Об одном приближенном методе нахождения решения полупериодической краевой задачи для систем нагруженных гиперболических уравнений

  • D. S. Dzhumabaev Институт математики МОН РК
  • Zh. M. Kadirbayeva Институт математики МОН РК

Аннотация

Предлагается двухпараметрическое семейство алгоритмов нахожденияприближенного решения полупериодической краевой задачи для системлинейных нагруженных гиперболических уравнений. Установленыдостаточные условия сходимости алгоритма и существованияединственного решения рассматриваемой задачи.

Литература

1. Нахушев А.М. Краевые задачи для нагруженных интегро-дифференциальных уравнений гиперболического типа и
некоторые их приложения к прогнозу почвенной влаги //Дифференц. уравнения. 1979. Т. 15, \No~1. C. 96-105.
2. Нахушев А.М. Уравнения мат. биологии М.: Высшая школа 1995. 205 с.
3. Дикинов Х.Ж., Керефов А.А., Нахушев А.М. Об одной краевой задаче для нагруженного уравнения
теплопроводности // Дифференц. уравнения. 1976. Т. 12, \\ \No 1. C.77-79.
4. Абдуллаев В.М., Айда-Заде К.Р. О численном решении нагруженных систем обыкновенных дифференциальных уравнений
// Ж. вычисл. матем. и матем. физ. 2004. Т. 44, \No 9. C. 1585-1595.
5. Бакирова Э.А. О необходимых и достаточных условиях однозначной разрешимости двухточечной
краевой задачи для нагруженных дифференциальных уравнений // Математический журнал. 2005. Т. 5, \No 3. С. 25-34.
6. Джумабаев Д.С. Признаки однозначной разрешимости линейной краевой задачи для обыкновенного дифференциального
уравнения // Ж. вычисл. матем. и матем. физ. 1989. Т.29, \No 1. C. 50-66.
7. Бакирова Э.А., Джумабаев Д.С. Об одной аппроксимации двухточечной краевой задачи для систем
интегро-дифференциальных уравнений // Математический журнал. 2005. Т. 5, \No 4. С. 34-43.
8. Асанова А.Т., Джумабаев Д.С. Однозначная разрешимость нелокальных краевых задач для систем гиперболических
уравнений // Дифференц. уравнения. 2003. Т. 39, \No 10. C.1343-1354.
9. Асанова А.Т., Джумабаев Д.С. Однозначная разрешимость краевой задачи с данными на
характеристиках для систем гиперболических уравнений // Ж. вычисл.матем. и матем. физ. 2002. Т. 42, \No 11. C. 1673-1685.
Опубликован
2019-07-03
Раздел
Вычислительная математика и математическое моделирование