Модельная задача Веригина с малым параметром.

Authors

  • Е С Алимжанов Казахский национальный университет имени аль-Фараби
        59 50

Keywords:

Задача Веригина

Abstract

С помощью преобразования Лапласа найдено в явном виде решение модельной задачи Веригина с малым параметром, возникащей при решении нелинейной задачи с условием Веригина на свободной границе. Установлены равномерные относительно малого параметра оценки решения в пространстве Гельдера.

References

[1] Веригин Н.Н. Нагнетание вяжущих растворов в горные породы с целях повышения прочности и водонепроницаемости основания гидротехнических сооружений // Изв. АН СССР, Отдел техн. наук, 1952. – С. 674-687.

[2] Bizhanova G.I. Uniform estimates of the solution to the linear two-phase Stefan problem with a small prameter // Math. Journal, 1 (2005). – C. 19-28.

[3] Бижанова Г.И. Оценки решения n−мерной задачи сопряжения для уравнения теплопроводности в весовых гельдеровских нормах, I, II. // Известия АН РК, сер. физ.-мат. № 5 (1992). – С. 7-13; № 1 (1993), – С. 11-17.

[4] Бейтмен Г., Эрдейи А. Таблицы интегральных преобразований. Т. 1. – М.: Наука, 1969. – 344 с.

[5] Ладыженская О.А., Уральцева Н.Н., Солонников В.А. Линейные и квазилинейные уравнения параболического типа. – М.: Наука, 1967.

Downloads

How to Cite

Алимжанов, Е. С. (2011). Модельная задача Веригина с малым параметром. Journal of Mathematics, Mechanics and Computer Science, 68(1), 30–37. Retrieved from https://bm.kaznu.kz/index.php/kaznu/article/view/170