Interpolation theorem for discrete net spaces

Authors

DOI:

https://doi.org/10.26577/JMMCS2023v120i4a3
        189 179

Keywords:

Net spaces, discrete Net spaces, Marcinkiewicz type interpolation theorem

Abstract

In this paper, we study discrete net spaces np,q(M), where M is some fixed family of sets from the set of integers Z. Note that in the case when the net M is the set of all finite subsets of integers, the space np,q(M) coincides with the discrete Lorentz space lp,q(M). For these spaces, the classical interpolation theorems of Marcinkiewicz-Calderon are known. In this paper, we study the interpolation properties of discrete network spaces np,q(M),in the case when the family of sets M is the set of all finite segments from the class of integers Z, i.e. finite arithmetic progressions with a step equal to 1. These spaces are characterized by such properties that for monotonically nonincreasing sequences the norm in the space np,q(M) coincides with the norm of the discrete Lorentz space lp,q(M). At the same time, in contrast to the Lorentz spaces, the given spaces np,q(M) may contain sequences that do not tend to zero. The main result of this work is the proof of the interpolation theorem for these spaces with respect to the real interpolation method. It is shown that the scale of discrete net spaces np,q(M) is closed with respect to the real interpolation method. As a corollary, an interpolation theorem of Marcinkiewicz type is presented. These assertions make it possible to obtain strong estimates from weak estimates.

References

Akylzhanov R., Ruzhansky M., "Lp − Lq multipliers on locally compact groups" , J. Fun. Anal. 278 (2020).

Akylzhanov R., Ruzhansky M., ”Net spaces on lattices, Hardy-Littlewood type inequalities, and their converses” ,

Eurasian Math. J. 8, Issue 3 (2017) : 10-27.

Akylzhanov R., Ruzhansky M., Nursultanov E.D., ”Hardy-Littlewood, Hausdorff-Young-Paley inequalities, and Lp − Lq

Fourier multipliers on compact homogeneous manifolds” , J. Math. Anal. Appl. 479, Issue 2 (2019) : 1519-1548. [4] Bergh J. , L ̈ofstr ̈om J., Interpolation Spaces. An Introduction , (Springer, Berlin, 1976).

Blasco O., Ruiz A., Vega L., ”Non interpolation in Morrey-Campanato and block spaces” , Ann. Scuola Norm. Sup. Pisa

Cl. Sci. 4 (1999) : 31-40.

Nursultanov E.D., ”Net spaces and inequalities of Hardy-Littlewood type” , Sb. Math. 189, no. 3 (1998) : 399-419.

Nursultanov E.D., ”On the coefficients of multiple Fourier series in Lp - spaces” , Izv. Math. 64, no. 1 (2000) : 93-120.

Nursultanov E.D., Aubakirov T.U., ”Interpolation methods for stochastic processes spaces” , Abstr. Appl. Anal. 2013 (2013) : 1-12.

Nursultanov E.D., Kostyuchenko A.G., ”Theory of control of ”catastrophes” Russ. Math. Surv. 53, no. 3 (1998) : 628-629.

Nursultanov E.D., Tleukhanova N.T., ”Lower and upper bounds for the norm of multipliers of multiple trigonometric

Fourier series in Lebesgue spaces” , Func. Anal. Appl. 34, no. 2 (2000) : 151-153.

Nursultanov E.D., Tikhonov S. ”Net spaces and boundedness of integral operators” , J. Geom. Anal. 21 (2011) : 950-981.

Ruiz A., Vega L. ”Corrigenda to "Unique continuation for Schrodinger operators"and a remark on interpolation of Morrey spaces” , Publicacions Matem‘atiques 39 (1995) : 405-411.

Downloads

How to Cite

Kalidolday, A., & Nursultanov, E. (2023). Interpolation theorem for discrete net spaces. Journal of Mathematics, Mechanics and Computer Science, 120(4), 24–31. https://doi.org/10.26577/JMMCS2023v120i4a3