The inverse problem for determining the right part of the pseudo-parabolic equation

Authors

DOI:

https://doi.org/10.26577/JMMCS.2020.v105.i1.08
        138 170

Keywords:

Inverse problem, pseudoparabolic equations, theorems of the existence and uniqueness of the solution, classical solution

Abstract

In this pap er the inverse problem of determining a solution and an unknown right-hand side that
dep ends only on spatial variable for the linear pseudo-parab olic equation of the third order is
investigated. In inverse problems, together with the initial and b oundary conditions also consider
an additional information, the need for which is due to the presence of unknown co efficients or the
right side of the equation. In this pap er, as additional information the integral overdetermination
condition is considered. Inverse problems of determining the right-hand side of a differential equation arise in the mathematical mo deling of some physical pro cesses in the case when, in addition
to solving the equation, it is necessary to restore the action of external sources. To day, studies
of direct and inverse problems for pseudo-parab olic equations are rapidly developing due to the
needs of mo deling and pro cess control in thermophysics, hydro dynamics and continuum mechanics. Similar pseudo-parab olic equations to considered in this pap er arise in the description of heat
and mass transfer pro cesses, pro cesses of motion of non-Newtonian fluids, wave pro cesses, and
in many other areas. Using series expansion, the existence and uniqueness theorems of classical
solutions to this problem are proved. The result of this work is a solution presented in the series
form, which allows the necessary numerical calculations to b e p erformed with a given accuracy.

References

[1] Kozhanov А.I. "О razreshimosti obratnoi zadachi nahozhdenia koeffitsienta teploprobodnosti". Sibirski mat. zhurnal., vol. 46, no 5 (2005):1053-1071.
[2] Cannon, J.R. "Determination of a control parameter in a parabolic partial differential equation". J. Austral.Math. Soc. Ser., vol. 33 (1991): 149-163.
[3] Kaminyn, B.L. "Ob obratnoi zadache opredelenia praboi chasti v parabolicheskim urabnenii s uslobiem integralnogo pereopredelenia". Matem. zametki., vol.77, no 4 (2005): 522-534.
[4] Kabanihin С. И. "Obratnye i nekorretnye zadachi". Sib. nauch. izd-vo., (2009).
[5] Belov Yu. Ya. "Inverse problems for parabolic equations". Utrecht. VSP., (2002).
[6] Prilepko A. I., Orlovsky D. G., Vasin I. A. "Methods for solving inverse problems in mathematical physics". New York: Marcel Dekker, Inc., 1999.
[7] Isakov V. "Inverse priblems for equations of parabolic type"// Berlin: Springer-Verl., 2006.
[8] Kaliev I.A, Sabitova M.M. "Problems of determining the temperature and density of heat sources from the initial and final temperatures". Russian Mathematics., vol. 56, no 2. (2012): 60-64.
[9] Ibanchov N.I. "Ob oporedelenii zabiciachego ot bremeni starshego koeffitsienta b para bolicheskim urabnenii". Sibirski mat. zhurnal., vol. 39, no 3. (1998): 539-550.
[10] Asanov A., Atamanov E. R. "Obratnaia zadacha dlia operatornogo pseudoparabolicheskogo integrodifferentsialnogo urabnenia". Sib. mat. zhurn., vol. 38, no 4. (1995): 752-762.
[11] Ablabekov B.S. "Obrathye zadazhi dlia pseudoparabolicheskih urabnenii". - (Bishkek: Ilim, 2001), 181.
[12] Abylkairov U. U., Kh. Khompysh "An inverse problem of identifring the coefficient in Kelvin-Voight equations". Applied
Mathematical Sciences., vol. 9. no 102. (2015): 5079 - 5088.
[13] Fedorov V. E., Urazaeva A. V. "An inverse problem for linear Sobolev type equation". J. of Inverse and Ill-posed Problems., vol. 33. (2004): 387-395.
[14] Lyubanova A. Sh., Tani A. "An inverse problem for pseudoparabolic equation of fitration: the existence, uniqueness and regularity". Appl. Anal., vol. 90. (2011): 1557-1568.
[15] Ionkin N. I., Moiseev Е. I. "O zadache dlia urabnenia teploprobeodnosti s dbutochechnymi kraebymi usloviami". Differents. urabnenia., vol. 35, no 8. (1999): 1094-1100.
[16] Moiseev Е. I. "O reshenii spektralnom metodom odnoi nelokalnoi kraeboi zadachi ". Differents. urabnenia., vol. 35, no 8. (1999): 1094-1100.
[17] V. G Zvyagin and M. V. Turbin. "Investigation of initial-boundary value problems for mathematical models of the motion of Kelvin-Voigt fluids". Translated from the Russian in J. Math. Sci., vol. 168, no 2. (2010): 157-308.
[18] R. E. Showalter, T. W. Ting. "Pseudoparabolic partial differential equations". SIAM J. Math. Anal., vol. 1. (1970): 1-26.
[19] A. G. Sbeshnikov, A. B. Alshin, M. O. Korpusov, Iu. D. Pletner "Lineinye i nelineinye urabnenia sobolevckogo tipa"// Moskba: Fizmatlit., 2007.

Downloads

How to Cite

Khompysh, K., & Shakir, A. (2020). The inverse problem for determining the right part of the pseudo-parabolic equation. Journal of Mathematics, Mechanics and Computer Science, 105(1), 87–98. https://doi.org/10.26577/JMMCS.2020.v105.i1.08