Initial bounds for analytic function classes characterized by certain special functions and bell numbers
DOI:
https://doi.org/10.26577/JMMCS2023v120i4a5Keywords:
Analytic function, Schwarz function, (p-q) Chebyshev polynomial, (p-q) Gegenbauer polynomial, coefficient estimate, Fekete-Szego problem, subordinationAbstract
In this work, we introduced two new classes of analytic functions dened by the involvement of Galue-type Struve function, modied error function and Bell's numbers, means of q-dierentiation and the subordination principle. Some of the upper estimates obtained are on the initial bounds and the Fekete-Szego inequality.
References
Abramowitz M., Stegun I.A. (eds.). Handbook of Mathematical Functions with Formulas,
Graphs and Mathematical Tables, Dover Publications Inc., New York, (1965).
Aral A., Gupta V., Agarwal R.P. Applications of q-Calculus in Operator Theory, Springer
Science+Business Media, New York, (2013).
Bell E.T. Exponential polynomials, Ann. Math., 35, (1934): 258277.
Bell E.T. The iterated exponential integers, Ann. Math., 39, (1938): 539557.
Coman D. The radius of starlikeness for error function, Stud. Univ. Babes Bolyal Math.,
, (1991): 1316.
Initial bounds for analytic function classes characterized by certain special functions . . .
Elbert A., Laforgia A. The zeros of the complementary error function, Numer.
Algorithms, 49 (1-4), (2008): 153157.
Jackson F.H. On q-functions and a certain dierence operator, Trans. Roy. Soc. Edinb.,
(2), (1908): 6472.
Jahangiri J.M., Ramachandran C., Annamalai S. Fekete-Szego problem for certain
analytic functions dened by hypergeometric functions and Jacobi polynomial. J. Fract.
Calc. Appl., 9, (2018): 17.
Kac V., Cheung P., Quantum Calculus, Springer-Verlag Inc., New York, (2002).
Lasode A.O., Opoola T.O. On a generalized class of bi-univalent functions dened by
subordination and q-derivative operator, Open J. Math. Anal., 5 (2), (2021): 4652.
Lasode A.O., Opoola T.O. Fekete-Szego estimates and second Hankel determinant for
a generalized subfamily of analytic functions dened by q-dierential operator, Gulf J.
Math., 11 (2), (2021): 3643.
Lasode A.O., Opoola T.O. Some investigations on a class of analytic and univalent
functions involving q-dierentiation, Eur. J. Math. Anal., 2 (12), (2022): 19.
Kumar V., Cho N.E., Ravichandran V., Srivastava H.M. Sharp coecient bounds for
starlike functions associated with the Bell numbers, Math. Slovaca., 69, 2019: 10531064.
Nisar K.S., Baleanu D., Qurashi M.A. Fractional calculus and application of generalized
Struve function, SpringerPlus J., 5 (910), (2016): 13 pages.
Orhan H., Yagmur N. Geometric properties of generalized struve functions. In: The
International Congress in honour of Professor H.M. Srivastava, 2326, Bursa, Turkey,
(2012).
Oyekan E.A. Coecient estimates and subordination results for certain classes of
analytic functions, J. Math. Sci., 24 (2), (2013): 7586.
Oyekan E.A. Certain geometric properties of functions involving Galue type Struve
function, Ann. Math. Comput. Sci., 8, (2022): 4353.
Oyekan E.A., Awolere I.T. A new subclass of univalent functions connected with
convolution dened via employing a linear combination of two generalized dierential
operators involving sigmoid function, Maltepe J. Math., 2 (2), (2020): 1121.
Oyekan E.A., Lasode A.O. Estimates for some classes of analytic functions associated
with Pascal distribution series, error function, Bell numbers and q-dierential operator,
Nigerian J. Math. Appl., 32, (2022): 163173.
Oyekan E.A., Swamy S.R., Opoola T.O. Ruscheweyh derivative and a new generalized
operator involving convolution, Internal. J. Math. Trends Technol., 67 (1) (2021): 88
E.A. Oyekan, A.O. Lasode, T.A. Olatunji 67
Oyekan E.A., Ojo O.O. Some properties of a class of analytic functions dened by
convolution of two generalized dierential operators, Intern. Confer. Contemp. Dev.
Math. Sci., 23, (2021): 724742.
Oyekan E.A., Terwase A.J. Certain characterizations for a class of p-valent functions
dened by Salagean dierential operator, Gen. Math. Notes, 24 (2), (2014): 19.
Ramachandran K., Dhanalakshmi C., Vanitha L. Hankel determinant for a subclass of
analytic functions associated with error functions bounded by conical regions, Internat.
J. Math. Anal., 11 (2), (2017): 571581.
Thomas D.K., Tuneski N., Vasudevarao A. Univalent Functions: A Primer, Walter de
Gruyter Inc., Berlin, (2018)
Downloads
Versions
- 2024-03-29 (2)
- 2023-12-31 (1)