On the Jonsson pairs of Abelian groups in the enriched language

Authors

  • A. R. Yeshkeyev Buketov Karaganda State University, Karaganda, Republic of Kazakhstan
  • M. T. Kassymetova Buketov Karaganda State University, Karaganda, Republic of Kazakhstan
  • O. I. Ulbrikht Buketov Karaganda State University, Karaganda, Republic of Kazakhstan

DOI:

https://doi.org/10.26577/jmmcs-2017-3-466
        92 0

Keywords:

Jonsson theory, model companion, existentially closed model, perfectness, cosemanticness, Jonsson pair

Abstract

This paper is devoted to the study of model-theoretic questions of abelian groups in the framework
of the study of Jonsson theories. Indeed, the paper shows that Abelian groups with the additional
condition of the distinguished predicate satisfy the conditions of Jonssonness and also the
perfectness in the sense of the Jonsson theory. We can see that classical examples from algebra
such as fields of fixed characteristic, groups, abelian groups, different classes of rings, Boolean
algebras, polygons are examples of algebras whose theories satisfy the conditions of Jonssonness.
The conditions of Jonssonness are determined very naturally. This the amalgam property and
the joint embedding properties, as well as the inductance of the theory under consideration. The
study of the model-theoretic properties of the Jonsson theories in the class of abelian groups is
a very urgent problem both in the Model Theory itself and in an universal algebra. The Jonsson
theories form a rather wide subclass of the class of all inductive theories. But the Jonsson theories
under consideration, in general, are not complete. The classical Model Theory mainly deals with
complete theories and in the case of the study of Jonsson theories, there is a deficit of a technical
apparatus, which at the present time is developed for studying the theoretical-model properties
of complete theories. Therefore, the discovery of analogues of such a technique for the study of
Jonsson theories has practical significance in this research topic. In this paper, the signature for
one place predicate was extended. The elements realizing this predicate form an existentially closed
submodel of some model of the Jonsson theory under consideration. As a result, we have the Jonsson generalization of the well-known problem of elementary pairs
for complete theories. In this paper we obtain an analogue of the theorem of W. Szmielew on the
elementary classification of Abelian groups, and also an analog of the Schr¨oder-Bernstein property
for the Jonsson pairs of the theory of Abelian groups. The results obtained show a close connection
between the theoretical-model properties of the Jonsson pair and the model-theoretic properties
of the center of the Johnson theory under consideration.

References

[1] Yeshkeyev A.R., Ulbrikht O.I., “JSp-cosemanticness and JSB property of Abelian groups,” Siberian Electronic
Mathematical Reports 13 (2016), 861–874.
[2] Barwise J., Ed:, Handbook of mathematical logic, Part 1. Model theory (Moscow: Science, 1982), 392.
[3] Mustafin T.G., “Obobshchennyye usloviya Yonsona i opisaniye obobshchenno-yonsonovskikh teoriy bulevykh algebr,”
Matematicheskiye trudy 1:2 (1998), 135-197.
[4] Yeshkeyev A.R., “On Jonsson stability and some of its generalizations,” Journal of Mathematical Sciences 166:5 (2010),
646–654.
[5] Shelah S., “Classification theory and the number of non-isomorphic models,” Studies in logic and the foundations of
mathematics 92 (1990), 116.
[6] Yeshkeyev A.R., “The structure of lattices of positive existential formulae of (Δ-PJ)-theories,” Science Asia, Journal of
The Science Society of Thailand 39 (2013), 19-24.
[7] Weispfenning V., “The model-theoretic significance of complemented existential formulas,” Journal of Symbolic Logic 46:4
(1981), 843-849.
[8] Yeshkeyev A.R., “Kategorichnyye pozitivnyye yonsonovskiye teorii.” Vestnik Karagandinskogo universiteta, Seriya
«Matematika» 4(44) (2006), 10-16.
[9] Ben-Yaacov I., “Positive model theory and compact abstract theories,” Journal of Mathematical Logic 3:1 (2003), 85-118.
[10] Ben-Yaacov I., “Compactness and independence in non first order frameworks,” Bulletin of Symbolic logi 11:1 (2005),
28–50.
[11] Szmielew W., “Elementary properties of Abelian groups,” Fundamenta Mathematica 41 (1955), 203-271.
[12] Yershov YU.L., Problemy razreshimosti i konstruktivnyye modeli (Мoskva: Nauka, 1980), 416.
[13] Fuks L., Beskonechnyye abelevy gruppy (Moskva: Mir, 1974), 335.
[14] Eklof P.C., Fischer E.R., “The elementary theory of abelian groups,” Annals of Mathematical Logic 4:2 (1972), 115-171.
[15] Yershov YU.L., Palyutin Ye.A., Matematicheskaya logika (Moskva: Fizmatlit, 2011), 356.
[16] Poizat B., “Paires de structures stables,” Journal of Symbolic Logic 48:2 (1983), 239–249.
[17] Bouscaren E., “Elementary pairs of models,” Annals of Pure and Applied Logic 45 (1989), 129-137.
[18] Bouscaren E., “Dimensional Order Property and pairs of models,” Annals of Pure and Applied Logic 41 (1989), 205-231.
[19] Bouscaren E., Poizat B., “Des belles paires aux beaux uples,” The Journal of Symbolic Logic 53:2 (1988), 434-442.
[20] Mustafin T.G., “Novyye ponyatiya stabil’nosti teoriy,” Trudy sovetsko-frantsuzskogo kollokviuma po teorii modeley
(Karaganda, 1990), 112-125.
[21] Nurmagambetov T., Puaza B., “O chisle elementarnykh par nad mnozhestvami,” Trudy frantsuzsko-kazakhstanskogo
kollokviuma po teorii modeley (Almaty, 1995), 73-82.
[22] Palyutin E.A., “E∗-stable theories,” Algebra and Logic 42:2 (2003), 194-210.[1] Yeshkeyev A.R., Ulbrikht O.I., “JSp-cosemanticness and JSB property of Abelian groups,” Siberian Electronic
Mathematical Reports 13 (2016), 861–874.
[2] Barwise J., Ed:, Handbook of mathematical logic, Part 1. Model theory (Moscow: Science, 1982), 392.
[3] Mustafin T.G., “Obobshchennyye usloviya Yonsona i opisaniye obobshchenno-yonsonovskikh teoriy bulevykh algebr,”
Matematicheskiye trudy 1:2 (1998), 135-197.
[4] Yeshkeyev A.R., “On Jonsson stability and some of its generalizations,” Journal of Mathematical Sciences 166:5 (2010),
646–654.
[5] Shelah S., “Classification theory and the number of non-isomorphic models,” Studies in logic and the foundations of
mathematics 92 (1990), 116.
[6] Yeshkeyev A.R., “The structure of lattices of positive existential formulae of (Δ-PJ)-theories,” Science Asia, Journal of
The Science Society of Thailand 39 (2013), 19-24.
[7] Weispfenning V., “The model-theoretic significance of complemented existential formulas,” Journal of Symbolic Logic 46:4
(1981), 843-849.
[8] Yeshkeyev A.R., “Kategorichnyye pozitivnyye yonsonovskiye teorii.” Vestnik Karagandinskogo universiteta, Seriya
«Matematika» 4(44) (2006), 10-16.
[9] Ben-Yaacov I., “Positive model theory and compact abstract theories,” Journal of Mathematical Logic 3:1 (2003), 85-118.
[10] Ben-Yaacov I., “Compactness and independence in non first order frameworks,” Bulletin of Symbolic logi 11:1 (2005),
28–50.
[11] Szmielew W., “Elementary properties of Abelian groups,” Fundamenta Mathematica 41 (1955), 203-271.
[12] Yershov YU.L., Problemy razreshimosti i konstruktivnyye modeli (Мoskva: Nauka, 1980), 416.
[13] Fuks L., Beskonechnyye abelevy gruppy (Moskva: Mir, 1974), 335.
[14] Eklof P.C., Fischer E.R., “The elementary theory of abelian groups,” Annals of Mathematical Logic 4:2 (1972), 115-171.
[15] Yershov YU.L., Palyutin Ye.A., Matematicheskaya logika (Moskva: Fizmatlit, 2011), 356.
[16] Poizat B., “Paires de structures stables,” Journal of Symbolic Logic 48:2 (1983), 239–249.
[17] Bouscaren E., “Elementary pairs of models,” Annals of Pure and Applied Logic 45 (1989), 129-137.
[18] Bouscaren E., “Dimensional Order Property and pairs of models,” Annals of Pure and Applied Logic 41 (1989), 205-231.
[19] Bouscaren E., Poizat B., “Des belles paires aux beaux uples,” The Journal of Symbolic Logic 53:2 (1988), 434-442.
[20] Mustafin T.G., “Novyye ponyatiya stabil’nosti teoriy,” Trudy sovetsko-frantsuzskogo kollokviuma po teorii modeley
(Karaganda, 1990), 112-125.
[21] Nurmagambetov T., Puaza B., “O chisle elementarnykh par nad mnozhestvami,” Trudy frantsuzsko-kazakhstanskogo
kollokviuma po teorii modeley (Almaty, 1995), 73-82.
[22] Palyutin E.A., “E∗-stable theories,” Algebra and Logic 42:2 (2003), 194-210.
[23] Palyutin E.A., “Elementary pairs of primitive normal theories,” Algebra and Logic 43:3 (2004), 321-340.
[24] Yeshkeyev A.R., Kasymetova M.T. Yonsonovskiye teorii i ikh klassy modeley: monografiya (Karaganda: Izd-vo KarGU,
2016), 370.
[25] Mustafin Y.T., “Quelques proprietes des theories de Jonsson,” The Journal of Symbolic Logic 67:2 (2002), 528-536.
[26] Yeshkeyev A.R., Begetayeva G.S., “Stabil’nost’ Δ-PM-teorii i yeyo tsentra,” Vestnik Karagandinskogo universiteta, Seriya
«Matematika» 4(56) (2009), 29-34.
[27] Jonsson B., “Homogeneous universal relational systems,” Math. Scand. 8 (1960), 137-142.
[28] Goodrick J., “When are elementarily bi-embeddable models isomorphic?” PhD thesis (University of California, Berkeley,
2007), 98.
[29] Nurmagambetov T.A., “O vzaimno elementarnoy vlozhimosti modeley,” Teoriya algebraicheskikh struktur, Sbornik
nauchnykh trudov (Karaganda, 1985), 109–115.
[30] Nurmagambetov T.A., “Kharakterizatsiya ω-stabil’nykh teoriy ogranichennoy razmernosti,” Algebra i logika 28:5 (1989),
584–596.
[31] Goodrick J. , Laskowski M.C., “The Schr¨oder-Bernstein property for a-saturated models,” Proc. AMS 142:3 (2014), 1013–
1023.
[32] Goodrick J., “The Schr¨oder-Bernstein property for theories of abelian groups,” arXiv.org > math > arXiv:0705.1850v1
(2007), 17.
[33] Yeshkeyev A.R., “Yonsonovskiye klassy abelevykh grupp,” Buketovskiye chteniya, Mezhvuzovskaya konferentsiya,
posvyashchennaya 20-letiyu KarGU, Tezisy dokladov (Karaganda, 1992), 127.

How to Cite

Yeshkeyev, A. R., Kassymetova, M. T., & Ulbrikht, O. I. (2018). On the Jonsson pairs of Abelian groups in the enriched language. Journal of Mathematics, Mechanics and Computer Science, 95(3), 32–49. https://doi.org/10.26577/jmmcs-2017-3-466