On example to the Boas theorem

Authors

  • A. B. Mukanov Евразийский национальный университет им. Л.Н. Гумилева, Казахстан, Астана
        98 43

Keywords:

Fourier coefficients, monotone functions α-monotone functions, Lorentz spaces, fractional integral

Abstract

In this work we study the relation between summability properties of a sequence tending to zero and integrability properties of the corresponding trigonometric series. More precisely, in this paper is considered the problem of generalizing of Boas' theorem on the Fourier coefficients of monotone functions. According to that theorem the norm of monotone function in the Lorentz space L_p,q[0, 1], 1 < p < ∞ , 1 ≤ q ≤ ∞ is equivalent to the norm of the Fourier coefficients of the function in the discrete Lorentz space l_p′,q . We define the class of α-monotone functions (0 < α ≤ 1) that contains the class of non-increasing absolutely continuous functions. The α-monotone function is defined as function which has non-increasing absolutely continuous right-side fractional Riemann- Liouville integral of order 1 − α . A problem of generalizing of Boas' theorem to the class of α-monotone function is very interesting for us. We give an example of α-monotone function which show impossibility of Boas' theorem in the case p < 1/α. It follows that Boas' theorem for the α-monotone functions should be investigated in the case p ≥ 1/α.

References

[1] Hardy G.H. and Littlewood J.E. Notes on the theory of series (XIII): Some new properties of Fourier constants // J. Lond. Math. Soc. - 1931. - S1-6, 1. - P. 3-9.
[2] Zygmund A. Trignometrisheskie ryady, T. 1,2 - Moskwa:Mir, 1965.
[3] Boas R.P. Jr. Integrability theorems for trigonometric transforms - New-York: Springer, 1967.
[4] Sagher Y. An application of interpolation theory to Fourier series // Stud. Math. - 1972. - 41. - P. 169-181.
[5] Nursultanov E.D. Interpolation properties of some anisotropic spaces and Hardy-Littlewood type inequalities // East J. Approx. - 1998. - V. 4, 2. - P. 243-275.
[6] Tikhonov S.Yu. Trigonometric series with general monotone coefficients // J. Math. Anal. Appl. - 2007. - V. 326, 1. - P. 721-735.
[7] Dyachenko M., Tikhonov S. Integrability and continuity of functions represented by trigonometric series: coefficients criteria // Stud. Math. - 2009. - V. 193, 3. - P. 285-306.
[8] Dyachenko M.I. Kusoshno monotonnye funccii mnogikh peremennyh i teorema Hardy-Littlewooda // Izv. AN SSSR. Ser. matem. - 1991. - Ò. 55, 6. - C. 1156-1170.
[9] Dyachenko M.I., Nursultanov E.D. Teorema Hardy-Littlewooda dlya trigonometricheskih ryadov s α -monotonnymi koefficientami // Matem. sb. - 2009. - Ò. 200, 11. - C. 45-60.
[10] Nursultanov E., Tikhonov S. Net spaces and boundedness of integral operators // J. Geom. Anal. - 2011. - V. 21, 4. - P. 950-981.
[11] Booton B. General monotone sequences and trigonometric series // Math. Nachr. - 2014. - V. 287, Is. 5-6. - P. 518-529.
[12] Dyachenko M.I. Trigonometricheskie ryady s obobshenno-monotonnymi koefficientami // Izv. vuzov. Matem.- 1986. - 7. - P. 39-50.
[13] Dyachenko M.I. Teorema Hardy-Littlewooda dlya trigonometricheskih ryadov s obobshenno-monotonnymi koefficientami // Izv. vuzov. Matem. - 2008. - 5. - P. 38-47.
[14] Sagher Y. Some remarks on interpolation of operators and Fourier coefficients // Stud. Math. - 1972. -o 44. - P. 239-252.
[15] Kopezhanova A.N., Nursultanov E.D., Persson L.-E. O neravenstvah dlya preobrazovanii Fourier funccii iz prostranstv Lorentza // Matem. zametki. - 2011. - T. 90, 5. - P. 785-788.
[16] Samko S.G., Kilbas À.À., Marichev Î.I. Integraly i proizvodnye drobnogo poryadka i nekotorye ih prilojeniya - Minsk: Nauka i technika, 1987. - 688 p.

Downloads

How to Cite

Mukanov, A. B. (2018). On example to the Boas theorem. Journal of Mathematics, Mechanics and Computer Science, 84(1), 55–61. Retrieved from https://bm.kaznu.kz/index.php/kaznu/article/view/423