Dispersionless Limits of Ma Equations
DOI:
https://doi.org/10.26577/JMMCS-2019-2-22Keywords:
dispersionless limit, integrable equation, Ma equation, Lax representationAbstract
At present, there is a great interest in the study of solitons, which are used in many fundamental
theories, such as mathematics, physics, and others. Solitons are called a structurally stable solitary
wave propagating in a nonlinear medium, which retains its structure when colliding with each
other. The theory of solitons is based on nonlinear integrable equations. The fundamental mathematical
mechanism for solving nonlinear integrable equations is the inverse scattering method.
This method establishes a connection between a nonlinear integrable equation with a linear system.
Dispersionless integrable equations are one of the new sections of the theory of integrable
equations. They gained considerable interest due to their extensive use in various applications of
natural science. In this paper, we investigated one of the generalizations of the Landau-Lifshitz
equation known from soliton theory, which is called the Ma equation. The Landau – Lifshitz equation
is the geometric equivalent of the nonlinear Schr¨odinger equation, and there is also a gauge
equivalence between them. The nonlinear equations of Ma describe the resonant interaction of
short and long waves in a plasma. Also, the dispersionless Ma equation was found and a Lax
representation was constructed for it, which proves its integrability.
References
[2] Lam J.L., "Vvedenie v teoriu solitonov [Introduction to the theory of solitons]" , M .: Mir (1983): 294.
[3] Newell A., "Solitoni v matematike i fizike [Solitons in mathematics and physics]" , M .: Mir (1989): 324.
[4] Zakharov V.E. and Shabat, A.B., "Shema integrirovaniya nelineinyh uravnenii matematicheskoi fiziki metodom obratnoy zadachi rasseyaniya [The integration scheme of nonlinear equations of mathematical physics by the method of the inverse scattering problem I ]" , Funk.analiz. and its adj. vol. 8, no 3 (1974): 226-235.
[5] Zakharov V.E. and Shabat, A.B., "Integrirovaniya nelineinyh evaliucionih uravnenii matematicheskoi fiziki metodom obratnoy zadachi rasseyaniya [The integration scheme of nonlinear equations of mathematical physics by the method of the inverse scattering problem II ]" , Funk.analiz. and its adj. vol. 13, no 3 (1979): 98.
[6] Takhtajan L.A., "Integration of the continuous Heisenberg spin chain through the inverse scattering method " , Phys. Lett. 69A, no 2b (1977): 235-237.
[7] Konopelchenko B.G., "Quasiclassical generalized Weierstrass representation and dispersionless DS equation" , Journal of Physics A. vol. 40, no 46 (2007). 995-1005.
[8] Brunelli J.C., "Dispersionless Limit of Integrable Models" , Braz.J.Phys. vol. 30 (2000): 455-468.
[9] Blaszak M., Szablikowski B.M., "From dispersionless to soliton systems via Weyl-Moyal like deformations" , J. Phys. A: Math. Gen. vol. 36 (2003): 12181.
[10] Blaszak M., Szablikowski B.M., "Classical R-matrix theory of dispersionless system:I.(1+1)-dimension theory" , Phys. A: Math. Gen. vol. 35 (2002): 10325.
[11] Ferapontov E.V., Moro A.and Novikov V.S., "Integrable equations in 2+1-dimensions: deformations of dispersionless limits " , Journal of Physics A. vol. 40 (2007). 345205.
[12] Konno K., Oono H., "New coupled integrable dispersionless equation" , J. Phys. Soc. Jpn. vol. 63, no 5 (1993). 377-378.
[13] Konno K., "Integrable coupled dispersionless equations" , Applicable Analysis.In. J vol. 57, no 1 (1995). 209-220.
[14] Zhaqilao, Zhao Yi-Long and Li Zhi-Bin, "N-solution of a coupled integrable dispersionless equation" , CH. Phys. Soc and IOP Publishing Ltd. vol. 18, no 5 (2009). 1780-1786.
[15] Yi G., "On the dispersionless Davey-Stewartson system: Hamiltonian vector fields Lax pair and relevant nonlinear Riemann-Hilbert problem for dDS-II system" , [arXiv:1809.04225].
[16] Yi G., "On the dispersionless Davey-Stewartson hierarchy: Zakharov- Shabat equations, twistor structure and Lax- Sato formalism " , [arXiv:1812.10220].
[17] Shen S., Feng B.F. and Ohta Y., "From the real and complex coupled dispersionless equations to the real and complex short pulse equations " , Stud. Appl. Math. vol. 136 (2016). 6488.
[18] Szablikowski B.M., Blaszak M., "Meromorphic Lax representation of (1+1) -dimensional multi-Hamiltonnian dispersionless systems " , J. Math. Phys. vol. 47 (2006). 092701.
[19] Makhankov V.G., Myrzakulov R., "σ-modelnie predctavlenie systemy uravneniy Yidjimi- Oikavi [ sigma -model representation of the Yadjima-Oikawa system of equations ]" , Soobshch. JINR. Dubna. vol. 5, no 3 (1974): 1-6.
[20] Myrzakulov A. and Myrzakulov R., "Integrable geometric flows of interacting curves/surfaces, multilayer spin systems and the vector nonlinear Schrodinger equation " , International Journal of Geometric Methods in Modern Physics. vol. 13, no 1 (2016). 1550134.
[21] Myrzakulov R., Martina L., Kozhamkulov T.A., Myrzakul Kur., "Integrable Heisenberg ferromagnets and soliton geometry of curves and surfaces" , Nonlinear Physics. London. vol. 1 (2003). 248-253.
[22] Bekova G., Nugmanova G., Shaikhova G., Yesmakhanova K., Myrzakulov R., "Coupled Dispersionless and Generalized Heisenberg Ferromagnet Equations with Self-Consistent Sources: Geometry and Equivalence " , [arXiv:1901.01470].
[23] Myrzakulova Z., Nugmanova G., Yesmakhanova K., Myrzakulov R., "Dispersionless Limits of Integrable Generalized Heisenberg Ferromagnet Equations , [arXiv:1903.09195]..
[24] Myrzakulova Z., Myrzakul A., Nugmanova G.,Myrzakulov R., "Notes on Integrable Motion of Two Interacting Curves and Two-layer Generalized Heisenberg Ferromagnet Equations" , [DOI:10.13140/RG.2.2.35045.04320].
[25] Myrzakulova Z., Myrzakulov R., "Dispersionless limits of integrable magnetic equations" ,
[DOI:10.13140/RG.2.2.25820.64649].