The Existence of a Generalized Solution Model of Inhomogeneous Fluid in a Magnetic Field
Кілттік сөздер:
permeability, fluid flow rate, conductivity, boundary value, unimproved estimationАннотация
We consider the generalized solutions of the non-homogeneous fluid in a magnetic field.
Proved a theorem for a generalized solution of an inhomogeneous liquid in a magnetic field .In
this article we examine the method of fictitious areas for the non-liner hyperbolic equations. The
estimation of rate of convercence decisions is recaived. In some cases the unimproved estimation of
convergence rate of the decision is received
Библиографиялық сілтемелер
1. Roush P. Computational hydrodynamics. М.: Мir, (1980).
2. O.A. Ladyzhenskaya. The mathematical theory of viscous incompressible flow, Nauka, Moscow (1970).
3. C.S. Smagulov, M.C. Orynhanov An approximate method for solving the equations of hydrodynamics in a
multi-connected domains. -DAN , (1981).
4. Smagulov S., Sirochenko V. N., Orunkhanov M. K. (2001). The numerical research of the liquid flow in regular
areas, Kazakh National University named after Al-Farabi, Inc. Almaty, Kazakhstan.
5. Konovalov A. N. The method of fictitious areas in filtration problems of two-phase liquid in accordance with
the capillary forces, The numerical methods of mechanics, Vol. 3 No. 5. (1972).
6. Vabishevich P. N. The method of fictitious areas in problems of mathematical physics, Moscow State
University, Inc. Moscow. (1991).
7. Lyons G. L. The methods of non-linear limited problem solutions, The world, Inc. Moscow. (1972).
8. Antoncev S. N., Kazhikov A.V., Monakhov V.N. The bordered problems nonhomogeneous liquid mechanics,
NGU special courses, Inc. Novosibirsk. (1975).
9. Mikhailov V. P. Differential equations of derivatives, Science, Inc. Moscow. (1976).
10. He, J. H. Variational iteration method for delay differential equations, Commun. Nonlinear Sci. Numer. Simul,
Vol. 2, pp. 235-236. (1997).
11. He, J. H. A new approach to nonlinear partial differential equations, Commun. Nonlinear Sci. Numer. Simul.
Vol 2, pp. 230-235. (1997).
12. He, J. H. Approximate solution of nonlinear differential equations with convolution product nonlinearities,
Comput. Methods Appl. Mech. Engrg., Vol. 167, pp. 69-73. (1998).
13. He, J. H. Variational approach to the sixth-order boundary value problems, Appl. Math. Comput., Vol. 143,
pp. 537-538. (2003).
14. He, J. H. Variational principle for some nonlinear partial differential equations with variable coefficients,
Chaos Solutions Fractals, Vol. 19, pp. 847-851. (2004).
15. Ma, S. H., Fang, J. P. and Zheng, C. L. New Exact solutions for the (3+1)-dimensional Jimbo-Miwa system.
Chaos, Solutions & Fractals, in press. (2007).
16. Wazwaz, A. M. New solutions of distinct physical structures to high-dimensional nonlinear evolution
equations, Applied Mathematics and Computation, in press. (2007).
17. Wu, X. H. and He, J. H. Exp-function method and its application to nonlinear equations, Chaos, Solutions
& Fractals, doi:10.1016/j.chaos.2007.01.024. (2007).
18. Xu, G. The solution solutions, dominos of the Kadomtsev-Petviashvili and Jimbo-Miwa equations in (3 +
1)-dimensions, Chaos, Solutions and Fractals, 30, PP. 71-76. (2006).
19. Yu, S. J., Toda, K., Sasa, N. and Fukuyama, T. N soliton solutions to the Bogoyavlenskii-Schiff equation and
quest for the soliton solution in (3+1) dimensions. J. Phys. A: Math. Gen., 31, pp. 3337-3347. (1998).
20. Zhang, S. Application of Exp-function method to high-dimensional nonlinear evolution equation, Chaos,
solution & fractals, doi:10.1016/j.chaos.2006.11.014. (2006).
2. O.A. Ladyzhenskaya. The mathematical theory of viscous incompressible flow, Nauka, Moscow (1970).
3. C.S. Smagulov, M.C. Orynhanov An approximate method for solving the equations of hydrodynamics in a
multi-connected domains. -DAN , (1981).
4. Smagulov S., Sirochenko V. N., Orunkhanov M. K. (2001). The numerical research of the liquid flow in regular
areas, Kazakh National University named after Al-Farabi, Inc. Almaty, Kazakhstan.
5. Konovalov A. N. The method of fictitious areas in filtration problems of two-phase liquid in accordance with
the capillary forces, The numerical methods of mechanics, Vol. 3 No. 5. (1972).
6. Vabishevich P. N. The method of fictitious areas in problems of mathematical physics, Moscow State
University, Inc. Moscow. (1991).
7. Lyons G. L. The methods of non-linear limited problem solutions, The world, Inc. Moscow. (1972).
8. Antoncev S. N., Kazhikov A.V., Monakhov V.N. The bordered problems nonhomogeneous liquid mechanics,
NGU special courses, Inc. Novosibirsk. (1975).
9. Mikhailov V. P. Differential equations of derivatives, Science, Inc. Moscow. (1976).
10. He, J. H. Variational iteration method for delay differential equations, Commun. Nonlinear Sci. Numer. Simul,
Vol. 2, pp. 235-236. (1997).
11. He, J. H. A new approach to nonlinear partial differential equations, Commun. Nonlinear Sci. Numer. Simul.
Vol 2, pp. 230-235. (1997).
12. He, J. H. Approximate solution of nonlinear differential equations with convolution product nonlinearities,
Comput. Methods Appl. Mech. Engrg., Vol. 167, pp. 69-73. (1998).
13. He, J. H. Variational approach to the sixth-order boundary value problems, Appl. Math. Comput., Vol. 143,
pp. 537-538. (2003).
14. He, J. H. Variational principle for some nonlinear partial differential equations with variable coefficients,
Chaos Solutions Fractals, Vol. 19, pp. 847-851. (2004).
15. Ma, S. H., Fang, J. P. and Zheng, C. L. New Exact solutions for the (3+1)-dimensional Jimbo-Miwa system.
Chaos, Solutions & Fractals, in press. (2007).
16. Wazwaz, A. M. New solutions of distinct physical structures to high-dimensional nonlinear evolution
equations, Applied Mathematics and Computation, in press. (2007).
17. Wu, X. H. and He, J. H. Exp-function method and its application to nonlinear equations, Chaos, Solutions
& Fractals, doi:10.1016/j.chaos.2007.01.024. (2007).
18. Xu, G. The solution solutions, dominos of the Kadomtsev-Petviashvili and Jimbo-Miwa equations in (3 +
1)-dimensions, Chaos, Solutions and Fractals, 30, PP. 71-76. (2006).
19. Yu, S. J., Toda, K., Sasa, N. and Fukuyama, T. N soliton solutions to the Bogoyavlenskii-Schiff equation and
quest for the soliton solution in (3+1) dimensions. J. Phys. A: Math. Gen., 31, pp. 3337-3347. (1998).
20. Zhang, S. Application of Exp-function method to high-dimensional nonlinear evolution equation, Chaos,
solution & fractals, doi:10.1016/j.chaos.2006.11.014. (2006).
Жүктелулер
Как цитировать
Tukenova, L., & Skakova, A. (2018). The Existence of a Generalized Solution Model of Inhomogeneous Fluid in a Magnetic Field. Қазұу Хабаршысы. Математика, механика, информатика сериясы, 86(3), 92–105. вилучено із https://bm.kaznu.kz/index.php/kaznu/article/view/502
Шығарылым
Бөлім
Технологиялық процестерді математикалық модельдеу