Influence of incalculation parameter to shock-wave structures in supersonic channel with jet injection

Authors

  • А. О. Beketaeva. Al-Farabi Kazakh National University
  • N. Sh. Shahan. Al-Farabi Kazakh National University
        60 55

Keywords:

supersonic flow, ideal gas, Naver-Stokes eqations, shock wave, boundary layer,

Abstract

Turbulent stream of air with perpendicular injection of round sonic hydrogen jet from the chink placed on the bottom wall is numerically modeling in flat channel. Solution of governing averaged by Favre Navier-Stokes equations for ideal multi component gas was made by WENO scheme. For closure aims k-? model of turbulence was chosen. For initial conditions parameters of stream were taken. For boundary conditions: slip conditions for bottom and top wall; stream conditions for entrance boundary; not reflection condition for outlet boundary and jet parameters on the jet injection were fixed. At the initial moment thickness of boundary layer with given profiles of velocity, temperature, pressure and density are given. Distribution of pressure on the bottom wall in the region of slot is compared with the experimental data. Besides of it plots for isobars, taken with ENO and WENO schemes, are qualitatively compared with the works of other authors. Influence of incalculation parameter to the shock-wave structures, formed from the interaction of bow shock wave with the boundary layers of bottom and top walls. It was found, that the incidence of bow shock is enlarged with the increasing of incalculation parameter.

References

[1] 1.Шунь Дж., Ш., Юнь С. Численное исследование течений с химическими реакциями на основе LU-факторизованной схемы, построенной методом симметричной последовательной верхней релаксации // Аэрокосмическая техника. 1990. № 10. С. 102-113.
[2] 2.Grasso F., Magi V. Simulation of Transverse Gas Injection in Turbulent Supersonic Air Flows // AIAA Journal. 1995. Vol.33, No 1. Р. 56-62.
[3] 3.Chenault F.C., Beran P.S. k − ω and Reynolds Stress Turbulence Model Comparsions for Two-Dimensional Injection Flows // AIAA Journal. 1998. Vol. 36, No 8. Р. 1401-1412.
[4] 4.Краснов Н.Ф., КошевойВ.Н., Калугин В.Т. Аэродинамика отрывных течений. Москва: Высш. Шк., 1988. 351 с.
[5] 5.Hadjadj A Shock wave boundary layer interaction // Shock Waves 19. 2009. Springer. P. 449-452.
[6] 6.Harten A., Osher S., Engquist B., Chakravarthy S.R. Some Results on Uniformly High-Order Accurate Essentially Non-Oscillatory Schemes // Applied Num. Math. 1986. No 2. P. 347-377.
[7] 7.Ершов С.В. Квазимонотонная ENO- схема повышенной точности для интегрирования уравнений Эйлера и Навье-Стокса // Математическое моделирование. 1994 Т. 6. №11. С. 63-75.
[8] 8.Yang J.Y. Third Order Non-Oscillatory Schemes for the Euler Equations // AIAA Journal. 1991. Vol. 29. No 10. Р. 1611-1618.
[9] 9.Бекетаева А.О., Найманова А.Ж. Применение ENO (Essentially Non-Oscillatory) схемы для моделирования течения многокомпонентной газовой смеси // Вычислительные технологии. 2007. Т.12. № 4. С. 17-25.
[10] 10.Б Poinsot T.J., Lele S.K. Boundary Conditions for Direct Simulation of Compressible Viscous Flows // Journ. of Comput. Phys. 1992. No 101. P. 104-129.
[11] 11.Kee R.J., Rupley F.M., Miller J.A CHEMKIN-II: a FORTRAN chemical kinetic package for the analysis of gas-phase chemical kinetics // SANDIA Report SAND89-8009. 1989.
[12] 12.Кикоина, И. К.: Таблицы Физических величин. c. 1008. Атомиздат, Москва (1976)
[13] 13.Beketaeva A.O., Naimanova A.Zh. Numerical simulation of a supersonic flow with transverse injection of jets // Journal of Applied Mechanics and Technical physics. 2004. Vol.45. №3. P.367-374.

Downloads

How to Cite

Beketaeva. А. О., & Shahan., N. S. (2015). Influence of incalculation parameter to shock-wave structures in supersonic channel with jet injection. Journal of Mathematics, Mechanics and Computer Science, 85(2), 58–68. Retrieved from https://bm.kaznu.kz/index.php/kaznu/article/view/287