial jumps of the solution and of the integral member are found.

References

[1] Касымов К.А., Дауылбаев М.К. Об оценке решений задачи Коши с начальным скачком любого порядка для линейных сингулярно возмущенных интегро-дифференциальных уравнений // Дифференциальные уравнения. Москва – Минск, 1999. – Т. 35, № 6. – С. 822 – 830.

[2] Дауылбаев М.К. Линейные интегро-дифференциальные уравнения с малым параметром. – Алматы: «Қазақ университетi», 2009. – 190 с.

Downloads

How to Cite

Kassymov, K. A., Dauylbayev, M. K., & Atakhan, N. (2012). symptotic convergence of solution of boundary problems for the singular perturbated integro-differential equations. Journal of Mathematics, Mechanics and Computer Science, 74(3), 28–33. Retrieved from https://bm.kaznu.kz/index.php/kaznu/article/view/146