Constructing the feedback optimal control for nonstationary linear systems with fixed endpoints of trajectories
Keywords:
linear system, quadratic functional, ellipsoid, feedback control, Lagrange multipliers,Abstract
The algorithm for solving the optimization problem for nonstationary nonhomogenous linear control systems is offered in this article. The problem with quadratic cost functional and ellipsoid-constrained control is considered. It is required to transfer the system from the given initial state to the origin along the optimal way for a finite time interval. The feature of the considered problem is that the entrance signal is looked for in the form of the synthesizing control which depends on current state of the system and time. Usage of Lagrange multipliers of a special form allows to construct the required feedback control providing a fulfillment of given constraints on control values and exact transfer the system into the origin for a finite time interval. The offered method is presented in the form of the algorithm convenient for computer-aided realization. The received results can be used for solving the optimal control problems for spacecrafts, planes, robot manipulators, etc.References
[1] Bryson A.E., Ho Yu-Chi. Applied optimal control: optimization, estimation and control. –Washington: Hemisphere, 1975. – 481 p.
[2] Athans M., Falb P. Optimal control: introduction to the theory and its applications. –New York: McGraw-Hill, 1966. – 879 p.
[3] Куржанский А.Б. Дифференциальные уравнения в задачах синтеза управлений. I.Обыкновенные системы // Диф. уравн. – 2005. – Т. 41, № 1. – С. 12–22.
[4] Понтрягин Л.С. и др. Математическая теория оптимальных процессов. – М.: Наука, 1976. – 392 с.
[5] Bellman R., Kalaba R. Dynamic programming and modern control theory. – New York:Academic Press, 1966. – 112 p.
[6] Кротов В.Ф., Гурман В.И. Методы и задачи оптимального управления. – М.: Наука,1973. – 446 с.
[7] Алексеев В.М. и др. Оптимальное управление. – М.: Наука, 1979. – 432 с.
[8] Мурзабеков З.Н. Достаточные условия оптимальности динамических систем с закрепленными концами // Матем. журн. – 2004. – Т. 4, № 2(12). – С. 52–59.
[9] Васильев Ф.П. Методы оптимизации. – М.: Факториал пресс, 2002. – 824 с.
[2] Athans M., Falb P. Optimal control: introduction to the theory and its applications. –New York: McGraw-Hill, 1966. – 879 p.
[3] Куржанский А.Б. Дифференциальные уравнения в задачах синтеза управлений. I.Обыкновенные системы // Диф. уравн. – 2005. – Т. 41, № 1. – С. 12–22.
[4] Понтрягин Л.С. и др. Математическая теория оптимальных процессов. – М.: Наука, 1976. – 392 с.
[5] Bellman R., Kalaba R. Dynamic programming and modern control theory. – New York:Academic Press, 1966. – 112 p.
[6] Кротов В.Ф., Гурман В.И. Методы и задачи оптимального управления. – М.: Наука,1973. – 446 с.
[7] Алексеев В.М. и др. Оптимальное управление. – М.: Наука, 1979. – 432 с.
[8] Мурзабеков З.Н. Достаточные условия оптимальности динамических систем с закрепленными концами // Матем. журн. – 2004. – Т. 4, № 2(12). – С. 52–59.
[9] Васильев Ф.П. Методы оптимизации. – М.: Факториал пресс, 2002. – 824 с.
Downloads
How to Cite
Murzabekov, Z. N., & Aipanov, S. A. (2013). Constructing the feedback optimal control for nonstationary linear systems with fixed endpoints of trajectories. Journal of Mathematics, Mechanics and Computer Science, 77(2), 86–93. Retrieved from https://bm.kaznu.kz/index.php/kaznu/article/view/99
Issue
Section
Mechanics, Mathematics, Computer Science