О скорости сходимости решений одной ε - аппроксимаций уравнений тепловой конвекции для жидкости Кельвина-Фойгта. Келвин-Фойгт сұйығы үшiн жылу конвекция теңдеулерiнiң бiр ε– жуықтау есебi шешiмiнiң жинақталу жылдамдығы туралы.
Кілттік сөздер:
задачи тепловой конвекции, жидкость Кельвина-Фойгта, Уравнения Навье-СтоксаАннотация
В данной работе исследуется корректность одной ε - аппроксимаций начальнокраевой задачи тепловой конвекции для жидкости Кельвина-Фойгта . Доказана теорема существования и единственность в целом по времени решение ε - регуляризованной задачи и получены оценки скорости сходимости. Бұл жұмыста Кельвин-Фойгт сұйығы үшiн жылу конвекция теңдеулер жүйесiнiң бiр қисынды ε–жуықтауы зерттелiндi. ε– регуляризацияланған есептiң шешiмiнiң бар және жалғыздығы дәлелденiп ε 7→ 0 кезде оның бастапқы есептiң шешiмiне жинақтылығы көрсетiлдi. Шешiмнiң жинақталу жылдамдығына бағалаулар алынды.Библиографиялық сілтемелер
[1] Хомпыш Х. Разрешимость начально-краевой задачи тепловой конвекции с условием проскальзывания для уравнений жидкости Кельвина-Фойгта // Вестник КазНТУ им. К.И. Сатпаева, научный журнал. –Алматы. –2010. -№2(78). –C. 178-182.
[2] Темам Р. Уравнения Навье-Стокса. Теория и численный анализ. –М.: Мир, –1981. –408 c.
[3] Ладыженская О.А. Математические вопросы динамики вязкой несжимаемой жидкости. – М.: Наука, – 1970. – 288 с.
[4] Смагулов Ш.С. Малые параметры некоторой модели гидродинамики // Вестник КазГУ им. аль-Фараби. Серия физика, математика, информатика. –Алматы. –1996.–Т. 4. – С. 171-177.
[5] Сахаев Ш.С., Хомпыш Х. Разрешимость одной начально-краевой задачи ε - аппроксимаций для модифицированных уравнений тепловой конвекции // Вестник КазНПУ им. Абая. Серия физико - математических наук. –Алматы. –2009. –№4(28). – С. 167-171.
[6] Kotsiolis A.A., Oskolkov A.P. The initial-boundary value problem with a free surface condition for the ε -approximations of the Navier-Stokes equations and some their regularizations // Записки научных семинаров ПОМИ. –1993. –Т. 205. –С. 38-70.
[7] Осколков А.П. Нелокальные проблемы для уравнений жидкостей Кельвина-Фойгта и их ε -аппроксимаций // Записки научных семинаров ПОМИ. –1995. – Т. 221. – С.
185-207.
[2] Темам Р. Уравнения Навье-Стокса. Теория и численный анализ. –М.: Мир, –1981. –408 c.
[3] Ладыженская О.А. Математические вопросы динамики вязкой несжимаемой жидкости. – М.: Наука, – 1970. – 288 с.
[4] Смагулов Ш.С. Малые параметры некоторой модели гидродинамики // Вестник КазГУ им. аль-Фараби. Серия физика, математика, информатика. –Алматы. –1996.–Т. 4. – С. 171-177.
[5] Сахаев Ш.С., Хомпыш Х. Разрешимость одной начально-краевой задачи ε - аппроксимаций для модифицированных уравнений тепловой конвекции // Вестник КазНПУ им. Абая. Серия физико - математических наук. –Алматы. –2009. –№4(28). – С. 167-171.
[6] Kotsiolis A.A., Oskolkov A.P. The initial-boundary value problem with a free surface condition for the ε -approximations of the Navier-Stokes equations and some their regularizations // Записки научных семинаров ПОМИ. –1993. –Т. 205. –С. 38-70.
[7] Осколков А.П. Нелокальные проблемы для уравнений жидкостей Кельвина-Фойгта и их ε -аппроксимаций // Записки научных семинаров ПОМИ. –1995. – Т. 221. – С.
185-207.
Жүктелулер
Как цитировать
Khompysh, K. (2012). О скорости сходимости решений одной ε - аппроксимаций уравнений тепловой конвекции для жидкости Кельвина-Фойгта. Келвин-Фойгт сұйығы үшiн жылу конвекция теңдеулерiнiң бiр ε– жуықтау есебi шешiмiнiң жинақталу жылдамдығы туралы. Қазұу Хабаршысы. Математика, механика, информатика сериясы, 72(1), 79–84. вилучено із https://bm.kaznu.kz/index.php/kaznu/article/view/130
Шығарылым
Бөлім
Механика