One result on boundedness of the Hilbert transform in Marcinkiewics spaces

Authors

  • Nurken Tursynbayuly Bekbayev Institute of Mathematics and Mathematical Modeling
  • K. S. Tulenov

DOI:

https://doi.org/10.26577/JMMCS.2022.v113.i1.02
        100 69

Keywords:

Symmetric (quasi-)Banach function space, Hilbert transform, Calder´on operator, Marcinkiewicz space

Abstract

In mathematics and in signal theory, the Hilbert transform is an important linear operator that takes a real-valued function and produces another real-valued function. The Hilbert transform is a linear operator which arises from the study of boundary values of the real and imaginary parts of analytic functions. Also, it is a widely used tool in signal processing. The Cauchy integral is a figurative way to motivate the Hilbert transform. The complex view helps us to relate the Hilbert transform to something more concrete and understandable. Moreover, the Hilbert transform is closely connected with many operators in harmonic analysis such as Laplace and Fourier transforms which have numerous application in partial and ordinary differential equations. In this paper, we study boundedness properties of the classical (singular) Hilbert transform acting on Marcinkiewicz spaces. More precisely, we obtain if and only if condition for boundedness of the Hilbert transform in Marcinkiewicz function spaces.

References

[1] Boyd D. The Hilbert transformation on rearrangement-invariant Banach spaces // University of Toronto. - 1966.
[2] Boyd D. The Hilbert transform on rearrangement-invariant spaces // Can. J. Math. - 1967. - V. 19. - P. 599-616.
[3] Bennett C., Sharpley R. Interpolation of Operators // Pure and Applied Mathematics. - 2015. - V. 129. - P. 1-9.
[4] Krein S., Petunin Y., Semenov E. Spectral analysis of a differential operator with an Interpolation of linear operators // Amer. Math. Soc., Providence. - 1982. - V. 54. - P. 669-684.
[5] Lindenstrauss J., Tzafriri L. Classical Banach spaces // Springer-Verlag. - 1979. - V. I and II. - P. 33-46.
[6] Meyer-Nieberg P. Banach Lattices. // Springer-Verlag. - 1991. doi:10.1007/978-3-642-76724-1.
[7] Sukochev F.A., Tulenov K.S., Zanin D.V. The optimal range of the Calder´on operator and its applications // J. Func. Anal. - 2019. - V. 277, №10. - P. 3513-3559.
[8] Sukochev F.A., Tulenov K.S., Zanin D.V. The boundedness of the Hilbert transformation from one rearrangement invariant Banach space into another and applications // Bulletin des Sciences Mathematiques. - 2019. - V. 167.
doi:10.1016/2020/102943.
[9] Tulenov K. S. The optimal symmetric quasi-Banach range of the discrete Hilbert transform // Arch. Math. - 2019. - V. 113, №6. - P. 649-660.
[10] Tulenov K. S. Optimal Rearrangement-Invariant Banach function range for the Hilbert transform // Eurasian Math. J. - 2021. - V. 12, №2. - P. 90-103.
[11] Bekbayev N.T., Tulenov K. S. On boundedness of the Hilbert transform on Marcinkiewicz spaces // Bulletin of the Karaganda University. - 2020. - V. 100, №4. - P. 26-32

Downloads

How to Cite

Bekbayev, N. T., & Tulenov, K. S. (2022). One result on boundedness of the Hilbert transform in Marcinkiewics spaces. Journal of Mathematics, Mechanics and Computer Science, 113(1). https://doi.org/10.26577/JMMCS.2022.v113.i1.02