About some estimates for functional in the finite-dimensional Lorentz spaces
Abstract
The extreme task for squared form in some varieties given by norms of final measured spaces is investigated here.
The tops and the bottoms estimations in functions are achieved. With their help the double-sided estimations
of operators' norm are achieved as well, which is given by squared matrix in finite-dimensional of Lorenz
and Lebesgue spaces
References
1. E. Nursultanov, S. Tikhonov Net spaces and boundedness of integral operators // Centre de recerca matematica, Preprint № 800, April 2008.
2. O'`Neil R.O. Convolution operators and $L_{pq}$ spaces // Duke Math. J. -- 1963. -- V. 30. -- P. 129 -- 142.
3. Костюченко А.Г., Нурсултанов Е.Д. Об интегральных операторах в $L_p$-пространствах} // Фундаментальная и прикладная математика. -- 1999. -- Т. 5, № 2. -- C. 475 -- 491.
2. O'`Neil R.O. Convolution operators and $L_{pq}$ spaces // Duke Math. J. -- 1963. -- V. 30. -- P. 129 -- 142.
3. Костюченко А.Г., Нурсултанов Е.Д. Об интегральных операторах в $L_p$-пространствах} // Фундаментальная и прикладная математика. -- 1999. -- Т. 5, № 2. -- C. 475 -- 491.
Downloads
How to Cite
Tadjigitov, A. A. (2019). About some estimates for functional in the finite-dimensional Lorentz spaces. Journal of Mathematics, Mechanics and Computer Science, 64(1), 31–36. Retrieved from https://bm.kaznu.kz/index.php/kaznu/article/view/592
Issue
Section
Mathematical analysis