Families without Friedberg but with positive numberings in the Ershov hierarchy.

Авторы

  • Mustafa Manat Al-Farabi Kazakh National University
        63 37

Аннотация

We point out that for every ordinal notation a of a nonzero ordinal, there are families of Σ

Библиографические ссылки

[1] S. Badaev. Positive enumerations. // Sib. Mat. Zh., 18(3):483–496, 1977.

[2] S. Badaev and S. Goncharov. The theory of numberings: open problems. / In P. A. Cholak, S. Lempp, M. Lerman, and R. A. Shore, editors, Computability Theory and its Applications, volume 257 of Contemporary Mathematics, pages 23–38. American Mathematical Society, Providence, 2000.

[3] Yu. L. Ershov. A hierarchy of sets, I. // Algebra and Logic, 7:47–73, 1968.

[4] Yu. L. Ershov. A hierarchy of sets, II. // Algebra and Logic, 7:15–47, 1968.

[5] Yu. L. Ershov. A hierarchy of sets, III. // Algebra and Logic, 9:34–51, 1970.

[6] S. Goncharov and A. Sorbi. Generalized computable numerations and non-trivial Rogers semilattices. // Algebra and Logic, 36(6):359–369, 1997.

[7] S. Ospichev. Computable family of

Загрузки

Как цитировать

Manat, M. (2011). Families without Friedberg but with positive numberings in the Ershov hierarchy. Вестник КазНУ. Серия математика, механика, информатика, 69(2), 34–38. извлечено от https://bm.kaznu.kz/index.php/kaznu/article/view/192