On degenerate Sturm-Liouville b oundary value problems on geometric graphs
DOI:
https://doi.org/10.26577/JMMCS.2020.v105.i1.07Keywords:
degenerate boundary value problems, non-degenerate boundary value problems, regular and irregular boundary conditions, Sturm-Liouville boundary value problem, star graphAbstract
The concept of degenerate and non-degenerate boundary value problems was introduced
by V.A. Marchenko. Non-degenerate boundary value problems according to the classification of
Birkhoff are divided into regular and irregular boundary conditions. This paper gives examples of
degenerate and non-degenerate Sturm-Liouville boundary value problems with Birkhoff irregular
boundary conditions on a star graph. These examples summarize the results of V.A. Sadovnichy
and his co-authors, as well as the work of B.E. Kanguzhin with co-authors. For the Sturm-Liouville
operator with symmetrical coefficients on an interval similar effect was observed degeneration in
the works of M. Stoun. In the case of higher-order differential operators with symmetric coefficients
on the interval, the degeneracy effect is indicated in V.A. Sadovnichy and B.E. Kanguzhin. The
effect when the same Sturm-Liouville boundary value problem, depending on the properties of
the potential, can have a discrete or continuous spectrum was previously noted in the monograph
by B.E. Kanguzhin and M.A. Sadybekov. The basic properties of the system of eigenfunctions
and associated functions in the space of quadratically summable functions of Birkhoff irregular
boundary value Sturm-Liouville boundary value problems on a finite interval were also studied
there.
References
P.T. Uchebnoe posobie (2010): 181.
[2] Emelichev V.A. i dr., "Lektsii po teorii grafov [Lectures on graph theory]" , M.: Nauka (1990): 382.
[3] Marchenko V.A., "Operatoryi Shturma-Liuvillya i ih prilozheniya [Sturm-Liouville operators and their applications]" ,
Kiev: Naukova dumka (1977): 33-50.
[4] Naymark M.A., "Lineynyie differentsialnyie operatoryi [Linear Differential Operators]" , M: Nauka (1969): 26-47.
[5] Kanguzhin B.E., Zhapsarbaeva L.K., Seitova A.A., "Assimptotika sobstvennyih znacheniy operatora dvuhkratnogo differentsirovaniya s regulyarnyimi po Kirhgofu granichnyimi usloviyami na grafe-zvezde [Asymptotics of the eigenvalues of two-fold differentiation operator with Kirchhoff regular boundary conditions on a star graph]" , Matematicheskiy zhurnal Vol. 18, No 2 (68) (2018).
[6] Sadovnichiy V.A., Sultanaev Ya.T., Ahtyamov A.M., "Vyirozhdennyie kraevyie usloviya dlya zadachi Shturma-Liuvillya na geometricheskom grafe [Degenerate boundary conditions for the Sturm-Liouville problem on a geometric graph]" , Differentsialnyie uravneniya Vol. 55, No 4 (2019): 514-523.
[7] Sadovnichiy V.A., Kanguzhin B.E., "O svyazi mezhdu spektrom differentsialnogo operatora s simmetricheskimi koeffitsientami i kraevyimi usloviyami [On the connection between the spectrum of a differential operator with symmetric coefficients and boundary conditions]" , Dokl. AN SSSR Vol. 267, No 2 (1982): 310-313.
[8] Ahtyamov A.M., "Vyirozhdennyie kraevyie usloviya dlya differentsialnogo uravneniya tretego poryadka [Degenerate boundary conditions for a third-order differential equation]" , Differentsialnyie uravneniya Vol. 54, No 4 (2018): 427.
[9] Dezin A.A., "Spektralnyie harakteristiki obschih granichnyih zadach dlya operatora D 2 [Spectral characteristics of general boundary value problems for the operator D 2]" , Mat. Zametki. Vol. 37, No 2 (1985): 249-256.
[10] Lang P., Locker J., "Spectral theory of two-point differential operators determined by D 2. I. Spectral properties" , J. of Math. Anal. and Appl. Vol. 141 (1989): 538-558.
[11] Biyarov B.N., Dzhumabaev S.A., "Kriteriy volterrovosti kraevyih zadach dlya uravneniya Shturma-Liuvillya [Volterra criterion for boundary value problems for the Sturm-Liouville equation]" , Mat.zametki Vol. 56, No 1 (1994): 143-146.
[12] Dzhumabaev S.A., Kanguzhin B.E., "Ob odnoy ne regulyarnoy zadache na konechnom otrezke [On a non-regular problem on a finite interval]" , Izv. AN KazSSR. Ser. fiz.-mat. nauk. No 1 (1988): 14-18.
[13] Makin A.S., "Ob obratnoy zadache dlya operatora Shturma-Liuvillya s vyirozhdennyimi kraevyimi usloviyami [On the inverse problem for the Sturm-Liouville operator with degenerate boundary conditions]" , Differents. uravneniya Vol. 50, No 10 (2014): 1408-1411.
[14] Kanguzhin B.E., Sadybekov M.A., "Differentsialnyie operatoryi na otrezke. Raspredelenie sobstvennyih znacheniy [Differential operators on a segment. Distribution of eigenvalues]" , Shyimkent: Galym (1996): 270.