Families without Friedberg but with positive numberings in the Ershov hierarchy.
Аннотация
We point out that for every ordinal notation a of a nonzero ordinal, there are families of ΣБиблиографические ссылки
[1] S. Badaev. Positive enumerations. // Sib. Mat. Zh., 18(3):483–496, 1977.
[2] S. Badaev and S. Goncharov. The theory of numberings: open problems. / In P. A. Cholak, S. Lempp, M. Lerman, and R. A. Shore, editors, Computability Theory and its Applications, volume 257 of Contemporary Mathematics, pages 23–38. American Mathematical Society, Providence, 2000.
[3] Yu. L. Ershov. A hierarchy of sets, I. // Algebra and Logic, 7:47–73, 1968.
[4] Yu. L. Ershov. A hierarchy of sets, II. // Algebra and Logic, 7:15–47, 1968.
[5] Yu. L. Ershov. A hierarchy of sets, III. // Algebra and Logic, 9:34–51, 1970.
[6] S. Goncharov and A. Sorbi. Generalized computable numerations and non-trivial Rogers semilattices. // Algebra and Logic, 36(6):359–369, 1997.
[7] S. Ospichev. Computable family of
[2] S. Badaev and S. Goncharov. The theory of numberings: open problems. / In P. A. Cholak, S. Lempp, M. Lerman, and R. A. Shore, editors, Computability Theory and its Applications, volume 257 of Contemporary Mathematics, pages 23–38. American Mathematical Society, Providence, 2000.
[3] Yu. L. Ershov. A hierarchy of sets, I. // Algebra and Logic, 7:47–73, 1968.
[4] Yu. L. Ershov. A hierarchy of sets, II. // Algebra and Logic, 7:15–47, 1968.
[5] Yu. L. Ershov. A hierarchy of sets, III. // Algebra and Logic, 9:34–51, 1970.
[6] S. Goncharov and A. Sorbi. Generalized computable numerations and non-trivial Rogers semilattices. // Algebra and Logic, 36(6):359–369, 1997.
[7] S. Ospichev. Computable family of
Загрузки
Как цитировать
Manat, M. (2011). Families without Friedberg but with positive numberings in the Ershov hierarchy. Вестник КазНУ. Серия математика, механика, информатика, 69(2), 34–38. извлечено от https://bm.kaznu.kz/index.php/kaznu/article/view/192
Выпуск
Раздел
Математическая логика