Families without Friedberg but with positive numberings in the Ershov hierarchy.
Аннотация
We point out that for every ordinal notation a of a nonzero ordinal, there are families of ΣБиблиографиялық сілтемелер
[1] S. Badaev. Positive enumerations. // Sib. Mat. Zh., 18(3):483–496, 1977.
[2] S. Badaev and S. Goncharov. The theory of numberings: open problems. / In P. A. Cholak, S. Lempp, M. Lerman, and R. A. Shore, editors, Computability Theory and its Applications, volume 257 of Contemporary Mathematics, pages 23–38. American Mathematical Society, Providence, 2000.
[3] Yu. L. Ershov. A hierarchy of sets, I. // Algebra and Logic, 7:47–73, 1968.
[4] Yu. L. Ershov. A hierarchy of sets, II. // Algebra and Logic, 7:15–47, 1968.
[5] Yu. L. Ershov. A hierarchy of sets, III. // Algebra and Logic, 9:34–51, 1970.
[6] S. Goncharov and A. Sorbi. Generalized computable numerations and non-trivial Rogers semilattices. // Algebra and Logic, 36(6):359–369, 1997.
[7] S. Ospichev. Computable family of
[2] S. Badaev and S. Goncharov. The theory of numberings: open problems. / In P. A. Cholak, S. Lempp, M. Lerman, and R. A. Shore, editors, Computability Theory and its Applications, volume 257 of Contemporary Mathematics, pages 23–38. American Mathematical Society, Providence, 2000.
[3] Yu. L. Ershov. A hierarchy of sets, I. // Algebra and Logic, 7:47–73, 1968.
[4] Yu. L. Ershov. A hierarchy of sets, II. // Algebra and Logic, 7:15–47, 1968.
[5] Yu. L. Ershov. A hierarchy of sets, III. // Algebra and Logic, 9:34–51, 1970.
[6] S. Goncharov and A. Sorbi. Generalized computable numerations and non-trivial Rogers semilattices. // Algebra and Logic, 36(6):359–369, 1997.
[7] S. Ospichev. Computable family of
Жүктелулер
Как цитировать
Manat, M. (2011). Families without Friedberg but with positive numberings in the Ershov hierarchy. Қазұу Хабаршысы. Математика, механика, информатика сериясы, 69(2), 34–38. вилучено із https://bm.kaznu.kz/index.php/kaznu/article/view/192
Шығарылым
Бөлім
Математикалық логика