To solving the heat equation with fractional load
DOI:
https://doi.org/10.26577/JMMCS-2019-4-m6Keywords:
load, fractional derivative, Volterra equationAbstract
In the paper, the solvability problems of an nonhomogeneous boundary value problem
in the first quadrant for a fractionally loaded heat equation are studied. Feature of this problem
is that, firstly, the loaded term is presented in the form of the Caputo fractional derivative with
respect to the time variable, secondly, the order of the derivative in the loaded term is less than
the order of the differential part and, thirdly, the point of load is moving (with constant or variable
velocity). By inverting the differential part, the problem is reduced to the Volterra integral equation
of the second kind, the kernel of which contains the function of a parabolic cylinder. The kernel of
the obtained integral equation is estimated and it is shown that the kernel of the equation has a
weak singularity (under certain restrictions on the load), this is the basis for the statement that the
loaded term in the equation is a weak perturbation of its differential part. In addition, the limiting
cases of the order of the fractional derivative are considered. It is proved that there is continuity
on the right in the order of the fractional derivative. Continuity on the left is broken. The results
of the paper may turn out to be useful in the study of fractionally loaded heat equations in the
case, when the loaded term is presented in the form of a Caputo fractional derivative with respect
to the spatial variable.
References
(1995): 205.
[2] Nakhushev A.M. "Nagruzhennye uravnenija i ih prilozhenija [Loaded equations and their applications]" , Diff. equations
vol. 19, no 1 (1983): 86-94.
[3] Nakhushev A.M. "O zadache Darbu dlja odnogo vyrozhdajushhegosja nagruzhennogo integro - differencial’nogo uravnenija
vtorogo porjadka [The Darboux problem for a certain degenerate second order loaded integrodifferential equation]" , Diff.
equations vol. 12, no 1 (1976): 103-108.
[4] Dzhenaliev M.T. "K teorii linejnyh kraevyh zadach dlja nagruzhennyh differencial’nyh uravnenij [On the theory of linear
boundary value problems for loaded differential equations]" , Almaty: ITPM Computer Center (1995): 270.
[5] Dzhenaliev M.T. "O nagruzhennyh uravnenijah s periodicheskimi granichnymi uslovijami [On loaded equations with
periodic boundary conditions]" , Diff. equations vol. 37, no 1 (2001): 48-54.
[6] Dzhenaliev M.T. "Ob odnoj kraevoj zadache dlja linejnogo nagruzhennogo parabolicheskogo uravnenija s nelokal’nymi
granichnymi uslovijami [About Boundary Value Problem for Linear Loaded Parabolic Equation with Non-local Boundary
Conditions]" , Diff. equations vol. 27, no 10 (1991): 1825-1827.
[7] Dzhenaliev M.T., Ramazanov M.I. "Nagruzhennye uravnenija - kak vozmushhenija differencial’nyh uravnenij [Loaded
equations as perturbations of differential equations]" , Almaty: Gylym (2010): 334.
[8] Oldham K.B., Spanier J. "The Fractional Calculus" , New York-London: Academic Press (1974).
[9] Samko S.G., Kilbas A.A., Marichev O.I. "Integraly i proizvodnye drobnogo porjadka i nekotorye ih prilozhenija [Integrals
and derivatives of fractional order, and some applications]" , Minsk: Nauka i tehnika (1987): 688.
[10] Samko S.G., Kilbas A.A., Marichev O.I. "Fractional Integrals and Derivatives. Theory and Applications" , New York:
Gordon and Breach (1993): 1006.
[11] Nakhushev A.M. "Jelementy drobnogo ischislenija i ih prilozhenija [Elements of fractional calculus and their applications]" ,
Nal’chik: NII PMA KBNC RAN, (2000): 298.
[12] Le Mehaute A., Tenreiro Machado J.A., Trigeassou J.C., Sabatier J. "(eds.) Fractional Differentiation and its
Applications" , Bordeaux: Bordeaux Univ, (2005).
[13] Pskhu A.V. "Uravnenija v chastnyh proizvodnyh drobnogo porjadka [Partial differential equations of fractional order]" ,
M.: Nauka, (2005): 199.
[14] Gekkieva S.Kh. "Kraevye zadachi dlja nagruzhennyh parabolicheskih uravnenij s drobnoj proizvodnoj po vremeni: avtoref.
... kand. fiz.-mat. nauk:.01.01.02 [Boundary value problems for loaded parabolic equations with a fractional time derivative:
author. ... cand. Phys.-Math. Sciences: .01.01.02]" , Nal’chik: NII PMA KBNC RAN, (2003): 14.
[15] Kerefov A.A., Shkhanukov-Lafishev M.Kh., Kuliev R.S. "Kraevye zadachi dlja nagruzhennogo uravnenija teploprovodnosti
s nelokal’nymi uslovijami tipa Steklova //Neklassicheskie uravnenija matematicheskoj fiziki: trudy seminara,
posvjashhennogo 60-letiju professora V.N. Vragova [Boundary value problems for the loaded heat equation with nonlocal
conditions of Steklov type // Non-classical equations of mathematical physics: proceedings of a seminar dedicated
to the 60th anniversary of Professor V.N. Vragov]" , Novosibirsk: Izd-vo IM, (2005): 152-159.
[16] Caputo M. "Lineal model of dissipation whose Q is almost frequancy independent - II" , Geophys. J. Astronom. Soc.,
vol. 13 (1967): 529-539.
[17] Caputo M. "Elasticita e Dissipazione" , Bologna: Zanichelli, 1969.
[18] Polyanin A.D. "Spravochnik po linejnym uravnenijam matematicheskoj fiziki [Handbook of linear equations of
mathematical physics]" , M.: FIZMATLIT, (2001): 576.
[19] Prudnikov A.P., Brychkov Yu.A., Marichev O.I. "Integraly i rjady. T.1. Jelementarnye funkcii. — 2-e izd [Integrals and
series. V.1. Elementary functions. - 2nd ed.]" , M.: FIZMATLIT, (2002): 632.
[20] Gradshteyn I.S., Ryzhik I.M. "Table of Integrals, Series, and Products / Seventh Edition" , New York: AP, (2007): 171.