Нелокальная задача сопряжения для нелинейных уравнений в частных производных третьего порядка
Ключевые слова:
нелокальные задачи, нелинейные уравненийАннотация
В статье рассматривается нелокальные задачи для нелинейных уравнений в частных производных третьего порядкаБиблиографические ссылки
1. Жестков С.В. О задаче Гурса с интегральными краевыми условиями // Украинск. матем. журнал. - 1990. - Т.42. - N 1. - С. 132-135.
2. Пулькина Л.С., Климова Е.Н. Нелокальная краевая задача для нелинейного уравнения колебаний струны // Мат.моделирование и краевые задачи : Тр. третьей всерос. науч. конф. Ч. З.: Дифференциальные уравнения и краевые задачи. - Самара : СамГТУ, 2006. -. 192-195.
3. Бештоков М. Ч., Шхануков - Лафишев М. Х. Об одной априорной оценке решения нелокальной краевой задачи для псевдопараболического уравнения третьего порядка // Мат. моделирование и краевые задачи: Тр. третьей всерос. науч. конф. Ч. З.: Дифференциальные уравнения и краевые задачи. - Самара: СамГТУ, 2006. - С. 62-65.
4. Нахушев А.М. Уравнения математической биологии. -М.: Высш. шк., 1995. -301 с.
5. Джураев Т.Д., Попелек Я. О классификации и приведении к каноническому виду уравнений с частным производными третьего порядка // Дифференц. уравнения. - 1991. - Т. 27. - N 10. - С. 1734-1745
6. Смирнов М.М Уравнения смешанного типа . - М.: Наука, 1970. - 296 с.
7. Гвазава Дж.К. О некоторых классах квазилинейных уравнений смешанного типа. Тбилиси: Мецниереба, 1981. - 94 с.
8. Майоров И.В Об одной нелинейной системе уравнений смешанного типа. Докл. АН СССР. - 1968. - Т. 183, N2. - С. 280-283.
9. Сопуев У.А Краевые задачи для нелинейного уравнения смешанного типа третьего порядка // Естественные и технические науки . - М.: Спутник+, 2005. N6. - С. 14-20
10. Сопуев А., Кожобеков К.Г. Задача сопряжения для нелинейных уравнений в частных производных третьего порядка // Исслед. по интегро-дифференц. уравнениям. -Бишкек: Илим, 2006. - Вып.34. - С. 146-151.
11. Колмогоров А.Н., Фомин С.В., Элементы теории функций и функционального анализа. - М.: Наука, 1968.
- 496 с.
12. Cattabriga L. Annali della Seuola normole Supericri di pisa e mat. - 1959. - Vol. 13. - No.2 - P. 163-203.
13. Джураев Т.Д. Краевые задачи для уравнений смешанного и смешанно - составного типовю - Ташкент: Фан, 1979. - 240 с.
14. Абдиназаров С. Краевые задачи для уравнений с кратными характеристиками : Дис.... докт.физ. - мат. наук: 01.01.02. - Ташкент, - 1992. - 239 с.
2. Пулькина Л.С., Климова Е.Н. Нелокальная краевая задача для нелинейного уравнения колебаний струны // Мат.моделирование и краевые задачи : Тр. третьей всерос. науч. конф. Ч. З.: Дифференциальные уравнения и краевые задачи. - Самара : СамГТУ, 2006. -. 192-195.
3. Бештоков М. Ч., Шхануков - Лафишев М. Х. Об одной априорной оценке решения нелокальной краевой задачи для псевдопараболического уравнения третьего порядка // Мат. моделирование и краевые задачи: Тр. третьей всерос. науч. конф. Ч. З.: Дифференциальные уравнения и краевые задачи. - Самара: СамГТУ, 2006. - С. 62-65.
4. Нахушев А.М. Уравнения математической биологии. -М.: Высш. шк., 1995. -301 с.
5. Джураев Т.Д., Попелек Я. О классификации и приведении к каноническому виду уравнений с частным производными третьего порядка // Дифференц. уравнения. - 1991. - Т. 27. - N 10. - С. 1734-1745
6. Смирнов М.М Уравнения смешанного типа . - М.: Наука, 1970. - 296 с.
7. Гвазава Дж.К. О некоторых классах квазилинейных уравнений смешанного типа. Тбилиси: Мецниереба, 1981. - 94 с.
8. Майоров И.В Об одной нелинейной системе уравнений смешанного типа. Докл. АН СССР. - 1968. - Т. 183, N2. - С. 280-283.
9. Сопуев У.А Краевые задачи для нелинейного уравнения смешанного типа третьего порядка // Естественные и технические науки . - М.: Спутник+, 2005. N6. - С. 14-20
10. Сопуев А., Кожобеков К.Г. Задача сопряжения для нелинейных уравнений в частных производных третьего порядка // Исслед. по интегро-дифференц. уравнениям. -Бишкек: Илим, 2006. - Вып.34. - С. 146-151.
11. Колмогоров А.Н., Фомин С.В., Элементы теории функций и функционального анализа. - М.: Наука, 1968.
- 496 с.
12. Cattabriga L. Annali della Seuola normole Supericri di pisa e mat. - 1959. - Vol. 13. - No.2 - P. 163-203.
13. Джураев Т.Д. Краевые задачи для уравнений смешанного и смешанно - составного типовю - Ташкент: Фан, 1979. - 240 с.
14. Абдиназаров С. Краевые задачи для уравнений с кратными характеристиками : Дис.... докт.физ. - мат. наук: 01.01.02. - Ташкент, - 1992. - 239 с.
Загрузки
Как цитировать
Кожобеков, К. Г. (2009). Нелокальная задача сопряжения для нелинейных уравнений в частных производных третьего порядка. Вестник КазНУ. Серия математика, механика, информатика, 60(1), 34–40. извлечено от https://bm.kaznu.kz/index.php/kaznu/article/view/30
Выпуск
Раздел
Дифференциальные уравнения