Numerical study of combustion efficiency in supersonic free shear layer. Численное изучение полноты сгорания в сверхзвуковом свободном сдвиговом слое.
Ключевые слова:
supersonic shear flow, mixing layer, hydrogen combustion, ENO-scheme, seve, chemical reactions mechanism, combustion efficiency, сверхзвуковое сдвиговое течение, слой смешения, горение водорода, ENOсхема, семи стадийный механизм химических реакций...Аннотация
Numerical study of two-dimensional supersonic hydrogen-air mixing and combustion in free shear layer is performed. The system of Navier-Stokes equations for multispecies reacting flow is solved using ENO scheme of third-order in accuracy. In order to produce the rollup and pairing of vortex rings, an unsteady boundary condition is applied at the inlet plane. At the outflow, the non-reflecting boundary condition is taken. For the description of reaction pathways of hydrogen, a seven species chemical reaction model by Jachimowski is adopted. The combustion efficiency is reported for different Mach number of flows. В работе представлено численное изучение двумерного сверхзвукового смешения и горения водородно-воздушной смеси в свободном сдвиговом слое. Система уравнений Навье-Стокса для многокомпонентного реагирующего газа была решена с использованием ENOсхемы третьего порядка точности. Для того, чтобы получить образование пары закручивающихся вихрей, во входном сечении реализована постановка нестационарных граничных условий. На выходном сечении было использовано граничное условие не отражения. Для моделирования протекания химических реакций была использована семи стадийная модель Джачимовского. Полнота сгорания смеси была представлена для различных чисел Маха потоков.Библиографические ссылки
[1] Zambon, A.C., Sriram, A.T., Chelliah, H.K., 2007. Development and Implementation
of Explicit Reduced Reaction Models in Supersonic Reacting Shear Flow Simulations. 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA-2007-772.
[2] Sriram, A.T., Zambon, A.C., Chelliah, H.K., 2008. Validation of Ethylene-Air Reduced
Reaction Models in Supersonic Shear Flows. 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA-2008-993.
[3] Da Silva, L. F. F., Deshaies, B., Champion, M., 1993. Some Specific Aspects of Combustion in Supersonic H2-Air Laminar Mixing Layers. Combustion Science and
Technology, Vol. 89, 317-333.
[4] Nishioka, M., Law, C.K., 1997. A Numerical Study of Ignition in the Supersonic Hydrogen/Air Laminar Mixing Layer. Combustion and Flame, Vol. 108, 199-219.
[5] Fang, X., Liu, F., Sirignano, W.A., 2001. Ignition and Flame Studies for an Accelerating
Transonic Mixing Layer. Journal of Propulsion and Power. Vol. 17, No. 5, 1058-1066.
[6] Ju, Y., Niioka, T., 1994. Reduced Kinetic Mechanism of Ignition for Nonpremixed Hydrogen/Air in a Supersonic Mixing Layer. Combustion and Flame, Vol. 99, 240-246.
[7] Ju, Y., Niioka, T., 1995. Ignition Simulation of Methane/Hydrogen Mixtures in a Supersonic Mixing Layers. Combustion and Flame, Vol. 102, 462-470.
[8] Tahsini, A.M., 2011. Ignition Analysis in Supersonic Turbulent Mixing Layer. World Academy of Science, Engineering and Technology 57, 353-357.
[9] Tahsini, A.M., 2012. Ignition Time Delay in Swirling Supersonic Flow Combustion. World Academy of Science, Engineering and Technology 70, 623-627.
[10] Chakraboty, D., Paul, P.J., Mukunda, H.S., 2000. Evaluation of Combustion Models for
High Speed H2/Air Confined Mixing Layer Using DNS Data. Combustion and Flame, Vol. 121, 195-209.
[11] Kee, R.J., Rupley, F.M., Miller, J.A., 1989. CHEMKIN-II: a Fortran chemical kinetic
package for the analysis of gas-phase chemical kinetics. SANDIA Report SAND89-8009.
[12] Poinsot, T.J., Lele, S.K., 1992. Boundary conditions for direct simulation of compressible viscous flows. Journal of Computational Physics, No. 101, 104-129.
[13] Dale A. Hudson, 1996. Numerical simulation of a confined supersonic shear layer. PhD
dissertation, 1-181.
[14] Harten, A., Osher, S., Engquist, B., Chakravarthy, S.R., 1986. Some Results on
Uniformly High-Order Accurate Essentially Non-oscillatory Schemes. Applied Num. Math., Vol.2., 347-377.
[15] Yang, J.Y., 1991. Third order nonoscillatory schemes for the Euler equations. AIAA J.,
Vol. 29, No. 10, 1611-1618.
[16] Bruel, P., Naimanova, A. Zh., 2010. Computation of the normal injection of a hydrogen jet into a supersonic air flow. Thermophysics and Aeromechanics, Vol. 17, No. 4, 531-542.
[17] Belyayev, Ye., Naimanova, A. Zh., 2012. Two-Dimensional Supersonic Flow with
Perpendicular Injection of the Gas. Chapter 2 InTech open access book “Advanced
Methods for Practical Applications in Fluid Mechanics”, 23-44.
[18] Belyayev Ye., Kaltayev A., Naimanova A. Zh., 2010. Supersonic Flow with Perpendicular Injection of a Hydrogen. Proceedings of 2010 2nd International Conference on Computer Engineering and Technology, Vol. 5, Mechanical and Aerospace Engineering, V5-531-534.
of Explicit Reduced Reaction Models in Supersonic Reacting Shear Flow Simulations. 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA-2007-772.
[2] Sriram, A.T., Zambon, A.C., Chelliah, H.K., 2008. Validation of Ethylene-Air Reduced
Reaction Models in Supersonic Shear Flows. 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA-2008-993.
[3] Da Silva, L. F. F., Deshaies, B., Champion, M., 1993. Some Specific Aspects of Combustion in Supersonic H2-Air Laminar Mixing Layers. Combustion Science and
Technology, Vol. 89, 317-333.
[4] Nishioka, M., Law, C.K., 1997. A Numerical Study of Ignition in the Supersonic Hydrogen/Air Laminar Mixing Layer. Combustion and Flame, Vol. 108, 199-219.
[5] Fang, X., Liu, F., Sirignano, W.A., 2001. Ignition and Flame Studies for an Accelerating
Transonic Mixing Layer. Journal of Propulsion and Power. Vol. 17, No. 5, 1058-1066.
[6] Ju, Y., Niioka, T., 1994. Reduced Kinetic Mechanism of Ignition for Nonpremixed Hydrogen/Air in a Supersonic Mixing Layer. Combustion and Flame, Vol. 99, 240-246.
[7] Ju, Y., Niioka, T., 1995. Ignition Simulation of Methane/Hydrogen Mixtures in a Supersonic Mixing Layers. Combustion and Flame, Vol. 102, 462-470.
[8] Tahsini, A.M., 2011. Ignition Analysis in Supersonic Turbulent Mixing Layer. World Academy of Science, Engineering and Technology 57, 353-357.
[9] Tahsini, A.M., 2012. Ignition Time Delay in Swirling Supersonic Flow Combustion. World Academy of Science, Engineering and Technology 70, 623-627.
[10] Chakraboty, D., Paul, P.J., Mukunda, H.S., 2000. Evaluation of Combustion Models for
High Speed H2/Air Confined Mixing Layer Using DNS Data. Combustion and Flame, Vol. 121, 195-209.
[11] Kee, R.J., Rupley, F.M., Miller, J.A., 1989. CHEMKIN-II: a Fortran chemical kinetic
package for the analysis of gas-phase chemical kinetics. SANDIA Report SAND89-8009.
[12] Poinsot, T.J., Lele, S.K., 1992. Boundary conditions for direct simulation of compressible viscous flows. Journal of Computational Physics, No. 101, 104-129.
[13] Dale A. Hudson, 1996. Numerical simulation of a confined supersonic shear layer. PhD
dissertation, 1-181.
[14] Harten, A., Osher, S., Engquist, B., Chakravarthy, S.R., 1986. Some Results on
Uniformly High-Order Accurate Essentially Non-oscillatory Schemes. Applied Num. Math., Vol.2., 347-377.
[15] Yang, J.Y., 1991. Third order nonoscillatory schemes for the Euler equations. AIAA J.,
Vol. 29, No. 10, 1611-1618.
[16] Bruel, P., Naimanova, A. Zh., 2010. Computation of the normal injection of a hydrogen jet into a supersonic air flow. Thermophysics and Aeromechanics, Vol. 17, No. 4, 531-542.
[17] Belyayev, Ye., Naimanova, A. Zh., 2012. Two-Dimensional Supersonic Flow with
Perpendicular Injection of the Gas. Chapter 2 InTech open access book “Advanced
Methods for Practical Applications in Fluid Mechanics”, 23-44.
[18] Belyayev Ye., Kaltayev A., Naimanova A. Zh., 2010. Supersonic Flow with Perpendicular Injection of a Hydrogen. Proceedings of 2010 2nd International Conference on Computer Engineering and Technology, Vol. 5, Mechanical and Aerospace Engineering, V5-531-534.
Загрузки
Как цитировать
Belyayev, Y. (2013). Numerical study of combustion efficiency in supersonic free shear layer. Численное изучение полноты сгорания в сверхзвуковом свободном сдвиговом слое. Вестник КазНУ. Серия математика, механика, информатика, 78(3), 5–13. извлечено от https://bm.kaznu.kz/index.php/kaznu/article/view/100
Выпуск
Раздел
Механика, Математика, Информатика