Families without Friedberg but with positive numberings in the Ershov hierarchy.
Abstract
We point out that for every ordinal notation a of a nonzero ordinal, there are families of ΣReferences
[1] S. Badaev. Positive enumerations. // Sib. Mat. Zh., 18(3):483–496, 1977.
[2] S. Badaev and S. Goncharov. The theory of numberings: open problems. / In P. A. Cholak, S. Lempp, M. Lerman, and R. A. Shore, editors, Computability Theory and its Applications, volume 257 of Contemporary Mathematics, pages 23–38. American Mathematical Society, Providence, 2000.
[3] Yu. L. Ershov. A hierarchy of sets, I. // Algebra and Logic, 7:47–73, 1968.
[4] Yu. L. Ershov. A hierarchy of sets, II. // Algebra and Logic, 7:15–47, 1968.
[5] Yu. L. Ershov. A hierarchy of sets, III. // Algebra and Logic, 9:34–51, 1970.
[6] S. Goncharov and A. Sorbi. Generalized computable numerations and non-trivial Rogers semilattices. // Algebra and Logic, 36(6):359–369, 1997.
[7] S. Ospichev. Computable family of
[2] S. Badaev and S. Goncharov. The theory of numberings: open problems. / In P. A. Cholak, S. Lempp, M. Lerman, and R. A. Shore, editors, Computability Theory and its Applications, volume 257 of Contemporary Mathematics, pages 23–38. American Mathematical Society, Providence, 2000.
[3] Yu. L. Ershov. A hierarchy of sets, I. // Algebra and Logic, 7:47–73, 1968.
[4] Yu. L. Ershov. A hierarchy of sets, II. // Algebra and Logic, 7:15–47, 1968.
[5] Yu. L. Ershov. A hierarchy of sets, III. // Algebra and Logic, 9:34–51, 1970.
[6] S. Goncharov and A. Sorbi. Generalized computable numerations and non-trivial Rogers semilattices. // Algebra and Logic, 36(6):359–369, 1997.
[7] S. Ospichev. Computable family of
Downloads
How to Cite
Manat, M. (2011). Families without Friedberg but with positive numberings in the Ershov hierarchy. Journal of Mathematics, Mechanics and Computer Science, 69(2), 34–38. Retrieved from https://bm.kaznu.kz/index.php/kaznu/article/view/192
Issue
Section
Mathematical logic