The Cauchy problem for singularly perturbed higher-order integro-differential equations
DOI:
https://doi.org/10.26577/jmmcs-2018-1-481Keywords:
singular perturbation, small parameter, the initial functions, asymptotics, passage to the limitAbstract
The article is devoted to research the Cauchy problem for singularly perturbed higher-order linear
integro-differential equation with a small parameter at the highest derivatives, provided that the
roots of additional characteristic equation have negative signs. The aim of this paper is to bring
asymptotic estimation of the solution of a singularly perturbed Cauchy problem and the asymptotic
convergence of the solution of a singularly perturbed initial value problem to the solution of
an unperturbed initial value problem. In this paper the fundamental system of solutions, initial
functions of a singularly perturbed homogeneous differential equation are constructed and their
asymptotic estimates are obtained. By using the initial functions, we obtain an explicit analytical
formula of the solution. The theorem about asymptotic estimate of a solution of the initial value
problem is proved. The unperturbed Cauchy problem is constructed. We find the solution of the
unperturbed Cauchy problem. An estimate difference of the solution of a singularly perturbed
and unperturbed initial value problems. The asymptotic convergence of solution of a singularly
perturbed initial value problem to the solution of the unperturbed initial value problem is proved
References
[2] Hinch E. J. Perturbation methods. - Cambridge: Cambridge University Press, 1981.
[3] Kevorkian J., Cole J.D. Perturbation methods in applied mathematics. - New York: Springer-Verlag, 1981.
[4] Nayfeh A.H. Perturbation methods. - New York: John Wiley & Sons, 2008.
[5] Van Dyke M. Perturbation methods in fluid dynamics. -New York: Academic Press, 1964.
[6] Lagerstrom Matched asymptotic expansions. - New York: Springer-Verlag, 1988.
[7] Eckhaus W. Matched asymptotic expansions and singular perturbations. -London, 1973.
[8] O’Malley R.E.Introduction to singular perturbation. -New York: Academic Press, 1974.
[9] Lomov S.A. Introduction to the general theory of singular perturbations. -Providence, Rhode Island: AMS, 1992.
[10] Olver F. Introduction to asymptotics and special functions. - New York: Academic Press, 1974.
[11] Verhulst F. Methods and applications of singular perturbations: Boundary layers and multiple timescale dynamics. - New
York: Springer, 2005.
[12] Sanders J.A., Verhulst F. Averaging methods in nonlinear dynamical systems. - New York: Springer-Verlag, 1985.
[13] Grasman J. Asymptotic methods for relaxation oscillations and applications. - New York: Springer-Verlag, 1987.
[14] O’Malley R.E. Singular perturbations methods for ordinary differential equations. -New York: Springer-Verlag, 1991.
[15] Vasil’eva A. On the development of singular perturbation theory at Moscow State University and elsewhere // SIAM
Review. -1994.- №36. -P. 440-452.
[16] Vishik I., Lyusternik L. A. On the initial jump for non-linear differential equations containing a small parameter //
Doklady Akademii Nauk SSSR. -1960. - Vol. 132, № 6. -P. 1242-1245.
[17] Kassymov K. A. On the asymptotics of the solution of the Cauchy problem with large initial conditions for nonlinear
ordinary differential equations containing a small parameter // Uspehi Mat. Nauk. -1962.-Vol. 17, № 5. -P. 187-188.
[18] Нургабыл Д.Н. Асимптотические оценки решения начальной задачи для линейных дифференциальных уравнений
с малым параметром при старших производных // Вестник ЖГУ им.И.Жансугурова. -2012. - № 2. - С.4-8.
[19] Dauylbaev M.K., Mirzakulova A.E. Asymptotic behavior of solutions of singular integro-differential equations // Discontinuity,
Nonlinearity and Complexity. -2016. -Vol.5, №2. - P.147-154.
[20] Dauylbaev M.K., Mirzakulova A.E. Boundary-value problems with initial jumps for singularly perturbed integrodifferential
equations // Journal of Mathematical Sciences. -2017. -Vol.222, №2. - P.214-225.